summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_thread.c
blob: 7123616e235d21a7258ac4b3baf9e4b5aa119ac0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
/* 
 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
 *  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice(s), this list of conditions and the following disclaimer as
 *    the first lines of this file unmodified other than the possible 
 *    addition of one or more copyright notices.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice(s), this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/filedesc.h>
#include <sys/tty.h>
#include <sys/signalvar.h>
#include <sys/sx.h>
#include <sys/user.h>
#include <sys/jail.h>
#include <sys/kse.h>
#include <sys/ktr.h>
#include <sys/ucontext.h>

#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/pmap.h>
#include <vm/uma.h>
#include <vm/vm_map.h>

#include <machine/frame.h>

/*
 * KSEGRP related storage.
 */
static uma_zone_t ksegrp_zone;
static uma_zone_t kse_zone;
static uma_zone_t thread_zone;

/* DEBUG ONLY */
SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
static int oiks_debug = 1;	/* 0 disable, 1 printf, 2 enter debugger */
SYSCTL_INT(_kern_threads, OID_AUTO, oiks, CTLFLAG_RW,
	&oiks_debug, 0, "OIKS thread debug");

static int max_threads_per_proc = 6;
SYSCTL_INT(_kern_threads, OID_AUTO, max_per_proc, CTLFLAG_RW,
	&max_threads_per_proc, 0, "Limit on threads per proc");

#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))

struct threadqueue zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
struct mtx zombie_thread_lock;
MTX_SYSINIT(zombie_thread_lock, &zombie_thread_lock,
    "zombie_thread_lock", MTX_SPIN);

/*
 * Pepare a thread for use.
 */
static void
thread_ctor(void *mem, int size, void *arg)
{
	struct thread	*td;

	KASSERT((size == sizeof(struct thread)),
	    ("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));

	td = (struct thread *)mem;
	td->td_state = TDS_INACTIVE;
	td->td_flags |= TDF_UNBOUND;
}

/*
 * Reclaim a thread after use.
 */
static void
thread_dtor(void *mem, int size, void *arg)
{
	struct thread	*td;

	KASSERT((size == sizeof(struct thread)),
	    ("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));

	td = (struct thread *)mem;

#ifdef INVARIANTS
	/* Verify that this thread is in a safe state to free. */
	switch (td->td_state) {
	case TDS_INHIBITED:
	case TDS_RUNNING:
	case TDS_CAN_RUN:
	case TDS_RUNQ:
		/*
		 * We must never unlink a thread that is in one of
		 * these states, because it is currently active.
		 */
		panic("bad state for thread unlinking");
		/* NOTREACHED */
	case TDS_INACTIVE:
		break;
	default:
		panic("bad thread state");
		/* NOTREACHED */
	}
#endif
}

/*
 * Initialize type-stable parts of a thread (when newly created).
 */
static void
thread_init(void *mem, int size)
{
	struct thread	*td;

	KASSERT((size == sizeof(struct thread)),
	    ("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));

	td = (struct thread *)mem;
	mtx_lock(&Giant);
	pmap_new_thread(td, 0);
	mtx_unlock(&Giant);
	cpu_thread_setup(td);
}

/*
 * Tear down type-stable parts of a thread (just before being discarded).
 */
static void
thread_fini(void *mem, int size)
{
	struct thread	*td;

	KASSERT((size == sizeof(struct thread)),
	    ("size mismatch: %d != %d\n", size, (int)sizeof(struct thread)));

	td = (struct thread *)mem;
	pmap_dispose_thread(td);
}

/*
 * Fill a ucontext_t with a thread's context information.
 *
 * This is an analogue to getcontext(3).
 */
void
thread_getcontext(struct thread *td, ucontext_t *uc)
{

/*
 * XXX this is declared in a MD include file, i386/include/ucontext.h but
 * is used in MI code.
 */
#ifdef __i386__
	get_mcontext(td, &uc->uc_mcontext);
#endif
	uc->uc_sigmask = td->td_proc->p_sigmask;
}

/*
 * Set a thread's context from a ucontext_t.
 *
 * This is an analogue to setcontext(3).
 */
int
thread_setcontext(struct thread *td, ucontext_t *uc)
{
	int ret;

/*
 * XXX this is declared in a MD include file, i386/include/ucontext.h but
 * is used in MI code.
 */
#ifdef __i386__
	ret = set_mcontext(td, &uc->uc_mcontext);
#else
	ret = ENOSYS;
#endif
	if (ret == 0) {
		SIG_CANTMASK(uc->uc_sigmask);
		PROC_LOCK(td->td_proc);
		td->td_proc->p_sigmask = uc->uc_sigmask;
		PROC_UNLOCK(td->td_proc);
	}
	return (ret);
}

/*
 * Initialize global thread allocation resources.
 */
void
threadinit(void)
{

	thread_zone = uma_zcreate("THREAD", sizeof (struct thread),
	    thread_ctor, thread_dtor, thread_init, thread_fini,
	    UMA_ALIGN_CACHE, 0);
	ksegrp_zone = uma_zcreate("KSEGRP", sizeof (struct ksegrp),
	    NULL, NULL, NULL, NULL,
	    UMA_ALIGN_CACHE, 0);
	kse_zone = uma_zcreate("KSE", sizeof (struct kse),
	    NULL, NULL, NULL, NULL,
	    UMA_ALIGN_CACHE, 0);
}

/*
 * Stash an embarasingly extra thread into the zombie thread queue.
 */
void
thread_stash(struct thread *td)
{
	mtx_lock_spin(&zombie_thread_lock);
	TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
	mtx_unlock_spin(&zombie_thread_lock);
}

/*
 * Reap zombie threads.
 */
void
thread_reap(void)
{
	struct thread *td_reaped;

	/*
	 * don't even bother to lock if none at this instant
	 * We really don't care about the next instant..
	 */
	if (!TAILQ_EMPTY(&zombie_threads)) {
		mtx_lock_spin(&zombie_thread_lock);
		while (!TAILQ_EMPTY(&zombie_threads)) {
			td_reaped = TAILQ_FIRST(&zombie_threads);
			TAILQ_REMOVE(&zombie_threads, td_reaped, td_runq);
			mtx_unlock_spin(&zombie_thread_lock);
			thread_free(td_reaped);
			mtx_lock_spin(&zombie_thread_lock);
		}
		mtx_unlock_spin(&zombie_thread_lock);
	}
}

/*
 * Allocate a ksegrp.
 */
struct ksegrp *
ksegrp_alloc(void)
{
	return (uma_zalloc(ksegrp_zone, M_WAITOK));
}

/*
 * Allocate a kse.
 */
struct kse *
kse_alloc(void)
{
	return (uma_zalloc(kse_zone, M_WAITOK));
}

/*
 * Allocate a thread.
 */
struct thread *
thread_alloc(void)
{
	thread_reap(); /* check if any zombies to get */
	return (uma_zalloc(thread_zone, M_WAITOK));
}

/*
 * Deallocate a ksegrp.
 */
void
ksegrp_free(struct ksegrp *td)
{
	uma_zfree(ksegrp_zone, td);
}

/*
 * Deallocate a kse.
 */
void
kse_free(struct kse *td)
{
	uma_zfree(kse_zone, td);
}

/*
 * Deallocate a thread.
 */
void
thread_free(struct thread *td)
{
	uma_zfree(thread_zone, td);
}

/*
 * Store the thread context in the UTS's mailbox.
 * then add the mailbox at the head of a list we are building in user space.
 * The list is anchored in the ksegrp structure.
 */
int
thread_export_context(struct thread *td)
{
	struct proc *p = td->td_proc;
	struct ksegrp *kg;
	uintptr_t mbx;
	void *addr;
	int error;
	ucontext_t uc;

	/* Export the user/machine context. */
#if 0
	addr = (caddr_t)td->td_mailbox +
	    offsetof(struct kse_thr_mailbox, tm_context);
#else /* if user pointer arithmetic is valid in the kernel */
		addr = (void *)(&td->td_mailbox->tm_context);
#endif
	error = copyin(addr, &uc, sizeof(ucontext_t));
	if (error == 0) {
		thread_getcontext(td, &uc);
		error = copyout(&uc, addr, sizeof(ucontext_t));

	}
	if (error) {
		PROC_LOCK(p);
		psignal(p, SIGSEGV);
		PROC_UNLOCK(p);
		return (error);
	}
	/* get address in latest mbox of list pointer */
#if 0
	addr = (caddr_t)td->td_mailbox
	    + offsetof(struct kse_thr_mailbox , tm_next);
#else /* if user pointer arithmetic is valid in the kernel */
	addr = (void *)(&td->td_mailbox->tm_next);
#endif
	/*
	 * Put the saved address of the previous first
	 * entry into this one
	 */
	kg = td->td_ksegrp;
	for (;;) {
		mbx = (uintptr_t)kg->kg_completed;
		if (suword(addr, mbx)) {
			PROC_LOCK(p);
			psignal(p, SIGSEGV);
			PROC_UNLOCK(p);
			return (EFAULT);
		}
		PROC_LOCK(p);
		if (mbx == (uintptr_t)kg->kg_completed) {
			kg->kg_completed = td->td_mailbox;
			PROC_UNLOCK(p);
			break;
		}
		PROC_UNLOCK(p);
	}
	return (0);
}

/*
 * Take the list of completed mailboxes for this KSEGRP and put them on this
 * KSE's mailbox as it's the next one going up.
 */
static int
thread_link_mboxes(struct ksegrp *kg, struct kse *ke)
{
	struct proc *p = kg->kg_proc;
	void *addr;
	uintptr_t mbx;

#if 0
	addr = (caddr_t)ke->ke_mailbox
	    + offsetof(struct kse_mailbox, km_completed);
#else /* if user pointer arithmetic is valid in the kernel */
		addr = (void *)(&ke->ke_mailbox->km_completed);
#endif
	for (;;) {
		mbx = (uintptr_t)kg->kg_completed;
		if (suword(addr, mbx)) {
			PROC_LOCK(p);
			psignal(p, SIGSEGV);
			PROC_UNLOCK(p);
			return (EFAULT);
		}
		/* XXXKSE could use atomic CMPXCH here */
		PROC_LOCK(p);
		if (mbx == (uintptr_t)kg->kg_completed) {
			kg->kg_completed = NULL;
			PROC_UNLOCK(p);
			break;
		}
		PROC_UNLOCK(p);
	}
	return (0);
}

/*
 * Discard the current thread and exit from its context.
 *
 * Because we can't free a thread while we're operating under its context,
 * push the current thread into our KSE's ke_tdspare slot, freeing the
 * thread that might be there currently. Because we know that only this
 * processor will run our KSE, we needn't worry about someone else grabbing
 * our context before we do a cpu_throw.
 */
void
thread_exit(void)
{
	struct thread *td;
	struct kse *ke;
	struct proc *p;
	struct ksegrp	*kg;

	td = curthread;
	kg = td->td_ksegrp;
	p = td->td_proc;
	ke = td->td_kse;

	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT(p != NULL, ("thread exiting without a process"));
	KASSERT(ke != NULL, ("thread exiting without a kse"));
	KASSERT(kg != NULL, ("thread exiting without a kse group"));
	PROC_LOCK_ASSERT(p, MA_OWNED);
	CTR1(KTR_PROC, "thread_exit: thread %p", td);
	KASSERT(!mtx_owned(&Giant), ("dying thread owns giant"));

	if (ke->ke_tdspare != NULL) {
		thread_stash(ke->ke_tdspare);
		ke->ke_tdspare = NULL;
	}
	cpu_thread_exit(td);	/* XXXSMP */

	/*
	 * The last thread is left attached to the process
	 * So that the whole bundle gets recycled. Skip
	 * all this stuff.
	 */
	if (p->p_numthreads > 1) {
		/* Reassign this thread's KSE. */
		ke->ke_thread = NULL;
		td->td_kse = NULL;
		ke->ke_state = KES_UNQUEUED;
		if (ke->ke_bound == td)
			ke->ke_bound = NULL;
		kse_reassign(ke);

		/* Unlink this thread from its proc. and the kseg */
		TAILQ_REMOVE(&p->p_threads, td, td_plist);
		p->p_numthreads--;
		TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
		kg->kg_numthreads--;
		/*
		 * The test below is NOT true if we are the
		 * sole exiting thread. P_STOPPED_SNGL is unset
		 * in exit1() after it is the only survivor.
		 */
		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
			if (p->p_numthreads == p->p_suspcount) {
				thread_unsuspend_one(p->p_singlethread);
			}
		}
		PROC_UNLOCK(p);
		td->td_state	= TDS_INACTIVE;
		td->td_proc	= NULL;
		td->td_ksegrp	= NULL;
		td->td_last_kse	= NULL;
		ke->ke_tdspare = td;
	} else {
		PROC_UNLOCK(p);
	}

	cpu_throw();
	/* NOTREACHED */
}

/*
 * Link a thread to a process.
 * set up anything that needs to be initialized for it to
 * be used by the process.
 *
 * Note that we do not link to the proc's ucred here.
 * The thread is linked as if running but no KSE assigned.
 */
void
thread_link(struct thread *td, struct ksegrp *kg)
{
	struct proc *p;

	p = kg->kg_proc;
	td->td_state = TDS_INACTIVE;
	td->td_proc	= p;
	td->td_ksegrp	= kg;
	td->td_last_kse	= NULL;

	LIST_INIT(&td->td_contested);
	callout_init(&td->td_slpcallout, 1);
	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
	TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
	p->p_numthreads++;
	kg->kg_numthreads++;
	if (oiks_debug && p->p_numthreads > max_threads_per_proc) {
		printf("OIKS %d\n", p->p_numthreads);
		if (oiks_debug > 1)
			Debugger("OIKS");
	}
	td->td_kse	= NULL;
}

/*
 * Create a thread and schedule it for upcall on the KSE given.
 */
struct thread *
thread_schedule_upcall(struct thread *td, struct kse *ke)
{
	struct thread *td2;

	mtx_assert(&sched_lock, MA_OWNED);
	if (ke->ke_tdspare != NULL) {
		td2 = ke->ke_tdspare;
		ke->ke_tdspare = NULL;
	} else {
		mtx_unlock_spin(&sched_lock);
		td2 = thread_alloc();
		mtx_lock_spin(&sched_lock);
	}
	CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
	     td, td->td_proc->p_pid, td->td_proc->p_comm);
	bzero(&td2->td_startzero,
	    (unsigned)RANGEOF(struct thread, td_startzero, td_endzero));
	bcopy(&td->td_startcopy, &td2->td_startcopy,
	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
	thread_link(td2, ke->ke_ksegrp);
	cpu_set_upcall(td2, td->td_pcb);
	bcopy(td->td_frame, td2->td_frame, sizeof(struct trapframe));
	/*
	 * The user context for this thread is selected when we choose
	 * a KSE and return to userland on it. All we need do here is
	 * note that the thread exists in order to perform an upcall.
	 *
	 * Since selecting a KSE to perform the upcall involves locking
	 * that KSE's context to our upcall, its best to wait until the
	 * last possible moment before grabbing a KSE. We do this in
	 * userret().
	 */
	td2->td_ucred = crhold(td->td_ucred);
	td2->td_flags = TDF_UNBOUND|TDF_UPCALLING;
	TD_SET_CAN_RUN(td2);
	setrunqueue(td2);
	return (td2);
}

/*
 * Schedule an upcall to notify a KSE process recieved signals.
 *
 * XXX - Modifying a sigset_t like this is totally bogus.
 */
struct thread *
signal_upcall(struct proc *p, int sig)
{
	struct thread *td, *td2;
	struct kse *ke;
	sigset_t ss;
	int error;

	PROC_LOCK_ASSERT(p, MA_OWNED);

	td = FIRST_THREAD_IN_PROC(p);
	ke = td->td_kse;
	PROC_UNLOCK(p);
	error = copyin(&ke->ke_mailbox->km_sigscaught, &ss, sizeof(sigset_t));
	PROC_LOCK(p);
	if (error)
		return (NULL);
	SIGADDSET(ss, sig);
	PROC_UNLOCK(p);
	error = copyout(&ss, &ke->ke_mailbox->km_sigscaught, sizeof(sigset_t));
	PROC_LOCK(p);
	if (error)
		return (NULL);
	mtx_lock_spin(&sched_lock);
	td2 = thread_schedule_upcall(td, ke);
	mtx_unlock_spin(&sched_lock);
	return (td2);
}

/*
 * Consider whether or not an upcall should be made, and update the
 * TDF_UPCALLING flag appropriately.
 *
 * This function is called when the current thread had been bound to a user
 * thread that performed a syscall that blocked, and is now returning.
 * Got that? syscall -> msleep -> wakeup -> syscall_return -> us.
 *
 * This thread will be returned to the UTS in its mailbox as a completed
 * thread.  We need to decide whether or not to perform an upcall now,
 * or simply queue the thread for later.
 *
 * XXXKSE Future enhancement: We could also return back to
 * the thread if we haven't had to do an upcall since then.
 * If the KSE's copy is == the thread's copy, and there are
 * no other completed threads.
 */
static int
thread_consider_upcalling(struct thread *td)
{
	struct proc *p;
	struct ksegrp *kg;
	int error;

	/*
	 * Save the thread's context, and link it
	 * into the KSEGRP's list of completed threads.
	 */
	error = thread_export_context(td);
	td->td_flags &= ~TDF_UNBOUND;
	td->td_mailbox = NULL;
	if (error)
		/*
		 * Failing to do the KSE operation just defaults
		 * back to synchonous operation, so just return from
		 * the syscall.
		 */
		return (error);

	/*
	 * Decide whether to perform an upcall now.
	 */
	/* Make sure there are no other threads waiting to run. */
	p = td->td_proc;
	kg = td->td_ksegrp;
	PROC_LOCK(p);
	mtx_lock_spin(&sched_lock);
	/* bogus test, ok for testing though */
	if (TAILQ_FIRST(&kg->kg_runq) && 
	    (TAILQ_LAST(&kg->kg_runq, threadqueue) 
		!= kg->kg_last_assigned)) {
		/*
		 * Another thread in this KSEG needs to run.
		 * Switch to it instead of performing an upcall,
		 * abondoning this thread.  Perform the upcall
		 * later; discard this thread for now.
		 *
		 * XXXKSE - As for the other threads to run;
		 * we COULD rush through all the threads
		 * in this KSEG at this priority, or we
		 * could throw the ball back into the court
		 * and just run the highest prio kse available.
		 * What is OUR priority?  The priority of the highest
		 * sycall waiting to be returned?
		 * For now, just let another KSE run (easiest).
		 */
		thread_exit(); /* Abandon current thread. */
		/* NOTREACHED */
	} 
	/*
	 * Perform an upcall now.
	 *
	 * XXXKSE - Assumes we are going to userland, and not
	 * nested in the kernel.
	 */
	td->td_flags |= TDF_UPCALLING;
	mtx_unlock_spin(&sched_lock);
	PROC_UNLOCK(p);
	return (0);
}

/*
 * The extra work we go through if we are a threaded process when we
 * return to userland.
 *
 * If we are a KSE process and returning to user mode, check for
 * extra work to do before we return (e.g. for more syscalls
 * to complete first).  If we were in a critical section, we should
 * just return to let it finish. Same if we were in the UTS (in
 * which case the mailbox's context's busy indicator will be set).
 * The only traps we suport will have set the mailbox.
 * We will clear it here.
 */
int
thread_userret(struct thread *td, struct trapframe *frame)
{
	int error;
	int unbound;
	struct kse *ke;

	if (td->td_kse->ke_bound) {
		thread_export_context(td);
		PROC_LOCK(td->td_proc);
		mtx_lock_spin(&sched_lock);
		thread_exit();
	}

	/* Make the thread bound from now on, but remember what it was. */
	unbound = td->td_flags & TDF_UNBOUND;
	td->td_flags &= ~TDF_UNBOUND;
	/*
	 * Ensure that we have a spare thread available.
	 */
	ke = td->td_kse;
	if (ke->ke_tdspare == NULL) {
		mtx_lock(&Giant);
		ke->ke_tdspare = thread_alloc();
		mtx_unlock(&Giant);
	}
	/*
	 * Originally bound threads need no additional work.
	 */
	if (unbound == 0)
		return (0);
	error = 0;
	/*
	 * Decide whether or not we should perform an upcall now.
	 */
	if (((td->td_flags & TDF_UPCALLING) == 0) && unbound) {
		/* if we have other threads to run we will not return */
		if ((error = thread_consider_upcalling(td)))
			return (error); /* coundn't go async , just go sync. */
	}
	if (td->td_flags & TDF_UPCALLING) {
		/*
		 * There is no more work to do and we are going to ride
		 * this thead/KSE up to userland as an upcall.
		 */
		CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
		    td, td->td_proc->p_pid, td->td_proc->p_comm);

		/*
		 * Set user context to the UTS.
		 */
		cpu_set_upcall_kse(td, ke);

		/*
		 * Put any completed mailboxes on this KSE's list.
		 */
		error = thread_link_mboxes(td->td_ksegrp, ke);
		if (error)
			goto bad;

		/*
		 * Set state and mailbox.
		 */
		td->td_flags &= ~TDF_UPCALLING;
#if 0
		error = suword((caddr_t)ke->ke_mailbox +
		    offsetof(struct kse_mailbox, km_curthread),
		    0);
#else	/* if user pointer arithmetic is ok in the kernel */
		error = suword((caddr_t)&ke->ke_mailbox->km_curthread, 0);
#endif
		if (error)
			goto bad;
	}
	/*
	 * Stop any chance that we may be separated from
	 * the KSE we are currently on. This is "biting the bullet",
	 * we are committing to go to user space as as this KSE here.
	 */
	return (error);
bad:
	/*
	 * Things are going to be so screwed we should just kill the process.
 	 * how do we do that?
	 */
	 panic ("thread_userret.. need to kill proc..... how?");
}

/*
 * Enforce single-threading.
 *
 * Returns 1 if the caller must abort (another thread is waiting to
 * exit the process or similar). Process is locked!
 * Returns 0 when you are successfully the only thread running.
 * A process has successfully single threaded in the suspend mode when
 * There are no threads in user mode. Threads in the kernel must be
 * allowed to continue until they get to the user boundary. They may even
 * copy out their return values and data before suspending. They may however be
 * accellerated in reaching the user boundary as we will wake up
 * any sleeping threads that are interruptable. (PCATCH).
 */
int
thread_single(int force_exit)
{
	struct thread *td;
	struct thread *td2;
	struct proc *p;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	KASSERT((td != NULL), ("curthread is NULL"));

	if ((p->p_flag & P_KSES) == 0)
		return (0);

	/* Is someone already single threading? */
	if (p->p_singlethread) 
		return (1);

	if (force_exit == SINGLE_EXIT)
		p->p_flag |= P_SINGLE_EXIT;
	else
		p->p_flag &= ~P_SINGLE_EXIT;
	p->p_flag |= P_STOPPED_SINGLE;
	p->p_singlethread = td;
	while ((p->p_numthreads - p->p_suspcount) != 1) {
		mtx_lock_spin(&sched_lock);
		FOREACH_THREAD_IN_PROC(p, td2) {
			if (td2 == td)
				continue;
			if (TD_IS_INHIBITED(td2)) {
				if (TD_IS_SUSPENDED(td2)) {
					if (force_exit == SINGLE_EXIT) {
						thread_unsuspend_one(td2);
					}
				}
				if ( TD_IS_SLEEPING(td2)) {
					if (td2->td_flags & TDF_CVWAITQ)
						cv_waitq_remove(td2);
					else
						unsleep(td2);
					break;
				}
				if (TD_CAN_RUN(td2))
					setrunqueue(td2);
			}
		}
		/*
		 * Wake us up when everyone else has suspended.
		 * In the mean time we suspend as well.
		 */
		thread_suspend_one(td);
		mtx_unlock(&Giant);
		PROC_UNLOCK(p);
		mi_switch();
		mtx_unlock_spin(&sched_lock);
		mtx_lock(&Giant);
		PROC_LOCK(p);
	}
	return (0);
}

/*
 * Called in from locations that can safely check to see
 * whether we have to suspend or at least throttle for a
 * single-thread event (e.g. fork).
 *
 * Such locations include userret().
 * If the "return_instead" argument is non zero, the thread must be able to
 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
 *
 * The 'return_instead' argument tells the function if it may do a
 * thread_exit() or suspend, or whether the caller must abort and back
 * out instead.
 *
 * If the thread that set the single_threading request has set the
 * P_SINGLE_EXIT bit in the process flags then this call will never return
 * if 'return_instead' is false, but will exit.
 *
 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
 *---------------+--------------------+---------------------
 *       0       | returns 0          |   returns 0 or 1
 *               | when ST ends       |   immediatly
 *---------------+--------------------+---------------------
 *       1       | thread exits       |   returns 1
 *               |                    |  immediatly
 * 0 = thread_exit() or suspension ok,
 * other = return error instead of stopping the thread.
 *
 * While a full suspension is under effect, even a single threading
 * thread would be suspended if it made this call (but it shouldn't).
 * This call should only be made from places where
 * thread_exit() would be safe as that may be the outcome unless 
 * return_instead is set.
 */
int
thread_suspend_check(int return_instead)
{
	struct thread *td = curthread;
	struct proc *p = td->td_proc;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	while (P_SHOULDSTOP(p)) {
		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
			KASSERT(p->p_singlethread != NULL,
			    ("singlethread not set"));
			/*
			 * The only suspension in action is a
			 * single-threading. Single threader need not stop.
			 * XXX Should be safe to access unlocked 
			 * as it can only be set to be true by us.
			 */
			if (p->p_singlethread == td)
				return (0);	/* Exempt from stopping. */
		} 
		if (return_instead)
			return (1);

		/*
		 * If the process is waiting for us to exit,
		 * this thread should just suicide.
		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
		 */
		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
			mtx_lock_spin(&sched_lock);
			while (mtx_owned(&Giant))
				mtx_unlock(&Giant);
			thread_exit();
		}

		/*
		 * When a thread suspends, it just
		 * moves to the processes's suspend queue
		 * and stays there.
		 *
		 * XXXKSE if TDF_BOUND is true
		 * it will not release it's KSE which might
		 * lead to deadlock if there are not enough KSEs
		 * to complete all waiting threads.
		 * Maybe be able to 'lend' it out again.
		 * (lent kse's can not go back to userland?)
		 * and can only be lent in STOPPED state.
		 */
		mtx_lock_spin(&sched_lock);
		if ((p->p_flag & P_STOPPED_SIG) &&
		    (p->p_suspcount+1 == p->p_numthreads)) {
			mtx_unlock_spin(&sched_lock);
			PROC_LOCK(p->p_pptr);
			if ((p->p_pptr->p_procsig->ps_flag &
				PS_NOCLDSTOP) == 0) {
				psignal(p->p_pptr, SIGCHLD);
			}
			PROC_UNLOCK(p->p_pptr);
			mtx_lock_spin(&sched_lock);
		}
		mtx_assert(&Giant, MA_NOTOWNED);
		thread_suspend_one(td);
		PROC_UNLOCK(p);
		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
			if (p->p_numthreads == p->p_suspcount) {
				thread_unsuspend_one(p->p_singlethread);
			}
		}
		p->p_stats->p_ru.ru_nivcsw++;
		mi_switch();
		mtx_unlock_spin(&sched_lock);
		PROC_LOCK(p);
	}
	return (0);
}

void
thread_suspend_one(struct thread *td)
{
	struct proc *p = td->td_proc;

	mtx_assert(&sched_lock, MA_OWNED);
	p->p_suspcount++;
	TD_SET_SUSPENDED(td);
	TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
	/*
	 * Hack: If we are suspending but are on the sleep queue
	 * then we are in msleep or the cv equivalent. We
	 * want to look like we have two Inhibitors.
	 */
	if (TD_ON_SLEEPQ(td))
		TD_SET_SLEEPING(td);
}

void
thread_unsuspend_one(struct thread *td)
{
	struct proc *p = td->td_proc;

	mtx_assert(&sched_lock, MA_OWNED);
	TAILQ_REMOVE(&p->p_suspended, td, td_runq);
	TD_CLR_SUSPENDED(td);
	p->p_suspcount--;
	setrunnable(td);
}

/*
 * Allow all threads blocked by single threading to continue running.
 */
void
thread_unsuspend(struct proc *p)
{
	struct thread *td;

	mtx_assert(&sched_lock, MA_OWNED);
	PROC_LOCK_ASSERT(p, MA_OWNED);
	if (!P_SHOULDSTOP(p)) {
		while (( td = TAILQ_FIRST(&p->p_suspended))) {
			thread_unsuspend_one(td);
		}
	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
	    (p->p_numthreads == p->p_suspcount)) {
		/*
		 * Stopping everything also did the job for the single
		 * threading request. Now we've downgraded to single-threaded,
		 * let it continue.
		 */
		thread_unsuspend_one(p->p_singlethread);
	}
}

void
thread_single_end(void)
{
	struct thread *td;
	struct proc *p;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	p->p_flag &= ~P_STOPPED_SINGLE;
	p->p_singlethread = NULL;
	/*
	 * If there are other threads they mey now run,
	 * unless of course there is a blanket 'stop order'
	 * on the process. The single threader must be allowed
	 * to continue however as this is a bad place to stop.
	 */
	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
		mtx_lock_spin(&sched_lock);
		while (( td = TAILQ_FIRST(&p->p_suspended))) {
			thread_unsuspend_one(td);
		}
		mtx_unlock_spin(&sched_lock);
	}
}


OpenPOWER on IntegriCloud