summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_tc.c
blob: 6166e1cb25182f95464d1f5daabeb277d9fb30ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
/*-
 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
 * Copyright (c) 1982, 1986, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
 * $FreeBSD$
 */

#include "opt_ntp.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dkstat.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/timex.h>
#include <sys/timepps.h>
#include <vm/vm.h>
#include <sys/lock.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <sys/sysctl.h>

#include <machine/cpu.h>
#include <machine/limits.h>

#ifdef GPROF
#include <sys/gmon.h>
#endif

#if defined(SMP) && defined(BETTER_CLOCK)
#include <machine/smp.h>
#endif

/*
 * Number of timecounters used to implement stable storage
 */
#ifndef NTIMECOUNTER
#define NTIMECOUNTER	5
#endif

static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter", 
	"Timecounter stable storage");

static void initclocks __P((void *dummy));
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)

static void tco_forward __P((int force));
static void tco_setscales __P((struct timecounter *tc));
static __inline unsigned tco_delta __P((struct timecounter *tc));

/* Some of these don't belong here, but it's easiest to concentrate them. */
#if defined(SMP) && defined(BETTER_CLOCK)
long cp_time[CPUSTATES];
#else
static long cp_time[CPUSTATES];
#endif

long tk_cancc;
long tk_nin;
long tk_nout;
long tk_rawcc;

time_t time_second;

struct	timeval boottime;
SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
    &boottime, timeval, "System boottime");

/*
 * Which update policy to use.
 *   0 - every tick, bad hardware may fail with "calcru negative..."
 *   1 - more resistent to the above hardware, but less efficient.
 */
static int tco_method;

/*
 * Implement a dummy timecounter which we can use until we get a real one
 * in the air.  This allows the console and other early stuff to use
 * timeservices.
 */

static unsigned 
dummy_get_timecount(struct timecounter *tc)
{
	static unsigned now;
	return (++now);
}

static struct timecounter dummy_timecounter = {
	dummy_get_timecount,
	0,
	~0u,
	1000000,
	"dummy"
};

struct timecounter *timecounter = &dummy_timecounter;

/*
 * Clock handling routines.
 *
 * This code is written to operate with two timers that run independently of
 * each other.
 *
 * The main timer, running hz times per second, is used to trigger interval
 * timers, timeouts and rescheduling as needed.
 *
 * The second timer handles kernel and user profiling,
 * and does resource use estimation.  If the second timer is programmable,
 * it is randomized to avoid aliasing between the two clocks.  For example,
 * the randomization prevents an adversary from always giving up the cpu
 * just before its quantum expires.  Otherwise, it would never accumulate
 * cpu ticks.  The mean frequency of the second timer is stathz.
 *
 * If no second timer exists, stathz will be zero; in this case we drive
 * profiling and statistics off the main clock.  This WILL NOT be accurate;
 * do not do it unless absolutely necessary.
 *
 * The statistics clock may (or may not) be run at a higher rate while
 * profiling.  This profile clock runs at profhz.  We require that profhz
 * be an integral multiple of stathz.
 *
 * If the statistics clock is running fast, it must be divided by the ratio
 * profhz/stathz for statistics.  (For profiling, every tick counts.)
 *
 * Time-of-day is maintained using a "timecounter", which may or may
 * not be related to the hardware generating the above mentioned
 * interrupts.
 */

int	stathz;
int	profhz;
static int profprocs;
int	ticks;
static int psdiv, pscnt;		/* prof => stat divider */
int	psratio;			/* ratio: prof / stat */

/*
 * Initialize clock frequencies and start both clocks running.
 */
/* ARGSUSED*/
static void
initclocks(dummy)
	void *dummy;
{
	register int i;

	/*
	 * Set divisors to 1 (normal case) and let the machine-specific
	 * code do its bit.
	 */
	psdiv = pscnt = 1;
	cpu_initclocks();

	/*
	 * Compute profhz/stathz, and fix profhz if needed.
	 */
	i = stathz ? stathz : hz;
	if (profhz == 0)
		profhz = i;
	psratio = profhz / i;
}

/*
 * The real-time timer, interrupting hz times per second.
 */
void
hardclock(frame)
	register struct clockframe *frame;
{
	register struct proc *p;

	p = curproc;
	if (p) {
		register struct pstats *pstats;

		/*
		 * Run current process's virtual and profile time, as needed.
		 */
		pstats = p->p_stats;
		if (CLKF_USERMODE(frame) &&
		    timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
			psignal(p, SIGVTALRM);
		if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
			psignal(p, SIGPROF);
	}

#if defined(SMP) && defined(BETTER_CLOCK)
	forward_hardclock(pscnt);
#endif

	/*
	 * If no separate statistics clock is available, run it from here.
	 */
	if (stathz == 0)
		statclock(frame);

	tco_forward(0);
	ticks++;

	/*
	 * Process callouts at a very low cpu priority, so we don't keep the
	 * relatively high clock interrupt priority any longer than necessary.
	 */
	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
		if (CLKF_BASEPRI(frame)) {
			/*
			 * Save the overhead of a software interrupt;
			 * it will happen as soon as we return, so do it now.
			 */
			(void)splsoftclock();
			softclock();
		} else
			setsoftclock();
	} else if (softticks + 1 == ticks)
		++softticks;
}

/*
 * Compute number of ticks in the specified amount of time.
 */
int
tvtohz(tv)
	struct timeval *tv;
{
	register unsigned long ticks;
	register long sec, usec;

	/*
	 * If the number of usecs in the whole seconds part of the time
	 * difference fits in a long, then the total number of usecs will
	 * fit in an unsigned long.  Compute the total and convert it to
	 * ticks, rounding up and adding 1 to allow for the current tick
	 * to expire.  Rounding also depends on unsigned long arithmetic
	 * to avoid overflow.
	 *
	 * Otherwise, if the number of ticks in the whole seconds part of
	 * the time difference fits in a long, then convert the parts to
	 * ticks separately and add, using similar rounding methods and
	 * overflow avoidance.  This method would work in the previous
	 * case but it is slightly slower and assumes that hz is integral.
	 *
	 * Otherwise, round the time difference down to the maximum
	 * representable value.
	 *
	 * If ints have 32 bits, then the maximum value for any timeout in
	 * 10ms ticks is 248 days.
	 */
	sec = tv->tv_sec;
	usec = tv->tv_usec;
	if (usec < 0) {
		sec--;
		usec += 1000000;
	}
	if (sec < 0) {
#ifdef DIAGNOSTIC
		if (usec > 0) {
			sec++;
			usec -= 1000000;
		}
		printf("tvotohz: negative time difference %ld sec %ld usec\n",
		       sec, usec);
#endif
		ticks = 1;
	} else if (sec <= LONG_MAX / 1000000)
		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
			/ tick + 1;
	else if (sec <= LONG_MAX / hz)
		ticks = sec * hz
			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
	else
		ticks = LONG_MAX;
	if (ticks > INT_MAX)
		ticks = INT_MAX;
	return ((int)ticks);
}

/*
 * Start profiling on a process.
 *
 * Kernel profiling passes proc0 which never exits and hence
 * keeps the profile clock running constantly.
 */
void
startprofclock(p)
	register struct proc *p;
{
	int s;

	if ((p->p_flag & P_PROFIL) == 0) {
		p->p_flag |= P_PROFIL;
		if (++profprocs == 1 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = psratio;
			setstatclockrate(profhz);
			splx(s);
		}
	}
}

/*
 * Stop profiling on a process.
 */
void
stopprofclock(p)
	register struct proc *p;
{
	int s;

	if (p->p_flag & P_PROFIL) {
		p->p_flag &= ~P_PROFIL;
		if (--profprocs == 0 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = 1;
			setstatclockrate(stathz);
			splx(s);
		}
	}
}

/*
 * Statistics clock.  Grab profile sample, and if divider reaches 0,
 * do process and kernel statistics.  Most of the statistics are only
 * used by user-level statistics programs.  The main exceptions are
 * p->p_uticks, p->p_sticks, p->p_iticks, and p->p_estcpu.
 */
void
statclock(frame)
	register struct clockframe *frame;
{
#ifdef GPROF
	register struct gmonparam *g;
	int i;
#endif
	register struct proc *p;
	struct pstats *pstats;
	long rss;
	struct rusage *ru;
	struct vmspace *vm;

	if (curproc != NULL && CLKF_USERMODE(frame)) {
		/*
		 * Came from user mode; CPU was in user state.
		 * If this process is being profiled, record the tick.
		 */
		p = curproc;
		if (p->p_flag & P_PROFIL)
			addupc_intr(p, CLKF_PC(frame), 1);
#if defined(SMP) && defined(BETTER_CLOCK)
		if (stathz != 0)
			forward_statclock(pscnt);
#endif
		if (--pscnt > 0)
			return;
		/*
		 * Charge the time as appropriate.
		 */
		p->p_uticks++;
		if (p->p_nice > NZERO)
			cp_time[CP_NICE]++;
		else
			cp_time[CP_USER]++;
	} else {
#ifdef GPROF
		/*
		 * Kernel statistics are just like addupc_intr, only easier.
		 */
		g = &_gmonparam;
		if (g->state == GMON_PROF_ON) {
			i = CLKF_PC(frame) - g->lowpc;
			if (i < g->textsize) {
				i /= HISTFRACTION * sizeof(*g->kcount);
				g->kcount[i]++;
			}
		}
#endif
#if defined(SMP) && defined(BETTER_CLOCK)
		if (stathz != 0)
			forward_statclock(pscnt);
#endif
		if (--pscnt > 0)
			return;
		/*
		 * Came from kernel mode, so we were:
		 * - handling an interrupt,
		 * - doing syscall or trap work on behalf of the current
		 *   user process, or
		 * - spinning in the idle loop.
		 * Whichever it is, charge the time as appropriate.
		 * Note that we charge interrupts to the current process,
		 * regardless of whether they are ``for'' that process,
		 * so that we know how much of its real time was spent
		 * in ``non-process'' (i.e., interrupt) work.
		 */
		p = curproc;
		if (CLKF_INTR(frame)) {
			if (p != NULL)
				p->p_iticks++;
			cp_time[CP_INTR]++;
		} else if (p != NULL) {
			p->p_sticks++;
			cp_time[CP_SYS]++;
		} else
			cp_time[CP_IDLE]++;
	}
	pscnt = psdiv;

	if (p != NULL) {
		schedclock(p);

		/* Update resource usage integrals and maximums. */
		if ((pstats = p->p_stats) != NULL &&
		    (ru = &pstats->p_ru) != NULL &&
		    (vm = p->p_vmspace) != NULL) {
			ru->ru_ixrss += pgtok(vm->vm_tsize);
			ru->ru_idrss += pgtok(vm->vm_dsize);
			ru->ru_isrss += pgtok(vm->vm_ssize);
			rss = pgtok(vmspace_resident_count(vm));
			if (ru->ru_maxrss < rss)
				ru->ru_maxrss = rss;
		}
	}
}

/*
 * Return information about system clocks.
 */
static int
sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
{
	struct clockinfo clkinfo;
	/*
	 * Construct clockinfo structure.
	 */
	clkinfo.hz = hz;
	clkinfo.tick = tick;
	clkinfo.tickadj = tickadj;
	clkinfo.profhz = profhz;
	clkinfo.stathz = stathz ? stathz : hz;
	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
}

SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
	0, 0, sysctl_kern_clockrate, "S,clockinfo","");

static __inline unsigned
tco_delta(struct timecounter *tc)
{

	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) & 
	    tc->tc_counter_mask);
}

/*
 * We have eight functions for looking at the clock, four for
 * microseconds and four for nanoseconds.  For each there is fast
 * but less precise version "get{nano|micro}[up]time" which will
 * return a time which is up to 1/HZ previous to the call, whereas
 * the raw version "{nano|micro}[up]time" will return a timestamp
 * which is as precise as possible.  The "up" variants return the
 * time relative to system boot, these are well suited for time
 * interval measurements.
 */

void
getmicrotime(struct timeval *tvp)
{
	struct timecounter *tc;

	if (!tco_method) {
		tc = timecounter;
		*tvp = tc->tc_microtime;
	} else {
		microtime(tvp);
	}
}

void
getnanotime(struct timespec *tsp)
{
	struct timecounter *tc;

	if (!tco_method) {
		tc = timecounter;
		*tsp = tc->tc_nanotime;
	} else {
		nanotime(tsp);
	}
}

void
microtime(struct timeval *tv)
{
	struct timecounter *tc;

	tc = timecounter;
	tv->tv_sec = tc->tc_offset_sec;
	tv->tv_usec = tc->tc_offset_micro;
	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
	tv->tv_usec += boottime.tv_usec;
	tv->tv_sec += boottime.tv_sec;
	while (tv->tv_usec >= 1000000) {
		tv->tv_usec -= 1000000;
		tv->tv_sec++;
	}
}

void
nanotime(struct timespec *ts)
{
	unsigned count;
	u_int64_t delta;
	struct timecounter *tc;

	tc = timecounter;
	ts->tv_sec = tc->tc_offset_sec;
	count = tco_delta(tc);
	delta = tc->tc_offset_nano;
	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
	delta >>= 32;
	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
	delta += boottime.tv_usec * 1000;
	ts->tv_sec += boottime.tv_sec;
	while (delta >= 1000000000) {
		delta -= 1000000000;
		ts->tv_sec++;
	}
	ts->tv_nsec = delta;
}

void
getmicrouptime(struct timeval *tvp)
{
	struct timecounter *tc;

	if (!tco_method) {
		tc = timecounter;
		tvp->tv_sec = tc->tc_offset_sec;
		tvp->tv_usec = tc->tc_offset_micro;
	} else {
		microuptime(tvp);
	}
}

void
getnanouptime(struct timespec *tsp)
{
	struct timecounter *tc;

	if (!tco_method) {
		tc = timecounter;
		tsp->tv_sec = tc->tc_offset_sec;
		tsp->tv_nsec = tc->tc_offset_nano >> 32;
	} else {
		nanouptime(tsp);
	}
}

void
microuptime(struct timeval *tv)
{
	struct timecounter *tc;

	tc = timecounter;
	tv->tv_sec = tc->tc_offset_sec;
	tv->tv_usec = tc->tc_offset_micro;
	tv->tv_usec += ((u_int64_t)tco_delta(tc) * tc->tc_scale_micro) >> 32;
	if (tv->tv_usec >= 1000000) {
		tv->tv_usec -= 1000000;
		tv->tv_sec++;
	}
}

void
nanouptime(struct timespec *ts)
{
	unsigned count;
	u_int64_t delta;
	struct timecounter *tc;

	tc = timecounter;
	ts->tv_sec = tc->tc_offset_sec;
	count = tco_delta(tc);
	delta = tc->tc_offset_nano;
	delta += ((u_int64_t)count * tc->tc_scale_nano_f);
	delta >>= 32;
	delta += ((u_int64_t)count * tc->tc_scale_nano_i);
	if (delta >= 1000000000) {
		delta -= 1000000000;
		ts->tv_sec++;
	}
	ts->tv_nsec = delta;
}

static void
tco_setscales(struct timecounter *tc)
{
	u_int64_t scale;

	scale = 1000000000LL << 32;
	scale += tc->tc_adjustment;
	scale /= tc->tc_tweak->tc_frequency;
	tc->tc_scale_micro = scale / 1000;
	tc->tc_scale_nano_f = scale & 0xffffffff;
	tc->tc_scale_nano_i = scale >> 32;
}

void
update_timecounter(struct timecounter *tc)
{
	tco_setscales(tc);
}

void
init_timecounter(struct timecounter *tc)
{
	struct timespec ts1;
	struct timecounter *t1, *t2, *t3;
	int i;

	tc->tc_adjustment = 0;
	tc->tc_tweak = tc;
	tco_setscales(tc);
	tc->tc_offset_count = tc->tc_get_timecount(tc);
	if (timecounter == &dummy_timecounter)
		tc->tc_avail = tc;
	else {
		tc->tc_avail = timecounter->tc_tweak->tc_avail;
		timecounter->tc_tweak->tc_avail = tc;
	}
	MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK);
	tc->tc_other = t1;
	*t1 = *tc;
	t2 = t1;
	for (i = 1; i < NTIMECOUNTER; i++) {
		MALLOC(t3, struct timecounter *, sizeof *t3,
		    M_TIMECOUNTER, M_WAITOK);
		*t3 = *tc;
		t3->tc_other = t2;
		t2 = t3;
	}
	t1->tc_other = t3;
	tc = t1;

	printf("Timecounter \"%s\"  frequency %lu Hz\n", 
	    tc->tc_name, (u_long)tc->tc_frequency);

	/* XXX: For now always start using the counter. */
	tc->tc_offset_count = tc->tc_get_timecount(tc);
	nanouptime(&ts1);
	tc->tc_offset_nano = (u_int64_t)ts1.tv_nsec << 32;
	tc->tc_offset_micro = ts1.tv_nsec / 1000;
	tc->tc_offset_sec = ts1.tv_sec;
	timecounter = tc;
}

void
set_timecounter(struct timespec *ts)
{
	struct timespec ts2;

	nanouptime(&ts2);
	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
	if (boottime.tv_usec < 0) {
		boottime.tv_usec += 1000000;
		boottime.tv_sec--;
	}
	/* fiddle all the little crinkly bits around the fiords... */
	tco_forward(1);
}

static void
switch_timecounter(struct timecounter *newtc)
{
	int s;
	struct timecounter *tc;
	struct timespec ts;

	s = splclock();
	tc = timecounter;
	if (newtc->tc_tweak == tc->tc_tweak) {
		splx(s);
		return;
	}
	newtc = newtc->tc_tweak->tc_other;
	nanouptime(&ts);
	newtc->tc_offset_sec = ts.tv_sec;
	newtc->tc_offset_nano = (u_int64_t)ts.tv_nsec << 32;
	newtc->tc_offset_micro = ts.tv_nsec / 1000;
	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
	tco_setscales(newtc);
	timecounter = newtc;
	splx(s);
}

static struct timecounter *
sync_other_counter(void)
{
	struct timecounter *tc, *tcn, *tco;
	unsigned delta;

	tco = timecounter;
	tc = tco->tc_other;
	tcn = tc->tc_other;
	*tc = *tco;
	tc->tc_other = tcn;
	delta = tco_delta(tc);
	tc->tc_offset_count += delta;
	tc->tc_offset_count &= tc->tc_counter_mask;
	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_f;
	tc->tc_offset_nano += (u_int64_t)delta * tc->tc_scale_nano_i << 32;
	return (tc);
}

static void
tco_forward(int force)
{
	struct timecounter *tc, *tco;
	struct timeval tvt;

	tco = timecounter;
	tc = sync_other_counter();
	/*
	 * We may be inducing a tiny error here, the tc_poll_pps() may
	 * process a latched count which happens after the tco_delta()
	 * in sync_other_counter(), which would extend the previous
	 * counters parameters into the domain of this new one.
	 * Since the timewindow is very small for this, the error is
	 * going to be only a few weenieseconds (as Dave Mills would
	 * say), so lets just not talk more about it, OK ?
	 */
	if (tco->tc_poll_pps) 
		tco->tc_poll_pps(tco);
	if (timedelta != 0) {
		tvt = boottime;
		tvt.tv_usec += tickdelta;
		if (tvt.tv_usec >= 1000000) {
			tvt.tv_sec++;
			tvt.tv_usec -= 1000000;
		} else if (tvt.tv_usec < 0) {
			tvt.tv_sec--;
			tvt.tv_usec += 1000000;
		}
		boottime = tvt;
		timedelta -= tickdelta;
	}

	while (tc->tc_offset_nano >= 1000000000ULL << 32) {
		tc->tc_offset_nano -= 1000000000ULL << 32;
		tc->tc_offset_sec++;
		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
		tco_setscales(tc);
		force++;
	}

	if (tco_method && !force)
		return;

	tc->tc_offset_micro = (tc->tc_offset_nano / 1000) >> 32;

	/* Figure out the wall-clock time */
	tc->tc_nanotime.tv_sec = tc->tc_offset_sec + boottime.tv_sec;
	tc->tc_nanotime.tv_nsec = 
	    (tc->tc_offset_nano >> 32) + boottime.tv_usec * 1000;
	tc->tc_microtime.tv_usec = tc->tc_offset_micro + boottime.tv_usec;
	if (tc->tc_nanotime.tv_nsec >= 1000000000) {
		tc->tc_nanotime.tv_nsec -= 1000000000;
		tc->tc_microtime.tv_usec -= 1000000;
		tc->tc_nanotime.tv_sec++;
	}
	time_second = tc->tc_microtime.tv_sec = tc->tc_nanotime.tv_sec;

	timecounter = tc;
}

SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");

SYSCTL_INT(_kern_timecounter, OID_AUTO, method, CTLFLAG_RW, &tco_method, 0,
    "This variable determines the method used for updating timecounters. "
    "If the default algorithm (0) fails with \"calcru negative...\" messages "
    "try the alternate algorithm (1) which handles bad hardware better."

);

static int
sysctl_kern_timecounter_hardware SYSCTL_HANDLER_ARGS
{
	char newname[32];
	struct timecounter *newtc, *tc;
	int error;

	tc = timecounter->tc_tweak;
	strncpy(newname, tc->tc_name, sizeof(newname));
	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
	if (error == 0 && req->newptr != NULL &&
	    strcmp(newname, tc->tc_name) != 0) {
		for (newtc = tc->tc_avail; newtc != tc;
		    newtc = newtc->tc_avail) {
			if (strcmp(newname, newtc->tc_name) == 0) {
				/* Warm up new timecounter. */
				(void)newtc->tc_get_timecount(newtc);

				switch_timecounter(newtc);
				return (0);
			}
		}
		return (EINVAL);
	}
	return (error);
}

SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    0, 0, sysctl_kern_timecounter_hardware, "A", "");


int
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
{
	pps_params_t *app;
	struct pps_fetch_args *fapi;
#ifdef PPS_SYNC
	struct pps_kcbind_args *kapi;
#endif

	switch (cmd) {
	case PPS_IOC_CREATE:
		return (0);
	case PPS_IOC_DESTROY:
		return (0);
	case PPS_IOC_SETPARAMS:
		app = (pps_params_t *)data;
		if (app->mode & ~pps->ppscap)
			return (EINVAL);
		pps->ppsparam = *app;         
		return (0);
	case PPS_IOC_GETPARAMS:
		app = (pps_params_t *)data;
		*app = pps->ppsparam;
		app->api_version = PPS_API_VERS_1;
		return (0);
	case PPS_IOC_GETCAP:
		*(int*)data = pps->ppscap;
		return (0);
	case PPS_IOC_FETCH:
		fapi = (struct pps_fetch_args *)data;
		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
			return (EINVAL);
		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
			return (EOPNOTSUPP);
		pps->ppsinfo.current_mode = pps->ppsparam.mode;         
		fapi->pps_info_buf = pps->ppsinfo;
		return (0);
	case PPS_IOC_KCBIND:
#ifdef PPS_SYNC
		kapi = (struct pps_kcbind_args *)data;
		/* XXX Only root should be able to do this */
		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
			return (EINVAL);
		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
			return (EINVAL);
		if (kapi->edge & ~pps->ppscap)
			return (EINVAL);
		pps->kcmode = kapi->edge;
		return (0);
#else
		return (EOPNOTSUPP);
#endif
	default:
		return (ENOTTY);
	}
}

void
pps_init(struct pps_state *pps)
{
	pps->ppscap |= PPS_TSFMT_TSPEC;
	if (pps->ppscap & PPS_CAPTUREASSERT)
		pps->ppscap |= PPS_OFFSETASSERT;
	if (pps->ppscap & PPS_CAPTURECLEAR)
		pps->ppscap |= PPS_OFFSETCLEAR;
}

void
pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
{
	struct timespec ts, *tsp, *osp;
	u_int64_t delta;
	unsigned tcount, *pcount;
	int foff, fhard;
	pps_seq_t	*pseq;

	/* Things would be easier with arrays... */
	if (event == PPS_CAPTUREASSERT) {
		tsp = &pps->ppsinfo.assert_timestamp;
		osp = &pps->ppsparam.assert_offset;
		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
		fhard = pps->kcmode & PPS_CAPTUREASSERT;
		pcount = &pps->ppscount[0];
		pseq = &pps->ppsinfo.assert_sequence;
	} else {
		tsp = &pps->ppsinfo.clear_timestamp;
		osp = &pps->ppsparam.clear_offset;
		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
		fhard = pps->kcmode & PPS_CAPTURECLEAR;
		pcount = &pps->ppscount[1];
		pseq = &pps->ppsinfo.clear_sequence;
	}

	/* The timecounter changed: bail */
	if (!pps->ppstc || 
	    pps->ppstc->tc_name != tc->tc_name || 
	    tc->tc_name != timecounter->tc_name) {
		pps->ppstc = tc;
		*pcount = count;
		return;
	}

	/* Nothing really happened */
	if (*pcount == count)
		return;

	*pcount = count;

	/* Convert the count to timespec */
	ts.tv_sec = tc->tc_offset_sec;
	tcount = count - tc->tc_offset_count;
	tcount &= tc->tc_counter_mask;
	delta = tc->tc_offset_nano;
	delta += ((u_int64_t)tcount * tc->tc_scale_nano_f);
	delta >>= 32;
	delta += ((u_int64_t)tcount * tc->tc_scale_nano_i);
	delta += boottime.tv_usec * 1000;
	ts.tv_sec += boottime.tv_sec;
	while (delta >= 1000000000) {
		delta -= 1000000000;
		ts.tv_sec++;
	}
	ts.tv_nsec = delta;

	(*pseq)++;
	*tsp = ts;

	if (foff) {
		timespecadd(tsp, osp);
		if (tsp->tv_nsec < 0) {
			tsp->tv_nsec += 1000000000;
			tsp->tv_sec -= 1;
		}
	}
#ifdef PPS_SYNC
	if (fhard) {
		/* magic, at its best... */
		tcount = count - pps->ppscount[2];
		pps->ppscount[2] = count;
		tcount &= tc->tc_counter_mask;
		delta = ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_f);
		delta >>= 32;
		delta += ((u_int64_t)tcount * tc->tc_tweak->tc_scale_nano_i);
		hardpps(tsp, delta);
	}
#endif
}
OpenPOWER on IntegriCloud