summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_tc.c
blob: 84b9875faaf863d6e530a767211b59bad16a9a4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
static volatile int print_tci = 1;

/*-
 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
 * Copyright (c) 1982, 1986, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
 * $Id: kern_clock.c,v 1.58 1998/03/16 10:19:12 phk Exp $
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dkstat.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/timex.h>
#include <vm/vm.h>
#include <sys/lock.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <sys/sysctl.h>

#include <machine/cpu.h>
#include <machine/limits.h>

#ifdef GPROF
#include <sys/gmon.h>
#endif

#if defined(SMP) && defined(BETTER_CLOCK)
#include <machine/smp.h>
#endif

static void initclocks __P((void *dummy));
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)

static void tco_forward __P((void));
static void tco_setscales __P((struct timecounter *tc));

/* Some of these don't belong here, but it's easiest to concentrate them. */
#if defined(SMP) && defined(BETTER_CLOCK)
long cp_time[CPUSTATES];
#else
static long cp_time[CPUSTATES];
#endif
long dk_seek[DK_NDRIVE];
static long dk_time[DK_NDRIVE];	/* time busy (in statclock ticks) */
long dk_wds[DK_NDRIVE];
long dk_wpms[DK_NDRIVE];
long dk_xfer[DK_NDRIVE];

int dk_busy;
int dk_ndrive = 0;
char dk_names[DK_NDRIVE][DK_NAMELEN];

long tk_cancc;
long tk_nin;
long tk_nout;
long tk_rawcc;

struct timecounter *timecounter;

/*
 * Clock handling routines.
 *
 * This code is written to operate with two timers that run independently of
 * each other.
 *
 * The main timer, running hz times per second, is used to trigger interval
 * timers, timeouts and rescheduling as needed.
 *
 * The second timer handles kernel and user profiling,
 * and does resource use estimation.  If the second timer is programmable,
 * it is randomized to avoid aliasing between the two clocks.  For example,
 * the randomization prevents an adversary from always giving up the cpu
 * just before its quantum expires.  Otherwise, it would never accumulate
 * cpu ticks.  The mean frequency of the second timer is stathz.
 *
 * If no second timer exists, stathz will be zero; in this case we drive
 * profiling and statistics off the main clock.  This WILL NOT be accurate;
 * do not do it unless absolutely necessary.
 *
 * The statistics clock may (or may not) be run at a higher rate while
 * profiling.  This profile clock runs at profhz.  We require that profhz
 * be an integral multiple of stathz.
 *
 * If the statistics clock is running fast, it must be divided by the ratio
 * profhz/stathz for statistics.  (For profiling, every tick counts.)
 *
 * Time-of-day is maintained using a "timecounter", which may or may
 * not be related to the hardware generating the above mentioned
 * interrupts.
 */

int	stathz;
int	profhz;
static int profprocs;
int	ticks;
static int psdiv, pscnt;		/* prof => stat divider */
int	psratio;			/* ratio: prof / stat */

struct	timeval time;
volatile struct	timeval mono_time;

/*
 * Initialize clock frequencies and start both clocks running.
 */
/* ARGSUSED*/
static void
initclocks(dummy)
	void *dummy;
{
	register int i;

	/*
	 * Set divisors to 1 (normal case) and let the machine-specific
	 * code do its bit.
	 */
	psdiv = pscnt = 1;
	cpu_initclocks();

	/*
	 * Compute profhz/stathz, and fix profhz if needed.
	 */
	i = stathz ? stathz : hz;
	if (profhz == 0)
		profhz = i;
	psratio = profhz / i;
}

/*
 * The real-time timer, interrupting hz times per second.
 */
void
hardclock(frame)
	register struct clockframe *frame;
{
	register struct proc *p;

	p = curproc;
	if (p) {
		register struct pstats *pstats;

		/*
		 * Run current process's virtual and profile time, as needed.
		 */
		pstats = p->p_stats;
		if (CLKF_USERMODE(frame) &&
		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
			psignal(p, SIGVTALRM);
		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
			psignal(p, SIGPROF);
	}

#if defined(SMP) && defined(BETTER_CLOCK)
	forward_hardclock(pscnt);
#endif

	/*
	 * If no separate statistics clock is available, run it from here.
	 */
	if (stathz == 0)
		statclock(frame);

	tco_forward();
	ticks++;

	/*
	 * Process callouts at a very low cpu priority, so we don't keep the
	 * relatively high clock interrupt priority any longer than necessary.
	 */
	if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) {
		if (CLKF_BASEPRI(frame)) {
			/*
			 * Save the overhead of a software interrupt;
			 * it will happen as soon as we return, so do it now.
			 */
			(void)splsoftclock();
			softclock();
		} else
			setsoftclock();
	} else if (softticks + 1 == ticks)
		++softticks;
}

/*
 * Compute number of hz until specified time.  Used to
 * compute third argument to timeout() from an absolute time.
 * XXX this interface is often inconvenient.  We often just need the
 * number of ticks in a timeval, but to use hzto() for that we have
 * to add `time' to the timeval and do everything at splclock().
 */
int
hzto(tv)
	struct timeval *tv;
{
	register unsigned long ticks;
	register long sec, usec;
	int s;

	/*
	 * If the number of usecs in the whole seconds part of the time
	 * difference fits in a long, then the total number of usecs will
	 * fit in an unsigned long.  Compute the total and convert it to
	 * ticks, rounding up and adding 1 to allow for the current tick
	 * to expire.  Rounding also depends on unsigned long arithmetic
	 * to avoid overflow.
	 *
	 * Otherwise, if the number of ticks in the whole seconds part of
	 * the time difference fits in a long, then convert the parts to
	 * ticks separately and add, using similar rounding methods and
	 * overflow avoidance.  This method would work in the previous
	 * case but it is slightly slower and assumes that hz is integral.
	 *
	 * Otherwise, round the time difference down to the maximum
	 * representable value.
	 *
	 * If ints have 32 bits, then the maximum value for any timeout in
	 * 10ms ticks is 248 days.
	 */
	s = splclock();
	sec = tv->tv_sec - time.tv_sec;
	usec = tv->tv_usec - time.tv_usec;
	splx(s);
	if (usec < 0) {
		sec--;
		usec += 1000000;
	}
	if (sec < 0) {
#ifdef DIAGNOSTIC
		if (usec > 0) {
			sec++;
			usec -= 1000000;
		}
		printf("hzto: negative time difference %ld sec %ld usec\n",
		       sec, usec);
#endif
		ticks = 1;
	} else if (sec <= LONG_MAX / 1000000)
		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
			/ tick + 1;
	else if (sec <= LONG_MAX / hz)
		ticks = sec * hz
			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
	else
		ticks = LONG_MAX;
	if (ticks > INT_MAX)
		ticks = INT_MAX;
	return (ticks);
}

/*
 * Start profiling on a process.
 *
 * Kernel profiling passes proc0 which never exits and hence
 * keeps the profile clock running constantly.
 */
void
startprofclock(p)
	register struct proc *p;
{
	int s;

	if ((p->p_flag & P_PROFIL) == 0) {
		p->p_flag |= P_PROFIL;
		if (++profprocs == 1 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = psratio;
			setstatclockrate(profhz);
			splx(s);
		}
	}
}

/*
 * Stop profiling on a process.
 */
void
stopprofclock(p)
	register struct proc *p;
{
	int s;

	if (p->p_flag & P_PROFIL) {
		p->p_flag &= ~P_PROFIL;
		if (--profprocs == 0 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = 1;
			setstatclockrate(stathz);
			splx(s);
		}
	}
}

/*
 * Statistics clock.  Grab profile sample, and if divider reaches 0,
 * do process and kernel statistics.
 */
void
statclock(frame)
	register struct clockframe *frame;
{
#ifdef GPROF
	register struct gmonparam *g;
#endif
	register struct proc *p;
	register int i;
	struct pstats *pstats;
	long rss;
	struct rusage *ru;
	struct vmspace *vm;

	if (CLKF_USERMODE(frame)) {
		p = curproc;
		if (p->p_flag & P_PROFIL)
			addupc_intr(p, CLKF_PC(frame), 1);
#if defined(SMP) && defined(BETTER_CLOCK)
		if (stathz != 0)
			forward_statclock(pscnt);
#endif
		if (--pscnt > 0)
			return;
		/*
		 * Came from user mode; CPU was in user state.
		 * If this process is being profiled record the tick.
		 */
		p->p_uticks++;
		if (p->p_nice > NZERO)
			cp_time[CP_NICE]++;
		else
			cp_time[CP_USER]++;
	} else {
#ifdef GPROF
		/*
		 * Kernel statistics are just like addupc_intr, only easier.
		 */
		g = &_gmonparam;
		if (g->state == GMON_PROF_ON) {
			i = CLKF_PC(frame) - g->lowpc;
			if (i < g->textsize) {
				i /= HISTFRACTION * sizeof(*g->kcount);
				g->kcount[i]++;
			}
		}
#endif
#if defined(SMP) && defined(BETTER_CLOCK)
		if (stathz != 0)
			forward_statclock(pscnt);
#endif
		if (--pscnt > 0)
			return;
		/*
		 * Came from kernel mode, so we were:
		 * - handling an interrupt,
		 * - doing syscall or trap work on behalf of the current
		 *   user process, or
		 * - spinning in the idle loop.
		 * Whichever it is, charge the time as appropriate.
		 * Note that we charge interrupts to the current process,
		 * regardless of whether they are ``for'' that process,
		 * so that we know how much of its real time was spent
		 * in ``non-process'' (i.e., interrupt) work.
		 */
		p = curproc;
		if (CLKF_INTR(frame)) {
			if (p != NULL)
				p->p_iticks++;
			cp_time[CP_INTR]++;
		} else if (p != NULL) {
			p->p_sticks++;
			cp_time[CP_SYS]++;
		} else
			cp_time[CP_IDLE]++;
	}
	pscnt = psdiv;

	/*
	 * We maintain statistics shown by user-level statistics
	 * programs:  the amount of time in each cpu state, and
	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
	 *
	 * XXX	should either run linked list of drives, or (better)
	 *	grab timestamps in the start & done code.
	 */
	for (i = 0; i < DK_NDRIVE; i++)
		if (dk_busy & (1 << i))
			dk_time[i]++;

	/*
	 * We adjust the priority of the current process.  The priority of
	 * a process gets worse as it accumulates CPU time.  The cpu usage
	 * estimator (p_estcpu) is increased here.  The formula for computing
	 * priorities (in kern_synch.c) will compute a different value each
	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
	 * quite quickly when the process is running (linearly), and decays
	 * away exponentially, at a rate which is proportionally slower when
	 * the system is busy.  The basic principal is that the system will
	 * 90% forget that the process used a lot of CPU time in 5 * loadav
	 * seconds.  This causes the system to favor processes which haven't
	 * run much recently, and to round-robin among other processes.
	 */
	if (p != NULL) {
		p->p_cpticks++;
		if (++p->p_estcpu == 0)
			p->p_estcpu--;
		if ((p->p_estcpu & 3) == 0) {
			resetpriority(p);
			if (p->p_priority >= PUSER)
				p->p_priority = p->p_usrpri;
		}

		/* Update resource usage integrals and maximums. */
		if ((pstats = p->p_stats) != NULL &&
		    (ru = &pstats->p_ru) != NULL &&
		    (vm = p->p_vmspace) != NULL) {
			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
			rss = vm->vm_pmap.pm_stats.resident_count *
			      PAGE_SIZE / 1024;
			if (ru->ru_maxrss < rss)
				ru->ru_maxrss = rss;
        	}
	}
}

/*
 * Return information about system clocks.
 */
static int
sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
{
	struct clockinfo clkinfo;
	/*
	 * Construct clockinfo structure.
	 */
	clkinfo.hz = hz;
	clkinfo.tick = tick;
	clkinfo.tickadj = tickadj;
	clkinfo.profhz = profhz;
	clkinfo.stathz = stathz ? stathz : hz;
	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
}

SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
	0, 0, sysctl_kern_clockrate, "S,clockinfo","");


/*
 * We have four functions for looking at the clock, two for microseconds
 * and two for nanoseconds.  For each there is fast but less precise
 * version "get{nano|micro}time" which will return a time which is up
 * to 1/HZ previous to the call, whereas the raw version "{nano|micro}time"
 * will return a timestamp which is as precise as possible.
 */

void
getmicrotime(struct timeval *tvp)
{
	struct timecounter *tc;

	tc = timecounter;
	tvp->tv_sec = tc->offset_sec;
	tvp->tv_usec = tc->offset_micro;
}

void
getnanotime(struct timespec *tsp)
{
	struct timecounter *tc;

	tc = timecounter;
	tsp->tv_sec = tc->offset_sec;
	tsp->tv_nsec = tc->offset_nano;
}

void
microtime(struct timeval *tv)
{
	struct timecounter *tc;

	tc = (struct timecounter *)timecounter;
	tv->tv_sec = tc->offset_sec;
	tv->tv_usec = tc->offset_micro;
	tv->tv_usec += 
	    ((u_int64_t)tc->get_timedelta(tc) * tc->scale_micro) >> 32;
	if (tv->tv_usec >= 1000000) {
		tv->tv_usec -= 1000000;
		tv->tv_sec++;
	}
}

void
nanotime(struct timespec *tv)
{
	u_int count;
	u_int64_t delta;
	struct timecounter *tc;

	tc = (struct timecounter *)timecounter;
	tv->tv_sec = tc->offset_sec;
	count = tc->get_timedelta(tc);
	delta = tc->offset_nano;
	delta += ((u_int64_t)count * tc->scale_nano_f);
	delta >>= 32;
	delta += ((u_int64_t)count * tc->scale_nano_i);
	if (delta >= 1000000000) {
		delta -= 1000000000;
		tv->tv_sec++;
	}
	tv->tv_nsec = delta;
}

static void
tco_setscales(struct timecounter *tc)
{
	u_int64_t scale;

	scale = 1000000000LL << 32;
	if (tc->adjustment > 0)
		scale += (tc->adjustment * 1000LL) << 10;
	else
		scale -= (-tc->adjustment * 1000LL) << 10;
	scale /= tc->frequency;
	tc->scale_micro = scale / 1000;
	tc->scale_nano_f = scale & 0xffffffff;
	tc->scale_nano_i = scale >> 32;
}

static u_int
delta_timecounter(struct timecounter *tc)
{

	return((tc->get_timecount() - tc->offset_count) & tc->counter_mask);
}

void
init_timecounter(struct timecounter *tc)
{
	struct timespec ts0, ts1;
	int i;

	if (!tc->get_timedelta) 
		tc->get_timedelta = delta_timecounter;
	tc->adjustment = 0;
	tco_setscales(tc);
	tc->offset_count = tc->get_timecount();
	tc[0].tweak = &tc[0];
	tc[2] = tc[1] = tc[0];
	tc[1].other = &tc[2];
	tc[2].other = &tc[1];
	if (!timecounter)
		timecounter = &tc[2];
	tc = &tc[1];

	/* 
	 * Figure out the cost of calling this timecounter.
	 * XXX: The 1:15 ratio is a guess at reality.
	 */
	nanotime(&ts0);
	for (i = 0; i < 16; i ++) 
		tc->get_timecount();
	for (i = 0; i < 240; i ++)
		tc->get_timedelta(tc);
	nanotime(&ts1);
	ts1.tv_sec -= ts0.tv_sec;
	tc->cost = ts1.tv_sec * 1000000000 + ts1.tv_nsec - ts0.tv_nsec;
	tc->cost >>= 8;
	if (print_tci)
	printf("Timecounter \"%s\"  frequency %lu Hz  cost %u ns\n", 
	    tc->name, tc->frequency, tc->cost);

	/* XXX: For now always start using the counter. */
	tc->offset_count = tc->get_timecount();
	nanotime(&ts1);
	tc->offset_nano = (u_int64_t)ts1.tv_nsec << 32;
	tc->offset_micro = ts1.tv_nsec / 1000;
	tc->offset_sec = ts1.tv_sec;
	timecounter = tc;
}

void
set_timecounter(struct timespec *ts)
{
	struct timecounter *tc, *tco;
	int s;

	/*
	 * XXX we must be called at splclock() to preven *ts becoming
	 * invalid, so there is no point in spls here.
	 */
	s = splclock();
	tc = timecounter->other;
	tco = tc->other;
	*tc = *timecounter;
	tc->other = tco;
	tc->offset_sec = ts->tv_sec;
	tc->offset_nano = (u_int64_t)ts->tv_nsec << 32;
	tc->offset_micro = ts->tv_nsec / 1000;
	tc->offset_count = tc->get_timecount();
	time.tv_sec = tc->offset_sec;
	time.tv_usec = tc->offset_micro;
	timecounter = tc;
	splx(s);
}

void
switch_timecounter(struct timecounter *newtc)
{
	int s;
	struct timecounter *tc;
	struct timespec ts;

	s = splclock();
	tc = timecounter;
	if (newtc == tc || newtc == tc->other) {
		splx(s);
		return;
	}
	nanotime(&ts);
	newtc->offset_sec = ts.tv_sec;
	newtc->offset_nano = (u_int64_t)ts.tv_nsec << 32;
	newtc->offset_micro = ts.tv_nsec / 1000;
	newtc->offset_count = newtc->get_timecount();
	timecounter = newtc;
	splx(s);
}

static struct timecounter *
sync_other_counter(void)
{
	struct timecounter *tc, *tco;
	u_int delta;

	tc = timecounter->other;
	tco = tc->other;
	*tc = *timecounter;
	tc->other = tco;
	delta = tc->get_timedelta(tc);
	tc->offset_count += delta;
	tc->offset_count &= tc->counter_mask;
	tc->offset_nano += (u_int64_t)delta * tc->scale_nano_f;
	tc->offset_nano += (u_int64_t)delta * tc->scale_nano_i << 32;
	return (tc);
}

static void
tco_forward(void)
{
	struct timecounter *tc;

	tc = sync_other_counter();
	if (timedelta != 0) {
		tc->offset_nano += (u_int64_t)(tickdelta * 1000) << 32;
		mono_time.tv_usec += tickdelta;
		timedelta -= tickdelta;
	}
	mono_time.tv_usec += tick;
	if (mono_time.tv_usec >= 1000000) {
		mono_time.tv_usec -= 1000000;
		mono_time.tv_sec++;
	}

	if (tc->offset_nano >= 1000000000ULL << 32) {
		tc->offset_nano -= 1000000000ULL << 32;
		tc->offset_sec++;
		tc->frequency = tc->tweak->frequency;
		tc->adjustment = tc->tweak->adjustment;
		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
		tco_setscales(tc);
	}

	tc->offset_micro = (tc->offset_nano / 1000) >> 32;

	time.tv_usec = tc->offset_micro;
	time.tv_sec = tc->offset_sec;
	timecounter = tc;
}

static int
sysctl_kern_timecounter_frequency SYSCTL_HANDLER_ARGS
{

	return (sysctl_handle_opaque(oidp, &timecounter->tweak->frequency,
	    sizeof(timecounter->tweak->frequency), req));
}

static int
sysctl_kern_timecounter_adjustment SYSCTL_HANDLER_ARGS
{

	return (sysctl_handle_opaque(oidp, &timecounter->tweak->adjustment,
	    sizeof(timecounter->tweak->adjustment), req));
}

SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");

SYSCTL_PROC(_kern_timecounter, OID_AUTO, frequency, CTLTYPE_INT | CTLFLAG_RW,
    0, sizeof(u_int), sysctl_kern_timecounter_frequency, "I", "");

SYSCTL_PROC(_kern_timecounter, OID_AUTO, adjustment, CTLTYPE_INT | CTLFLAG_RW,
    0, sizeof(int), sysctl_kern_timecounter_adjustment, "I", "");
OpenPOWER on IntegriCloud