summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_tc.c
blob: b1f3bb061552d0fab149237a9c5033b1d0b3a532 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
/*-
 * Copyright (c) 1982, 1986, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
 * $Id: kern_clock.c,v 1.27 1996/10/10 10:25:03 bde Exp $
 */

/* Portions of this software are covered by the following: */
/******************************************************************************
 *                                                                            *
 * Copyright (c) David L. Mills 1993, 1994                                    *
 *                                                                            *
 * Permission to use, copy, modify, and distribute this software and its      *
 * documentation for any purpose and without fee is hereby granted, provided  *
 * that the above copyright notice appears in all copies and that both the    *
 * copyright notice and this permission notice appear in supporting           *
 * documentation, and that the name University of Delaware not be used in     *
 * advertising or publicity pertaining to distribution of the software        *
 * without specific, written prior permission.  The University of Delaware    *
 * makes no representations about the suitability this software for any       *
 * purpose.  It is provided "as is" without express or implied warranty.      *
 *                                                                            *
 *****************************************************************************/

#include "opt_cpu.h"		/* XXX */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/dkstat.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/timex.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <vm/lock.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <sys/sysctl.h>

#include <machine/cpu.h>
#define CLOCK_HAIR		/* XXX */
#include <machine/clock.h>

#ifdef GPROF
#include <sys/gmon.h>
#endif

static void initclocks __P((void *dummy));
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)

/* Exported to machdep.c. */
struct callout *callfree, *callout;

static struct callout calltodo;

/* Some of these don't belong here, but it's easiest to concentrate them. */
static long cp_time[CPUSTATES];
long dk_seek[DK_NDRIVE];
static long dk_time[DK_NDRIVE];
long dk_wds[DK_NDRIVE];
long dk_wpms[DK_NDRIVE];
long dk_xfer[DK_NDRIVE];

int dk_busy;
int dk_ndrive = 0;
char dk_names[DK_NDRIVE][DK_NAMELEN];

long tk_cancc;
long tk_nin;
long tk_nout;
long tk_rawcc;

/*
 * Clock handling routines.
 *
 * This code is written to operate with two timers that run independently of
 * each other.  The main clock, running hz times per second, is used to keep
 * track of real time.  The second timer handles kernel and user profiling,
 * and does resource use estimation.  If the second timer is programmable,
 * it is randomized to avoid aliasing between the two clocks.  For example,
 * the randomization prevents an adversary from always giving up the cpu
 * just before its quantum expires.  Otherwise, it would never accumulate
 * cpu ticks.  The mean frequency of the second timer is stathz.
 *
 * If no second timer exists, stathz will be zero; in this case we drive
 * profiling and statistics off the main clock.  This WILL NOT be accurate;
 * do not do it unless absolutely necessary.
 *
 * The statistics clock may (or may not) be run at a higher rate while
 * profiling.  This profile clock runs at profhz.  We require that profhz
 * be an integral multiple of stathz.
 *
 * If the statistics clock is running fast, it must be divided by the ratio
 * profhz/stathz for statistics.  (For profiling, every tick counts.)
 */

/*
 * TODO:
 *	allocate more timeout table slots when table overflows.
 */

/*
 * Bump a timeval by a small number of usec's.
 */
#define BUMPTIME(t, usec) { \
	register volatile struct timeval *tp = (t); \
	register long us; \
 \
	tp->tv_usec = us = tp->tv_usec + (usec); \
	if (us >= 1000000) { \
		tp->tv_usec = us - 1000000; \
		tp->tv_sec++; \
	} \
}

int	stathz;
int	profhz;
static int profprocs;
int	ticks;
static int psdiv, pscnt;	/* prof => stat divider */
int psratio;			/* ratio: prof / stat */

volatile struct	timeval time;
volatile struct	timeval mono_time;

/*
 * Phase-lock loop (PLL) definitions
 *
 * The following variables are read and set by the ntp_adjtime() system
 * call.
 *
 * time_state shows the state of the system clock, with values defined
 * in the timex.h header file.
 *
 * time_status shows the status of the system clock, with bits defined
 * in the timex.h header file.
 *
 * time_offset is used by the PLL to adjust the system time in small
 * increments.
 *
 * time_constant determines the bandwidth or "stiffness" of the PLL.
 *
 * time_tolerance determines maximum frequency error or tolerance of the
 * CPU clock oscillator and is a property of the architecture; however,
 * in principle it could change as result of the presence of external
 * discipline signals, for instance.
 *
 * time_precision is usually equal to the kernel tick variable; however,
 * in cases where a precision clock counter or external clock is
 * available, the resolution can be much less than this and depend on
 * whether the external clock is working or not.
 *
 * time_maxerror is initialized by a ntp_adjtime() call and increased by
 * the kernel once each second to reflect the maximum error
 * bound growth.
 *
 * time_esterror is set and read by the ntp_adjtime() call, but
 * otherwise not used by the kernel.
 */
int time_status = STA_UNSYNC;	/* clock status bits */
int time_state = TIME_OK;	/* clock state */
long time_offset = 0;		/* time offset (us) */
long time_constant = 0;		/* pll time constant */
long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
long time_precision = 1;	/* clock precision (us) */
long time_maxerror = MAXPHASE;	/* maximum error (us) */
long time_esterror = MAXPHASE;	/* estimated error (us) */

/*
 * The following variables establish the state of the PLL and the
 * residual time and frequency offset of the local clock. The scale
 * factors are defined in the timex.h header file.
 *
 * time_phase and time_freq are the phase increment and the frequency
 * increment, respectively, of the kernel time variable at each tick of
 * the clock.
 *
 * time_freq is set via ntp_adjtime() from a value stored in a file when
 * the synchronization daemon is first started. Its value is retrieved
 * via ntp_adjtime() and written to the file about once per hour by the
 * daemon.
 *
 * time_adj is the adjustment added to the value of tick at each timer
 * interrupt and is recomputed at each timer interrupt.
 *
 * time_reftime is the second's portion of the system time on the last
 * call to ntp_adjtime(). It is used to adjust the time_freq variable
 * and to increase the time_maxerror as the time since last update
 * increases.
 */
static long time_phase = 0;		/* phase offset (scaled us) */
long time_freq = 0;		/* frequency offset (scaled ppm) */
static long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
static long time_reftime = 0;		/* time at last adjustment (s) */

#ifdef PPS_SYNC
/*
 * The following variables are used only if the if the kernel PPS
 * discipline code is configured (PPS_SYNC). The scale factors are
 * defined in the timex.h header file.
 *
 * pps_time contains the time at each calibration interval, as read by
 * microtime().
 *
 * pps_offset is the time offset produced by the time median filter
 * pps_tf[], while pps_jitter is the dispersion measured by this
 * filter.
 *
 * pps_freq is the frequency offset produced by the frequency median
 * filter pps_ff[], while pps_stabil is the dispersion measured by
 * this filter.
 *
 * pps_usec is latched from a high resolution counter or external clock
 * at pps_time. Here we want the hardware counter contents only, not the
 * contents plus the time_tv.usec as usual.
 *
 * pps_valid counts the number of seconds since the last PPS update. It
 * is used as a watchdog timer to disable the PPS discipline should the
 * PPS signal be lost.
 *
 * pps_glitch counts the number of seconds since the beginning of an
 * offset burst more than tick/2 from current nominal offset. It is used
 * mainly to suppress error bursts due to priority conflicts between the
 * PPS interrupt and timer interrupt.
 *
 * pps_count counts the seconds of the calibration interval, the
 * duration of which is pps_shift in powers of two.
 *
 * pps_intcnt counts the calibration intervals for use in the interval-
 * adaptation algorithm. It's just too complicated for words.
 */
struct timeval pps_time;	/* kernel time at last interval */
long pps_offset = 0;		/* pps time offset (us) */
long pps_jitter = MAXTIME;	/* pps time dispersion (jitter) (us) */
long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
long pps_freq = 0;		/* frequency offset (scaled ppm) */
long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
long pps_ff[] = {0, 0, 0};	/* frequency offset median filter */
long pps_usec = 0;		/* microsec counter at last interval */
long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
int pps_glitch = 0;		/* pps signal glitch counter */
int pps_count = 0;		/* calibration interval counter (s) */
int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
int pps_intcnt = 0;		/* intervals at current duration */

/*
 * PPS signal quality monitors
 *
 * pps_jitcnt counts the seconds that have been discarded because the
 * jitter measured by the time median filter exceeds the limit MAXTIME
 * (100 us).
 *
 * pps_calcnt counts the frequency calibration intervals, which are
 * variable from 4 s to 256 s.
 *
 * pps_errcnt counts the calibration intervals which have been discarded
 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
 * calibration interval jitter exceeds two ticks.
 *
 * pps_stbcnt counts the calibration intervals that have been discarded
 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
 */
long pps_jitcnt = 0;		/* jitter limit exceeded */
long pps_calcnt = 0;		/* calibration intervals */
long pps_errcnt = 0;		/* calibration errors */
long pps_stbcnt = 0;		/* stability limit exceeded */
#endif /* PPS_SYNC */

/* XXX none of this stuff works under FreeBSD */
#ifdef EXT_CLOCK
/*
 * External clock definitions
 *
 * The following definitions and declarations are used only if an
 * external clock (HIGHBALL or TPRO) is configured on the system.
 */
#define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */

/*
 * The clock_count variable is set to CLOCK_INTERVAL at each PPS
 * interrupt and decremented once each second.
 */
int clock_count = 0;		/* CPU clock counter */

#ifdef HIGHBALL
/*
 * The clock_offset and clock_cpu variables are used by the HIGHBALL
 * interface. The clock_offset variable defines the offset between
 * system time and the HIGBALL counters. The clock_cpu variable contains
 * the offset between the system clock and the HIGHBALL clock for use in
 * disciplining the kernel time variable.
 */
extern struct timeval clock_offset; /* Highball clock offset */
long clock_cpu = 0;		/* CPU clock adjust */
#endif /* HIGHBALL */
#endif /* EXT_CLOCK */

/*
 * hardupdate() - local clock update
 *
 * This routine is called by ntp_adjtime() to update the local clock
 * phase and frequency. This is used to implement an adaptive-parameter,
 * first-order, type-II phase-lock loop. The code computes new time and
 * frequency offsets each time it is called. The hardclock() routine
 * amortizes these offsets at each tick interrupt. If the kernel PPS
 * discipline code is configured (PPS_SYNC), the PPS signal itself
 * determines the new time offset, instead of the calling argument.
 * Presumably, calls to ntp_adjtime() occur only when the caller
 * believes the local clock is valid within some bound (+-128 ms with
 * NTP). If the caller's time is far different than the PPS time, an
 * argument will ensue, and it's not clear who will lose.
 *
 * For default SHIFT_UPDATE = 12, the offset is limited to +-512 ms, the
 * maximum interval between updates is 4096 s and the maximum frequency
 * offset is +-31.25 ms/s.
 *
 * Note: splclock() is in effect.
 */
void
hardupdate(offset)
	long offset;
{
	long ltemp, mtemp;

	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
		return;
	ltemp = offset;
#ifdef PPS_SYNC
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		ltemp = pps_offset;
#endif /* PPS_SYNC */
	if (ltemp > MAXPHASE)
		time_offset = MAXPHASE << SHIFT_UPDATE;
	else if (ltemp < -MAXPHASE)
		time_offset = -(MAXPHASE << SHIFT_UPDATE);
	else
		time_offset = ltemp << SHIFT_UPDATE;
	mtemp = time.tv_sec - time_reftime;
	time_reftime = time.tv_sec;
	if (mtemp > MAXSEC)
		mtemp = 0;

	/* ugly multiply should be replaced */
	if (ltemp < 0)
		time_freq -= (-ltemp * mtemp) >> (time_constant +
		    time_constant + SHIFT_KF - SHIFT_USEC);
	else
		time_freq += (ltemp * mtemp) >> (time_constant +
		    time_constant + SHIFT_KF - SHIFT_USEC);
	if (time_freq > time_tolerance)
		time_freq = time_tolerance;
	else if (time_freq < -time_tolerance)
		time_freq = -time_tolerance;
}



/*
 * Initialize clock frequencies and start both clocks running.
 */
/* ARGSUSED*/
static void
initclocks(dummy)
	void *dummy;
{
	register int i;

	/*
	 * Set divisors to 1 (normal case) and let the machine-specific
	 * code do its bit.
	 */
	psdiv = pscnt = 1;
	cpu_initclocks();

	/*
	 * Compute profhz/stathz, and fix profhz if needed.
	 */
	i = stathz ? stathz : hz;
	if (profhz == 0)
		profhz = i;
	psratio = profhz / i;
}

/*
 * The real-time timer, interrupting hz times per second.
 */
void
hardclock(frame)
	register struct clockframe *frame;
{
	register struct callout *p1;
	register struct proc *p;
	register int needsoft;

	/*
	 * Update real-time timeout queue.
	 * At front of queue are some number of events which are ``due''.
	 * The time to these is <= 0 and if negative represents the
	 * number of ticks which have passed since it was supposed to happen.
	 * The rest of the q elements (times > 0) are events yet to happen,
	 * where the time for each is given as a delta from the previous.
	 * Decrementing just the first of these serves to decrement the time
	 * to all events.
	 */
	needsoft = 0;
	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
		if (--p1->c_time > 0)
			break;
		needsoft = 1;
		if (p1->c_time == 0)
			break;
	}

	p = curproc;
	if (p) {
		register struct pstats *pstats;

		/*
		 * Run current process's virtual and profile time, as needed.
		 */
		pstats = p->p_stats;
		if (CLKF_USERMODE(frame) &&
		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
			psignal(p, SIGVTALRM);
		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
			psignal(p, SIGPROF);
	}

	/*
	 * If no separate statistics clock is available, run it from here.
	 */
	if (stathz == 0)
		statclock(frame);

	/*
	 * Increment the time-of-day.
	 */
	ticks++;
	{
		int time_update;
		struct timeval newtime = time;
		long ltemp;

		if (timedelta == 0) {
			time_update = CPU_THISTICKLEN(tick);
		} else {
			time_update = CPU_THISTICKLEN(tick) + tickdelta;
			timedelta -= tickdelta;
		}
		BUMPTIME(&mono_time, time_update);

		/*
		 * Compute the phase adjustment. If the low-order bits
		 * (time_phase) of the update overflow, bump the high-order bits
		 * (time_update).
		 */
		time_phase += time_adj;
		if (time_phase <= -FINEUSEC) {
		  ltemp = -time_phase >> SHIFT_SCALE;
		  time_phase += ltemp << SHIFT_SCALE;
		  time_update -= ltemp;
		}
		else if (time_phase >= FINEUSEC) {
		  ltemp = time_phase >> SHIFT_SCALE;
		  time_phase -= ltemp << SHIFT_SCALE;
		  time_update += ltemp;
		}

		newtime.tv_usec += time_update;
		/*
		 * On rollover of the second the phase adjustment to be used for
		 * the next second is calculated. Also, the maximum error is
		 * increased by the tolerance. If the PPS frequency discipline
		 * code is present, the phase is increased to compensate for the
		 * CPU clock oscillator frequency error.
		 *
		 * With SHIFT_SCALE = 23, the maximum frequency adjustment is
		 * +-256 us per tick, or 25.6 ms/s at a clock frequency of 100
		 * Hz. The time contribution is shifted right a minimum of two
		 * bits, while the frequency contribution is a right shift.
		 * Thus, overflow is prevented if the frequency contribution is
		 * limited to half the maximum or 15.625 ms/s.
		 */
		if (newtime.tv_usec >= 1000000) {
		  newtime.tv_usec -= 1000000;
		  newtime.tv_sec++;
		  time_maxerror += time_tolerance >> SHIFT_USEC;
		  if (time_offset < 0) {
		    ltemp = -time_offset >>
		      (SHIFT_KG + time_constant);
		    time_offset += ltemp;
		    time_adj = -ltemp <<
		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
		  } else {
		    ltemp = time_offset >>
		      (SHIFT_KG + time_constant);
		    time_offset -= ltemp;
		    time_adj = ltemp <<
		      (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
		  }
#ifdef PPS_SYNC
		  /*
		   * Gnaw on the watchdog counter and update the frequency
		   * computed by the pll and the PPS signal.
		   */
		  pps_valid++;
		  if (pps_valid == PPS_VALID) {
		    pps_jitter = MAXTIME;
		    pps_stabil = MAXFREQ;
		    time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				     STA_PPSWANDER | STA_PPSERROR);
		  }
		  ltemp = time_freq + pps_freq;
#else
		  ltemp = time_freq;
#endif /* PPS_SYNC */
		  if (ltemp < 0)
		    time_adj -= -ltemp >>
		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);
		  else
		    time_adj += ltemp >>
		      (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE);

		  /*
		   * When the CPU clock oscillator frequency is not a
		   * power of two in Hz, the SHIFT_HZ is only an
		   * approximate scale factor. In the SunOS kernel, this
		   * results in a PLL gain factor of 1/1.28 = 0.78 what it
		   * should be. In the following code the overall gain is
		   * increased by a factor of 1.25, which results in a
		   * residual error less than 3 percent.
		   */
		  /* Same thing applies for FreeBSD --GAW */
		  if (hz == 100) {
		    if (time_adj < 0)
		      time_adj -= -time_adj >> 2;
		    else
		      time_adj += time_adj >> 2;
		  }

		  /* XXX - this is really bogus, but can't be fixed until
		     xntpd's idea of the system clock is fixed to know how
		     the user wants leap seconds handled; in the mean time,
		     we assume that users of NTP are running without proper
		     leap second support (this is now the default anyway) */
		  /*
		   * Leap second processing. If in leap-insert state at
		   * the end of the day, the system clock is set back one
		   * second; if in leap-delete state, the system clock is
		   * set ahead one second. The microtime() routine or
		   * external clock driver will insure that reported time
		   * is always monotonic. The ugly divides should be
		   * replaced.
		   */
		  switch (time_state) {

		  case TIME_OK:
		    if (time_status & STA_INS)
		      time_state = TIME_INS;
		    else if (time_status & STA_DEL)
		      time_state = TIME_DEL;
		    break;

		  case TIME_INS:
		    if (newtime.tv_sec % 86400 == 0) {
		      newtime.tv_sec--;
		      time_state = TIME_OOP;
		    }
		    break;

		  case TIME_DEL:
		    if ((newtime.tv_sec + 1) % 86400 == 0) {
		      newtime.tv_sec++;
		      time_state = TIME_WAIT;
		    }
		    break;

		  case TIME_OOP:
		    time_state = TIME_WAIT;
		    break;

		  case TIME_WAIT:
		    if (!(time_status & (STA_INS | STA_DEL)))
		      time_state = TIME_OK;
		  }
		}
		CPU_CLOCKUPDATE(&time, &newtime);
	}

	/*
	 * Process callouts at a very low cpu priority, so we don't keep the
	 * relatively high clock interrupt priority any longer than necessary.
	 */
	if (needsoft) {
		if (CLKF_BASEPRI(frame)) {
			/*
			 * Save the overhead of a software interrupt;
			 * it will happen as soon as we return, so do it now.
			 */
			(void)splsoftclock();
			softclock();
		} else
			setsoftclock();
	}
}

/*
 * Software (low priority) clock interrupt.
 * Run periodic events from timeout queue.
 */
/*ARGSUSED*/
void
softclock()
{
	register struct callout *c;
	register void *arg;
	register void (*func) __P((void *));
	register int s;

	s = splhigh();
	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
		func = c->c_func;
		arg = c->c_arg;
		calltodo.c_next = c->c_next;
		c->c_next = callfree;
		callfree = c;
		splx(s);
		(*func)(arg);
		(void) splhigh();
	}
	splx(s);
}

/*
 * timeout --
 *	Execute a function after a specified length of time.
 *
 * untimeout --
 *	Cancel previous timeout function call.
 *
 *	See AT&T BCI Driver Reference Manual for specification.  This
 *	implementation differs from that one in that no identification
 *	value is returned from timeout, rather, the original arguments
 *	to timeout are used to identify entries for untimeout.
 */
void
timeout(ftn, arg, ticks)
	timeout_t ftn;
	void *arg;
	register int ticks;
{
	register struct callout *new, *p, *t;
	register int s;

	if (ticks <= 0)
		ticks = 1;

	/* Lock out the clock. */
	s = splhigh();

	/* Fill in the next free callout structure. */
	if (callfree == NULL)
		panic("timeout table full");
	new = callfree;
	callfree = new->c_next;
	new->c_arg = arg;
	new->c_func = ftn;

	/*
	 * The time for each event is stored as a difference from the time
	 * of the previous event on the queue.  Walk the queue, correcting
	 * the ticks argument for queue entries passed.  Correct the ticks
	 * value for the queue entry immediately after the insertion point
	 * as well.  Watch out for negative c_time values; these represent
	 * overdue events.
	 */
	for (p = &calltodo;
	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
		if (t->c_time > 0)
			ticks -= t->c_time;
	new->c_time = ticks;
	if (t != NULL)
		t->c_time -= ticks;

	/* Insert the new entry into the queue. */
	p->c_next = new;
	new->c_next = t;
	splx(s);
}

void
untimeout(ftn, arg)
	timeout_t ftn;
	void *arg;
{
	register struct callout *p, *t;
	register int s;

	s = splhigh();
	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
		if (t->c_func == ftn && t->c_arg == arg) {
			/* Increment next entry's tick count. */
			if (t->c_next && t->c_time > 0)
				t->c_next->c_time += t->c_time;

			/* Move entry from callout queue to callfree queue. */
			p->c_next = t->c_next;
			t->c_next = callfree;
			callfree = t;
			break;
		}
	splx(s);
}

/*
 * Compute number of hz until specified time.  Used to
 * compute third argument to timeout() from an absolute time.
 */
int
hzto(tv)
	struct timeval *tv;
{
	register unsigned long ticks;
	register long sec, usec;
	int s;

	/*
	 * If the number of usecs in the whole seconds part of the time
	 * difference fits in a long, then the total number of usecs will
	 * fit in an unsigned long.  Compute the total and convert it to
	 * ticks, rounding up and adding 1 to allow for the current tick
	 * to expire.  Rounding also depends on unsigned long arithmetic
	 * to avoid overflow.
	 *
	 * Otherwise, if the number of ticks in the whole seconds part of
	 * the time difference fits in a long, then convert the parts to
	 * ticks separately and add, using similar rounding methods and
	 * overflow avoidance.  This method would work in the previous
	 * case but it is slightly slower and assumes that hz is integral.
	 *
	 * Otherwise, round the time difference down to the maximum
	 * representable value.
	 *
	 * If ints have 32 bits, then the maximum value for any timeout in
	 * 10ms ticks is 248 days.
	 */
	s = splclock();
	sec = tv->tv_sec - time.tv_sec;
	usec = tv->tv_usec - time.tv_usec;
	splx(s);
	if (usec < 0) {
		sec--;
		usec += 1000000;
	}
	if (sec < 0) {
#ifdef DIAGNOSTIC
		printf("hzto: negative time difference %ld sec %ld usec\n",
		       sec, usec);
#endif
		ticks = 1;
	} else if (sec <= LONG_MAX / 1000000)
		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
			/ tick + 1;
	else if (sec <= LONG_MAX / hz)
		ticks = sec * hz
			+ ((unsigned long)usec + (tick - 1)) / tick + 1;
	else
		ticks = LONG_MAX;
	if (ticks > INT_MAX)
		ticks = INT_MAX;
	return (ticks);
}

/*
 * Start profiling on a process.
 *
 * Kernel profiling passes proc0 which never exits and hence
 * keeps the profile clock running constantly.
 */
void
startprofclock(p)
	register struct proc *p;
{
	int s;

	if ((p->p_flag & P_PROFIL) == 0) {
		p->p_flag |= P_PROFIL;
		if (++profprocs == 1 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = psratio;
			setstatclockrate(profhz);
			splx(s);
		}
	}
}

/*
 * Stop profiling on a process.
 */
void
stopprofclock(p)
	register struct proc *p;
{
	int s;

	if (p->p_flag & P_PROFIL) {
		p->p_flag &= ~P_PROFIL;
		if (--profprocs == 0 && stathz != 0) {
			s = splstatclock();
			psdiv = pscnt = 1;
			setstatclockrate(stathz);
			splx(s);
		}
	}
}

/*
 * Statistics clock.  Grab profile sample, and if divider reaches 0,
 * do process and kernel statistics.
 */
void
statclock(frame)
	register struct clockframe *frame;
{
#ifdef GPROF
	register struct gmonparam *g;
#endif
	register struct proc *p;
	register int i;
	struct pstats *pstats;
	long rss;
	struct rusage *ru;
	struct vmspace *vm;

	if (CLKF_USERMODE(frame)) {
		p = curproc;
		if (p->p_flag & P_PROFIL)
			addupc_intr(p, CLKF_PC(frame), 1);
		if (--pscnt > 0)
			return;
		/*
		 * Came from user mode; CPU was in user state.
		 * If this process is being profiled record the tick.
		 */
		p->p_uticks++;
		if (p->p_nice > NZERO)
			cp_time[CP_NICE]++;
		else
			cp_time[CP_USER]++;
	} else {
#ifdef GPROF
		/*
		 * Kernel statistics are just like addupc_intr, only easier.
		 */
		g = &_gmonparam;
		if (g->state == GMON_PROF_ON) {
			i = CLKF_PC(frame) - g->lowpc;
			if (i < g->textsize) {
				i /= HISTFRACTION * sizeof(*g->kcount);
				g->kcount[i]++;
			}
		}
#endif
		if (--pscnt > 0)
			return;
		/*
		 * Came from kernel mode, so we were:
		 * - handling an interrupt,
		 * - doing syscall or trap work on behalf of the current
		 *   user process, or
		 * - spinning in the idle loop.
		 * Whichever it is, charge the time as appropriate.
		 * Note that we charge interrupts to the current process,
		 * regardless of whether they are ``for'' that process,
		 * so that we know how much of its real time was spent
		 * in ``non-process'' (i.e., interrupt) work.
		 */
		p = curproc;
		if (CLKF_INTR(frame)) {
			if (p != NULL)
				p->p_iticks++;
			cp_time[CP_INTR]++;
		} else if (p != NULL) {
			p->p_sticks++;
			cp_time[CP_SYS]++;
		} else
			cp_time[CP_IDLE]++;
	}
	pscnt = psdiv;

	/*
	 * We maintain statistics shown by user-level statistics
	 * programs:  the amount of time in each cpu state, and
	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
	 *
	 * XXX	should either run linked list of drives, or (better)
	 *	grab timestamps in the start & done code.
	 */
	for (i = 0; i < DK_NDRIVE; i++)
		if (dk_busy & (1 << i))
			dk_time[i]++;

	/*
	 * We adjust the priority of the current process.  The priority of
	 * a process gets worse as it accumulates CPU time.  The cpu usage
	 * estimator (p_estcpu) is increased here.  The formula for computing
	 * priorities (in kern_synch.c) will compute a different value each
	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
	 * quite quickly when the process is running (linearly), and decays
	 * away exponentially, at a rate which is proportionally slower when
	 * the system is busy.  The basic principal is that the system will
	 * 90% forget that the process used a lot of CPU time in 5 * loadav
	 * seconds.  This causes the system to favor processes which haven't
	 * run much recently, and to round-robin among other processes.
	 */
	if (p != NULL) {
		p->p_cpticks++;
		if (++p->p_estcpu == 0)
			p->p_estcpu--;
		if ((p->p_estcpu & 3) == 0) {
			resetpriority(p);
			if (p->p_priority >= PUSER)
				p->p_priority = p->p_usrpri;
		}

		/* Update resource usage integrals and maximums. */
		if ((pstats = p->p_stats) != NULL &&
		    (ru = &pstats->p_ru) != NULL &&
		    (vm = p->p_vmspace) != NULL) {
			ru->ru_ixrss += vm->vm_tsize * PAGE_SIZE / 1024;
			ru->ru_idrss += vm->vm_dsize * PAGE_SIZE / 1024;
			ru->ru_isrss += vm->vm_ssize * PAGE_SIZE / 1024;
			rss = vm->vm_pmap.pm_stats.resident_count *
			      PAGE_SIZE / 1024;
			if (ru->ru_maxrss < rss)
				ru->ru_maxrss = rss;
        	}
	}
}

/*
 * Return information about system clocks.
 */
static int
sysctl_kern_clockrate SYSCTL_HANDLER_ARGS
{
	struct clockinfo clkinfo;
	/*
	 * Construct clockinfo structure.
	 */
	clkinfo.hz = hz;
	clkinfo.tick = tick;
	clkinfo.profhz = profhz;
	clkinfo.stathz = stathz ? stathz : hz;
	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
}

SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
	0, 0, sysctl_kern_clockrate, "S,clockinfo","");

/*#ifdef PPS_SYNC*/
#if 0
/* This code is completely bogus; if anybody ever wants to use it, get
 * the current version from Dave Mills. */

/*
 * hardpps() - discipline CPU clock oscillator to external pps signal
 *
 * This routine is called at each PPS interrupt in order to discipline
 * the CPU clock oscillator to the PPS signal. It integrates successive
 * phase differences between the two oscillators and calculates the
 * frequency offset. This is used in hardclock() to discipline the CPU
 * clock oscillator so that intrinsic frequency error is cancelled out.
 * The code requires the caller to capture the time and hardware
 * counter value at the designated PPS signal transition.
 */
void
hardpps(tvp, usec)
	struct timeval *tvp;		/* time at PPS */
	long usec;			/* hardware counter at PPS */
{
	long u_usec, v_usec, bigtick;
	long cal_sec, cal_usec;

	/*
	 * During the calibration interval adjust the starting time when
	 * the tick overflows. At the end of the interval compute the
	 * duration of the interval and the difference of the hardware
	 * counters at the beginning and end of the interval. This code
	 * is deliciously complicated by the fact valid differences may
	 * exceed the value of tick when using long calibration
	 * intervals and small ticks. Note that the counter can be
	 * greater than tick if caught at just the wrong instant, but
	 * the values returned and used here are correct.
	 */
	bigtick = (long)tick << SHIFT_USEC;
	pps_usec -= ntp_pll.ybar;
	if (pps_usec >= bigtick)
		pps_usec -= bigtick;
	if (pps_usec < 0)
		pps_usec += bigtick;
	pps_time.tv_sec++;
	pps_count++;
	if (pps_count < (1 << pps_shift))
		return;
	pps_count = 0;
	ntp_pll.calcnt++;
	u_usec = usec << SHIFT_USEC;
	v_usec = pps_usec - u_usec;
	if (v_usec >= bigtick >> 1)
		v_usec -= bigtick;
	if (v_usec < -(bigtick >> 1))
		v_usec += bigtick;
	if (v_usec < 0)
		v_usec = -(-v_usec >> ntp_pll.shift);
	else
		v_usec = v_usec >> ntp_pll.shift;
	pps_usec = u_usec;
	cal_sec = tvp->tv_sec;
	cal_usec = tvp->tv_usec;
	cal_sec -= pps_time.tv_sec;
	cal_usec -= pps_time.tv_usec;
	if (cal_usec < 0) {
		cal_usec += 1000000;
		cal_sec--;
	}
	pps_time = *tvp;

	/*
	 * Check for lost interrupts, noise, excessive jitter and
	 * excessive frequency error. The number of timer ticks during
	 * the interval may vary +-1 tick. Add to this a margin of one
	 * tick for the PPS signal jitter and maximum frequency
	 * deviation. If the limits are exceeded, the calibration
	 * interval is reset to the minimum and we start over.
	 */
	u_usec = (long)tick << 1;
	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
	    || (cal_sec == 0 && cal_usec < u_usec))
	    || v_usec > ntp_pll.tolerance || v_usec < -ntp_pll.tolerance) {
		ntp_pll.jitcnt++;
		ntp_pll.shift = NTP_PLL.SHIFT;
		pps_dispinc = PPS_DISPINC;
		ntp_pll.intcnt = 0;
		return;
	}

	/*
	 * A three-stage median filter is used to help deglitch the pps
	 * signal. The median sample becomes the offset estimate; the
	 * difference between the other two samples becomes the
	 * dispersion estimate.
	 */
	pps_mf[2] = pps_mf[1];
	pps_mf[1] = pps_mf[0];
	pps_mf[0] = v_usec;
	if (pps_mf[0] > pps_mf[1]) {
		if (pps_mf[1] > pps_mf[2]) {
			u_usec = pps_mf[1];		/* 0 1 2 */
			v_usec = pps_mf[0] - pps_mf[2];
		} else if (pps_mf[2] > pps_mf[0]) {
			u_usec = pps_mf[0];		/* 2 0 1 */
			v_usec = pps_mf[2] - pps_mf[1];
		} else {
			u_usec = pps_mf[2];		/* 0 2 1 */
			v_usec = pps_mf[0] - pps_mf[1];
		}
	} else {
		if (pps_mf[1] < pps_mf[2]) {
			u_usec = pps_mf[1];		/* 2 1 0 */
			v_usec = pps_mf[2] - pps_mf[0];
		} else  if (pps_mf[2] < pps_mf[0]) {
			u_usec = pps_mf[0];		/* 1 0 2 */
			v_usec = pps_mf[1] - pps_mf[2];
		} else {
			u_usec = pps_mf[2];		/* 1 2 0 */
			v_usec = pps_mf[1] - pps_mf[0];
		}
	}

	/*
	 * Here the dispersion average is updated. If it is less than
	 * the threshold pps_dispmax, the frequency average is updated
	 * as well, but clamped to the tolerance.
	 */
	v_usec = (v_usec >> 1) - ntp_pll.disp;
	if (v_usec < 0)
		ntp_pll.disp -= -v_usec >> PPS_AVG;
	else
		ntp_pll.disp += v_usec >> PPS_AVG;
	if (ntp_pll.disp > pps_dispmax) {
		ntp_pll.discnt++;
		return;
	}
	if (u_usec < 0) {
		ntp_pll.ybar -= -u_usec >> PPS_AVG;
		if (ntp_pll.ybar < -ntp_pll.tolerance)
			ntp_pll.ybar = -ntp_pll.tolerance;
		u_usec = -u_usec;
	} else {
		ntp_pll.ybar += u_usec >> PPS_AVG;
		if (ntp_pll.ybar > ntp_pll.tolerance)
			ntp_pll.ybar = ntp_pll.tolerance;
	}

	/*
	 * Here the calibration interval is adjusted. If the maximum
	 * time difference is greater than tick/4, reduce the interval
	 * by half. If this is not the case for four consecutive
	 * intervals, double the interval.
	 */
	if (u_usec << ntp_pll.shift > bigtick >> 2) {
		ntp_pll.intcnt = 0;
		if (ntp_pll.shift > NTP_PLL.SHIFT) {
			ntp_pll.shift--;
			pps_dispinc <<= 1;
		}
	} else if (ntp_pll.intcnt >= 4) {
		ntp_pll.intcnt = 0;
		if (ntp_pll.shift < NTP_PLL.SHIFTMAX) {
			ntp_pll.shift++;
			pps_dispinc >>= 1;
		}
	} else
		ntp_pll.intcnt++;
}
#endif /* PPS_SYNC */
OpenPOWER on IntegriCloud