summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_kse.c
blob: 7eca37a1b8f9ab1135583889e79752aed6c0ee9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
/*
 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
 *  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice(s), this list of conditions and the following disclaimer as
 *    the first lines of this file unmodified other than the possible
 *    addition of one or more copyright notices.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice(s), this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/smp.h>
#include <sys/sysproto.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/sleepqueue.h>
#include <sys/kse.h>
#include <sys/ktr.h>
#include <vm/uma.h>

/*
 * KSEGRP related storage.
 */
static uma_zone_t upcall_zone;

/* DEBUG ONLY */
extern int virtual_cpu;
extern int thread_debug;

extern int max_threads_per_proc;
extern int max_groups_per_proc;
extern int max_threads_hits;
extern struct mtx kse_zombie_lock;


#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))

TAILQ_HEAD(, kse_upcall) zombie_upcalls =
	TAILQ_HEAD_INITIALIZER(zombie_upcalls);

static int thread_update_usr_ticks(struct thread *td);
static void thread_alloc_spare(struct thread *td);

/* move to proc.h */
extern void kse_purge(struct proc *p, struct thread *td);
extern void kse_purge_group(struct thread *td);
void kseinit(void);
void kse_GC(void);

struct kse_upcall *
upcall_alloc(void)
{
	struct kse_upcall *ku;

	ku = uma_zalloc(upcall_zone, M_WAITOK);
	bzero(ku, sizeof(*ku));
	return (ku);
}

void
upcall_free(struct kse_upcall *ku)
{

	uma_zfree(upcall_zone, ku);
}

void
upcall_link(struct kse_upcall *ku, struct ksegrp *kg)
{

	mtx_assert(&sched_lock, MA_OWNED);
	TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link);
	ku->ku_ksegrp = kg;
	kg->kg_numupcalls++;
}

void
upcall_unlink(struct kse_upcall *ku)
{
	struct ksegrp *kg = ku->ku_ksegrp;

	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__));
	TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link);
	kg->kg_numupcalls--;
	upcall_stash(ku);
}

void
upcall_remove(struct thread *td)
{

	if (td->td_upcall) {
		td->td_upcall->ku_owner = NULL;
		upcall_unlink(td->td_upcall);
		td->td_upcall = 0;
	}
}

#ifndef _SYS_SYSPROTO_H_
struct kse_switchin_args {
	struct kse_thr_mailbox *tmbx;
	int flags;
};
#endif

int
kse_switchin(struct thread *td, struct kse_switchin_args *uap)
{
	struct kse_thr_mailbox tmbx;
	struct kse_upcall *ku;
	int error;

	if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
		return (EINVAL);
	error = (uap->tmbx == NULL) ? EINVAL : 0;
	if (!error)
		error = copyin(uap->tmbx, &tmbx, sizeof(tmbx));
	if (!error && (uap->flags & KSE_SWITCHIN_SETTMBX))
		error = (suword(&ku->ku_mailbox->km_curthread,
			 (long)uap->tmbx) != 0 ? EINVAL : 0);
	if (!error)
		error = set_mcontext(td, &tmbx.tm_context.uc_mcontext);
	if (!error) {
		suword32(&uap->tmbx->tm_lwp, td->td_tid);
		if (uap->flags & KSE_SWITCHIN_SETTMBX) {
			td->td_mailbox = uap->tmbx;
			td->td_pflags |= TDP_CAN_UNBIND;
		}
		if (td->td_proc->p_flag & P_TRACED) {
			if (tmbx.tm_dflags & TMDF_SSTEP)
				ptrace_single_step(td);
			else
				ptrace_clear_single_step(td);
			if (tmbx.tm_dflags & TMDF_SUSPEND) {
				mtx_lock_spin(&sched_lock);
				/* fuword can block, check again */
				if (td->td_upcall)
					ku->ku_flags |= KUF_DOUPCALL;
				mtx_unlock_spin(&sched_lock);
			}
		}
	}
	return ((error == 0) ? EJUSTRETURN : error);
}

/*
struct kse_thr_interrupt_args {
	struct kse_thr_mailbox * tmbx;
	int cmd;
	long data;
};
*/
int
kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap)
{
	struct proc *p;
	struct thread *td2;
	struct kse_upcall *ku;
	struct kse_thr_mailbox *tmbx;
	uint32_t flags;

	p = td->td_proc;

	if (!(p->p_flag & P_SA))
		return (EINVAL);

	switch (uap->cmd) {
	case KSE_INTR_SENDSIG:
		if (uap->data < 0 || uap->data > _SIG_MAXSIG)
			return (EINVAL);
	case KSE_INTR_INTERRUPT:
	case KSE_INTR_RESTART:
		PROC_LOCK(p);
		mtx_lock_spin(&sched_lock);
		FOREACH_THREAD_IN_PROC(p, td2) {
			if (td2->td_mailbox == uap->tmbx)
				break;
		}
		if (td2 == NULL) {
			mtx_unlock_spin(&sched_lock);
			PROC_UNLOCK(p);
			return (ESRCH);
		}
		if (uap->cmd == KSE_INTR_SENDSIG) {
			if (uap->data > 0) {
				td2->td_flags &= ~TDF_INTERRUPT;
				mtx_unlock_spin(&sched_lock);
				tdsignal(td2, (int)uap->data, SIGTARGET_TD);
			} else {
				mtx_unlock_spin(&sched_lock);
			}
		} else {
			td2->td_flags |= TDF_INTERRUPT | TDF_ASTPENDING;
			if (TD_CAN_UNBIND(td2))
				td2->td_upcall->ku_flags |= KUF_DOUPCALL;
			if (uap->cmd == KSE_INTR_INTERRUPT)
				td2->td_intrval = EINTR;
			else
				td2->td_intrval = ERESTART;
			if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR))
				sleepq_abort(td2);
			mtx_unlock_spin(&sched_lock);
		}
		PROC_UNLOCK(p);
		break;
	case KSE_INTR_SIGEXIT:
		if (uap->data < 1 || uap->data > _SIG_MAXSIG)
			return (EINVAL);
		PROC_LOCK(p);
		sigexit(td, (int)uap->data);
		break;

	case KSE_INTR_DBSUSPEND:
		/* this sub-function is only for bound thread */
		if (td->td_pflags & TDP_SA)
			return (EINVAL);
		ku = td->td_upcall;
		tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
		if (tmbx == NULL || tmbx == (void *)-1)
			return (EINVAL);
		flags = 0;
		while ((p->p_flag & P_TRACED) && !(p->p_flag & P_SINGLE_EXIT)) {
			flags = fuword32(&tmbx->tm_dflags);
			if (!(flags & TMDF_SUSPEND))
				break;
			PROC_LOCK(p);
			mtx_lock_spin(&sched_lock);
			thread_stopped(p);
			thread_suspend_one(td);
			PROC_UNLOCK(p);
			mi_switch(SW_VOL, NULL);
			mtx_unlock_spin(&sched_lock);
		}
		return (0);

	default:
		return (EINVAL);
	}
	return (0);
}

/*
struct kse_exit_args {
	register_t dummy;
};
*/
int
kse_exit(struct thread *td, struct kse_exit_args *uap)
{
	struct proc *p;
	struct ksegrp *kg;
	struct kse *ke;
	struct kse_upcall *ku, *ku2;
	int    error, count;

	p = td->td_proc;
	/* 
	 * Ensure that this is only called from the UTS
	 */
	if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
		return (EINVAL);

	kg = td->td_ksegrp;
	count = 0;

	/*
	 * Calculate the existing non-exiting upcalls in this ksegroup.
	 * If we are the last upcall but there are still other threads,
	 * then do not exit. We need the other threads to be able to 
	 * complete whatever they are doing.
	 * XXX This relies on the userland knowing what to do if we return.
	 * It may be a better choice to convert ourselves into a kse_release
	 * ( or similar) and wait in the kernel to be needed.
	 */
	PROC_LOCK(p);
	mtx_lock_spin(&sched_lock);
	FOREACH_UPCALL_IN_GROUP(kg, ku2) {
		if (ku2->ku_flags & KUF_EXITING)
			count++;
	}
	if ((kg->kg_numupcalls - count) == 1 &&
	    (kg->kg_numthreads > 1)) {
		mtx_unlock_spin(&sched_lock);
		PROC_UNLOCK(p);
		return (EDEADLK);
	}
	ku->ku_flags |= KUF_EXITING;
	mtx_unlock_spin(&sched_lock);
	PROC_UNLOCK(p);

	/* 
	 * Mark the UTS mailbox as having been finished with.
	 * If that fails then just go for a segfault.
	 * XXX need to check it that can be deliverred without a mailbox.
	 */
	error = suword32(&ku->ku_mailbox->km_flags, ku->ku_mflags|KMF_DONE);
	if (!(td->td_pflags & TDP_SA))
		if (suword32(&td->td_mailbox->tm_lwp, 0))
			error = EFAULT;
	PROC_LOCK(p);
	if (error)
		psignal(p, SIGSEGV);
	mtx_lock_spin(&sched_lock);
	upcall_remove(td);
	ke = td->td_kse;
	if (p->p_numthreads == 1) {
		kse_purge(p, td);
		p->p_flag &= ~P_SA;
		mtx_unlock_spin(&sched_lock);
		PROC_UNLOCK(p);
	} else {
		if (kg->kg_numthreads == 1) { /* Shutdown a group */
			kse_purge_group(td);
			ke->ke_flags |= KEF_EXIT;
		}
		thread_stopped(p);
		thread_exit();
		/* NOTREACHED */
	}
	return (0);
}

/*
 * Either becomes an upcall or waits for an awakening event and
 * then becomes an upcall. Only error cases return.
 */
/*
struct kse_release_args {
	struct timespec *timeout;
};
*/
int
kse_release(struct thread *td, struct kse_release_args *uap)
{
	struct proc *p;
	struct ksegrp *kg;
	struct kse_upcall *ku;
	struct timespec timeout;
	struct timeval tv;
	sigset_t sigset;
	int error;

	p = td->td_proc;
	kg = td->td_ksegrp;
	if ((ku = td->td_upcall) == NULL || TD_CAN_UNBIND(td))
		return (EINVAL);
	if (uap->timeout != NULL) {
		if ((error = copyin(uap->timeout, &timeout, sizeof(timeout))))
			return (error);
		TIMESPEC_TO_TIMEVAL(&tv, &timeout);
	}
	if (td->td_pflags & TDP_SA)
		td->td_pflags |= TDP_UPCALLING;
	else {
		ku->ku_mflags = fuword32(&ku->ku_mailbox->km_flags);
		if (ku->ku_mflags == -1) {
			PROC_LOCK(p);
			sigexit(td, SIGSEGV);
		}
	}
	PROC_LOCK(p);
	if (ku->ku_mflags & KMF_WAITSIGEVENT) {
		/* UTS wants to wait for signal event */
		if (!(p->p_flag & P_SIGEVENT) &&
		    !(ku->ku_flags & KUF_DOUPCALL)) {
			td->td_kflags |= TDK_KSERELSIG;
			error = msleep(&p->p_siglist, &p->p_mtx, PPAUSE|PCATCH,
			    "ksesigwait", (uap->timeout ? tvtohz(&tv) : 0));
			td->td_kflags &= ~(TDK_KSERELSIG | TDK_WAKEUP);
		}
		p->p_flag &= ~P_SIGEVENT;
		sigset = p->p_siglist;
		PROC_UNLOCK(p);
		error = copyout(&sigset, &ku->ku_mailbox->km_sigscaught,
		    sizeof(sigset));
	} else {
		if ((ku->ku_flags & KUF_DOUPCALL) == 0 &&
		    ((ku->ku_mflags & KMF_NOCOMPLETED) ||
		     (kg->kg_completed == NULL))) {
			kg->kg_upsleeps++;
			td->td_kflags |= TDK_KSEREL;
			error = msleep(&kg->kg_completed, &p->p_mtx,
				PPAUSE|PCATCH, "kserel",
				(uap->timeout ? tvtohz(&tv) : 0));
			td->td_kflags &= ~(TDK_KSEREL | TDK_WAKEUP);
			kg->kg_upsleeps--;
		}
		PROC_UNLOCK(p);
	}
	if (ku->ku_flags & KUF_DOUPCALL) {
		mtx_lock_spin(&sched_lock);
		ku->ku_flags &= ~KUF_DOUPCALL;
		mtx_unlock_spin(&sched_lock);
	}
	return (0);
}

/* struct kse_wakeup_args {
	struct kse_mailbox *mbx;
}; */
int
kse_wakeup(struct thread *td, struct kse_wakeup_args *uap)
{
	struct proc *p;
	struct ksegrp *kg;
	struct kse_upcall *ku;
	struct thread *td2;

	p = td->td_proc;
	td2 = NULL;
	ku = NULL;
	/* KSE-enabled processes only, please. */
	if (!(p->p_flag & P_SA))
		return (EINVAL);
	PROC_LOCK(p);
	mtx_lock_spin(&sched_lock);
	if (uap->mbx) {
		FOREACH_KSEGRP_IN_PROC(p, kg) {
			FOREACH_UPCALL_IN_GROUP(kg, ku) {
				if (ku->ku_mailbox == uap->mbx)
					break;
			}
			if (ku)
				break;
		}
	} else {
		kg = td->td_ksegrp;
		if (kg->kg_upsleeps) {
			mtx_unlock_spin(&sched_lock);
			wakeup(&kg->kg_completed);
			PROC_UNLOCK(p);
			return (0);
		}
		ku = TAILQ_FIRST(&kg->kg_upcalls);
	}
	if (ku == NULL) {
		mtx_unlock_spin(&sched_lock);
		PROC_UNLOCK(p);
		return (ESRCH);
	}
	if ((td2 = ku->ku_owner) == NULL) {
		mtx_unlock_spin(&sched_lock);
		panic("%s: no owner", __func__);
	} else if (td2->td_kflags & (TDK_KSEREL | TDK_KSERELSIG)) {
		mtx_unlock_spin(&sched_lock);
		if (!(td2->td_kflags & TDK_WAKEUP)) {
			td2->td_kflags |= TDK_WAKEUP;
			if (td2->td_kflags & TDK_KSEREL)
				sleepq_remove(td2, &kg->kg_completed);
			else
				sleepq_remove(td2, &p->p_siglist);
		}
	} else {
		ku->ku_flags |= KUF_DOUPCALL;
		mtx_unlock_spin(&sched_lock);
	}
	PROC_UNLOCK(p);
	return (0);
}

/*
 * No new KSEG: first call: use current KSE, don't schedule an upcall
 * All other situations, do allocate max new KSEs and schedule an upcall.
 */
/* struct kse_create_args {
	struct kse_mailbox *mbx;
	int newgroup;
}; */
int
kse_create(struct thread *td, struct kse_create_args *uap)
{
	struct kse *newke;
	struct ksegrp *newkg;
	struct ksegrp *kg;
	struct proc *p;
	struct kse_mailbox mbx;
	struct kse_upcall *newku;
	int err, ncpus, sa = 0, first = 0;
	struct thread *newtd;

	p = td->td_proc;
	if ((err = copyin(uap->mbx, &mbx, sizeof(mbx))))
		return (err);

	ncpus = mp_ncpus;
	if (virtual_cpu != 0)
		ncpus = virtual_cpu;
	/*
	 * If the new UTS mailbox says that this
	 * will be a BOUND lwp, then it had better
	 * have its thread mailbox already there.
	 * In addition, this ksegrp will be limited to
	 * a concurrency of 1. There is more on this later.
	 */
	if (mbx.km_flags & KMF_BOUND) {
		if (mbx.km_curthread == NULL) 
			return (EINVAL);
		ncpus = 1;
	} else {
		sa = TDP_SA;
	}

	PROC_LOCK(p);
	if (!(p->p_flag & P_SA)) {
		first = 1;
		p->p_flag |= P_SA;
	}
	PROC_UNLOCK(p);
	/*
	 * Now pay attention!
	 * If we are going to be bound, then we need to be either
	 * a new group, or the first call ever. In either
	 * case we will be creating (or be) the only thread in a group.
	 * and the concurrency will be set to 1.
	 * This is not quite right, as we may still make ourself 
	 * bound after making other ksegrps but it will do for now.
	 * The library will only try do this much.
	 */
	if (!sa && !(uap->newgroup || first))
		return (EINVAL);

	kg = td->td_ksegrp;
	if (uap->newgroup) {
		newkg = ksegrp_alloc();
		bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp,
		      kg_startzero, kg_endzero));
		bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
		      RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
		PROC_LOCK(p);
		mtx_lock_spin(&sched_lock);
		if (p->p_numksegrps >= max_groups_per_proc) {
			mtx_unlock_spin(&sched_lock);
			PROC_UNLOCK(p);
			ksegrp_free(newkg);
			return (EPROCLIM);
		}
		ksegrp_link(newkg, p);
		sched_fork_ksegrp(td, newkg);
		mtx_unlock_spin(&sched_lock);
		PROC_UNLOCK(p);
	} else {
		/*
		 * We want to make a thread in our own ksegrp.
		 * If we are just the first call, either kind
		 * is ok, but if not then either we must be 
		 * already an upcallable thread to make another,
		 * or a bound thread to make one of those.
		 * Once again, not quite right but good enough for now.. XXXKSE
		 */
		if (!first && ((td->td_pflags & TDP_SA) != sa))
			return (EINVAL);
		newkg = kg;
	}


	/* 
	 * This test is a bit "indirect".
	 * It might simplify things if we made a direct way of testing
	 * if a ksegrp has been worked on before.
	 * In the case of a bound request and the concurrency being set to 
	 * one, the concurrency will already be 1 so it's just inefficient
	 * but not dangerous to call this again. XXX
	 */
	if (newkg->kg_numupcalls == 0) {
		/*
		 * Initialize KSE group with the appropriate
		 * concurrency.
		 *
		 * For a multiplexed group, create as as much concurrency
		 * as the number of physical cpus.
		 * This increases concurrency in the kernel even if the
		 * userland is not MP safe and can only run on a single CPU.
		 * In an ideal world, every physical cpu should execute a
		 * thread.  If there is enough concurrency, threads in the
		 * kernel can be executed parallel on different cpus at
		 * full speed without being restricted by the number of
		 * upcalls the userland provides.
		 * Adding more upcall structures only increases concurrency
		 * in userland.
		 *
		 * For a bound thread group, because there is only one thread
		 * in the group, we only set the concurrency for the group 
		 * to 1.  A thread in this kind of group will never schedule
		 * an upcall when blocked.  This simulates pthread system
		 * scope thread behaviour.
		 */
		while (newkg->kg_kses < ncpus) {
			newke = kse_alloc();
			bzero(&newke->ke_startzero, RANGEOF(struct kse,
			      ke_startzero, ke_endzero));
			mtx_lock_spin(&sched_lock);
			kse_link(newke, newkg);
			sched_fork_kse(td, newke);
			/* Add engine */
			kse_reassign(newke);
			mtx_unlock_spin(&sched_lock);
		}
	}
	/* 
	 * Even bound LWPs get a mailbox and an upcall to hold it.
	 */
	newku = upcall_alloc();
	newku->ku_mailbox = uap->mbx;
	newku->ku_func = mbx.km_func;
	bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t));

	/*
	 * For the first call this may not have been set.
	 * Of course nor may it actually be needed.
	 */
	if (td->td_standin == NULL)
		thread_alloc_spare(td);

	/*
	 * Creating upcalls more than number of physical cpu does
	 * not help performance.
	 */
	PROC_LOCK(p);
	if (newkg->kg_numupcalls >= ncpus) {
		PROC_UNLOCK(p);
		upcall_free(newku);
		return (EPROCLIM);
	}

	/*
	 * If we are the first time, and a normal thread,
	 * then trnasfer all the signals back to the 'process'.
	 * SA threading will make a special thread to handle them.
	 */
	if (first && sa) {
		SIGSETOR(p->p_siglist, td->td_siglist);
		SIGEMPTYSET(td->td_siglist);
		SIGFILLSET(td->td_sigmask);
		SIG_CANTMASK(td->td_sigmask);
	}

	/*
	 * Make the new upcall available to the ksegrp,.
	 *  It may or may not use it, but its available.
	 */
	mtx_lock_spin(&sched_lock);
	PROC_UNLOCK(p);
	upcall_link(newku, newkg);
	if (mbx.km_quantum)
		newkg->kg_upquantum = max(1, mbx.km_quantum/tick);

	/*
	 * Each upcall structure has an owner thread, find which
	 * one owns it.
	 */
	if (uap->newgroup) {
		/*
		 * Because the new ksegrp hasn't a thread,
		 * create an initial upcall thread to own it.
		 */
		newtd = thread_schedule_upcall(td, newku);
	} else {
		/*
		 * If the current thread hasn't an upcall structure,
		 * just assign the upcall to it.
		 * It'll just return.
		 */
		if (td->td_upcall == NULL) {
			newku->ku_owner = td;
			td->td_upcall = newku;
			newtd = td;
		} else {
			/*
			 * Create a new upcall thread to own it.
			 */
			newtd = thread_schedule_upcall(td, newku);
		}
	}
	mtx_unlock_spin(&sched_lock);

	/*
	 * Let the UTS instance know its LWPID.
	 * It doesn't really care. But the debugger will.
	 */
	suword32(&newku->ku_mailbox->km_lwp, newtd->td_tid);

	/*
	 * In the same manner, if the UTS has a current user thread, 
	 * then it is also running on this LWP so set it as well.
	 * The library could do that of course.. but why not..
	 */
	if (mbx.km_curthread)
		suword32(&mbx.km_curthread->tm_lwp, newtd->td_tid);

	
	if (sa) {
		newtd->td_pflags |= TDP_SA;
	} else {
		newtd->td_pflags &= ~TDP_SA;

		/*
		 * Since a library will use the mailbox pointer to 
		 * identify even a bound thread, and the mailbox pointer
		 * will never be allowed to change after this syscall
		 * for a bound thread, set it here so the library can
		 * find the thread after the syscall returns.
		 */
		newtd->td_mailbox = mbx.km_curthread;

		if (newtd != td) {
			/*
			 * If we did create a new thread then
			 * make sure it goes to the right place
			 * when it starts up, and make sure that it runs 
			 * at full speed when it gets there. 
			 * thread_schedule_upcall() copies all cpu state
			 * to the new thread, so we should clear single step
			 * flag here.
			 */
			cpu_set_upcall_kse(newtd, newku);
			if (p->p_flag & P_TRACED)
				ptrace_clear_single_step(newtd);
		}
	}
	
	/* 
	 * If we are starting a new thread, kick it off.
	 */
	if (newtd != td) {
		mtx_lock_spin(&sched_lock);
		setrunqueue(newtd, SRQ_BORING);
		mtx_unlock_spin(&sched_lock);
	}
	return (0);
}

/*
 * Initialize global thread allocation resources.
 */
void
kseinit(void)
{

	upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall),
	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0);
}

/*
 * Stash an embarasingly extra upcall into the zombie upcall queue.
 */

void
upcall_stash(struct kse_upcall *ku)
{
	mtx_lock_spin(&kse_zombie_lock);
	TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link);
	mtx_unlock_spin(&kse_zombie_lock);
}

/*
 * Reap zombie kse resource.
 */
void
kse_GC(void)
{
	struct kse_upcall *ku_first, *ku_next;

	/*
	 * Don't even bother to lock if none at this instant,
	 * we really don't care about the next instant..
	 */
	if (!TAILQ_EMPTY(&zombie_upcalls)) {
		mtx_lock_spin(&kse_zombie_lock);
		ku_first = TAILQ_FIRST(&zombie_upcalls);
		if (ku_first)
			TAILQ_INIT(&zombie_upcalls);
		mtx_unlock_spin(&kse_zombie_lock);
		while (ku_first) {
			ku_next = TAILQ_NEXT(ku_first, ku_link);
			upcall_free(ku_first);
			ku_first = ku_next;
		}
	}
}

/*
 * Store the thread context in the UTS's mailbox.
 * then add the mailbox at the head of a list we are building in user space.
 * The list is anchored in the ksegrp structure.
 */
int
thread_export_context(struct thread *td, int willexit)
{
	struct proc *p;
	struct ksegrp *kg;
	uintptr_t mbx;
	void *addr;
	int error = 0, sig;
	mcontext_t mc;

	p = td->td_proc;
	kg = td->td_ksegrp;

	/*
	 * Post sync signal, or process SIGKILL and SIGSTOP.
	 * For sync signal, it is only possible when the signal is not
	 * caught by userland or process is being debugged.
	 */
	PROC_LOCK(p);
	if (td->td_flags & TDF_NEEDSIGCHK) {
		mtx_lock_spin(&sched_lock);
		td->td_flags &= ~TDF_NEEDSIGCHK;
		mtx_unlock_spin(&sched_lock);
		mtx_lock(&p->p_sigacts->ps_mtx);
		while ((sig = cursig(td)) != 0)
			postsig(sig);
		mtx_unlock(&p->p_sigacts->ps_mtx);
	}
	if (willexit)
		SIGFILLSET(td->td_sigmask);
	PROC_UNLOCK(p);

	/* Export the user/machine context. */
	get_mcontext(td, &mc, 0);
	addr = (void *)(&td->td_mailbox->tm_context.uc_mcontext);
	error = copyout(&mc, addr, sizeof(mcontext_t));
	if (error)
		goto bad;

	addr = (caddr_t)(&td->td_mailbox->tm_lwp);
	if (suword32(addr, 0)) {
		error = EFAULT;
		goto bad;
	}

	/* Get address in latest mbox of list pointer */
	addr = (void *)(&td->td_mailbox->tm_next);
	/*
	 * Put the saved address of the previous first
	 * entry into this one
	 */
	for (;;) {
		mbx = (uintptr_t)kg->kg_completed;
		if (suword(addr, mbx)) {
			error = EFAULT;
			goto bad;
		}
		PROC_LOCK(p);
		if (mbx == (uintptr_t)kg->kg_completed) {
			kg->kg_completed = td->td_mailbox;
			/*
			 * The thread context may be taken away by
			 * other upcall threads when we unlock
			 * process lock. it's no longer valid to
			 * use it again in any other places.
			 */
			td->td_mailbox = NULL;
			PROC_UNLOCK(p);
			break;
		}
		PROC_UNLOCK(p);
	}
	td->td_usticks = 0;
	return (0);

bad:
	PROC_LOCK(p);
	sigexit(td, SIGILL);
	return (error);
}

/*
 * Take the list of completed mailboxes for this KSEGRP and put them on this
 * upcall's mailbox as it's the next one going up.
 */
static int
thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku)
{
	struct proc *p = kg->kg_proc;
	void *addr;
	uintptr_t mbx;

	addr = (void *)(&ku->ku_mailbox->km_completed);
	for (;;) {
		mbx = (uintptr_t)kg->kg_completed;
		if (suword(addr, mbx)) {
			PROC_LOCK(p);
			psignal(p, SIGSEGV);
			PROC_UNLOCK(p);
			return (EFAULT);
		}
		PROC_LOCK(p);
		if (mbx == (uintptr_t)kg->kg_completed) {
			kg->kg_completed = NULL;
			PROC_UNLOCK(p);
			break;
		}
		PROC_UNLOCK(p);
	}
	return (0);
}

/*
 * This function should be called at statclock interrupt time
 */
int
thread_statclock(int user)
{
	struct thread *td = curthread;

	if (!(td->td_pflags & TDP_SA))
		return (0);
	if (user) {
		/* Current always do via ast() */
		mtx_lock_spin(&sched_lock);
		td->td_flags |= TDF_ASTPENDING;
		mtx_unlock_spin(&sched_lock);
		td->td_uuticks++;
	} else if (td->td_mailbox != NULL)
		td->td_usticks++;
	return (0);
}

/*
 * Export state clock ticks for userland
 */
static int
thread_update_usr_ticks(struct thread *td)
{
	struct proc *p = td->td_proc;
	caddr_t addr;
	u_int uticks;

	if (td->td_mailbox == NULL)
		return (-1);

	if ((uticks = td->td_uuticks) != 0) {
		td->td_uuticks = 0;
		addr = (caddr_t)&td->td_mailbox->tm_uticks;
		if (suword32(addr, uticks+fuword32(addr)))
			goto error;
	}
	if ((uticks = td->td_usticks) != 0) {
		td->td_usticks = 0;
		addr = (caddr_t)&td->td_mailbox->tm_sticks;
		if (suword32(addr, uticks+fuword32(addr)))
			goto error;
	}
	return (0);

error:
	PROC_LOCK(p);
	psignal(p, SIGSEGV);
	PROC_UNLOCK(p);
	return (-2);
}

/*
 * This function is intended to be used to initialize a spare thread
 * for upcall. Initialize thread's large data area outside sched_lock
 * for thread_schedule_upcall().
 */
void
thread_alloc_spare(struct thread *td)
{
	struct thread *spare;

	if (td->td_standin)
		return;
	spare = thread_alloc();
	td->td_standin = spare;
	bzero(&spare->td_startzero,
	    (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
	spare->td_proc = td->td_proc;
	spare->td_ucred = crhold(td->td_ucred);
}

/*
 * Create a thread and schedule it for upcall on the KSE given.
 * Use our thread's standin so that we don't have to allocate one.
 */
struct thread *
thread_schedule_upcall(struct thread *td, struct kse_upcall *ku)
{
	struct thread *td2;

	mtx_assert(&sched_lock, MA_OWNED);

	/*
	 * Schedule an upcall thread on specified kse_upcall,
	 * the kse_upcall must be free.
	 * td must have a spare thread.
	 */
	KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__));
	if ((td2 = td->td_standin) != NULL) {
		td->td_standin = NULL;
	} else {
		panic("no reserve thread when scheduling an upcall");
		return (NULL);
	}
	CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)",
	     td2, td->td_proc->p_pid, td->td_proc->p_comm);
	/*
	 * Bzero already done in thread_alloc_spare() because we can't
	 * do the crhold here because we are in schedlock already.
	 */
	bcopy(&td->td_startcopy, &td2->td_startcopy,
	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
	thread_link(td2, ku->ku_ksegrp);
	/* inherit parts of blocked thread's context as a good template */
	cpu_set_upcall(td2, td);
	/* Let the new thread become owner of the upcall */
	ku->ku_owner   = td2;
	td2->td_upcall = ku;
	td2->td_flags  = 0;
	td2->td_pflags = TDP_SA|TDP_UPCALLING;
	td2->td_kse    = NULL;
	td2->td_state  = TDS_CAN_RUN;
	td2->td_inhibitors = 0;
	SIGFILLSET(td2->td_sigmask);
	SIG_CANTMASK(td2->td_sigmask);
	sched_fork_thread(td, td2);
	return (td2);	/* bogus.. should be a void function */
}

/*
 * It is only used when thread generated a trap and process is being
 * debugged.
 */
void
thread_signal_add(struct thread *td, int sig)
{
	struct proc *p;
	siginfo_t siginfo;
	struct sigacts *ps;
	int error;

	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	ps = p->p_sigacts;
	mtx_assert(&ps->ps_mtx, MA_OWNED);

	cpu_thread_siginfo(sig, 0, &siginfo);
	mtx_unlock(&ps->ps_mtx);
	SIGADDSET(td->td_sigmask, sig);
	PROC_UNLOCK(p);
	error = copyout(&siginfo, &td->td_mailbox->tm_syncsig, sizeof(siginfo));
	if (error) {
		PROC_LOCK(p);
		sigexit(td, SIGSEGV);
	}
	PROC_LOCK(p);
	mtx_lock(&ps->ps_mtx);
}

void
thread_switchout(struct thread *td)
{
	struct kse_upcall *ku;
	struct thread *td2;

	mtx_assert(&sched_lock, MA_OWNED);

	/*
	 * If the outgoing thread is in threaded group and has never
	 * scheduled an upcall, decide whether this is a short
	 * or long term event and thus whether or not to schedule
	 * an upcall.
	 * If it is a short term event, just suspend it in
	 * a way that takes its KSE with it.
	 * Select the events for which we want to schedule upcalls.
	 * For now it's just sleep or if thread is suspended but
	 * process wide suspending flag is not set (debugger
	 * suspends thread).
	 * XXXKSE eventually almost any inhibition could do.
	 */
	if (TD_CAN_UNBIND(td) && (td->td_standin) &&
	    (TD_ON_SLEEPQ(td) || (TD_IS_SUSPENDED(td) &&
	     !P_SHOULDSTOP(td->td_proc)))) {
		/*
		 * Release ownership of upcall, and schedule an upcall
		 * thread, this new upcall thread becomes the owner of
		 * the upcall structure. It will be ahead of us in the
		 * run queue, so as we are stopping, it should either
		 * start up immediatly, or at least before us if
		 * we release our slot.
		 */
		ku = td->td_upcall;
		ku->ku_owner = NULL;
		td->td_upcall = NULL;
		td->td_pflags &= ~TDP_CAN_UNBIND;
		td2 = thread_schedule_upcall(td, ku);
		setrunqueue(td2, SRQ_YIELDING);
	}
}

/*
 * Setup done on the thread when it enters the kernel.
 */
void
thread_user_enter(struct thread *td)
{
	struct ksegrp *kg;
	struct kse_upcall *ku;
	struct kse_thr_mailbox *tmbx;
	uint32_t flags;

	if (!(td->td_pflags & TDP_SA))
		return;

	/*
	 * If we are doing a syscall in a KSE environment,
	 * note where our mailbox is.
	 */

	kg = td->td_ksegrp;
	ku = td->td_upcall;

	KASSERT(ku != NULL, ("no upcall owned"));
	KASSERT(ku->ku_owner == td, ("wrong owner"));
	KASSERT(!TD_CAN_UNBIND(td), ("can unbind"));

	if (td->td_standin == NULL)
		thread_alloc_spare(td);
	ku->ku_mflags = fuword32((void *)&ku->ku_mailbox->km_flags);
	tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread);
	if ((tmbx == NULL) || (tmbx == (void *)-1L) ||
	    (ku->ku_mflags & KMF_NOUPCALL)) {
		td->td_mailbox = NULL;
	} else {
		flags = fuword32(&tmbx->tm_flags);
		/*
		 * On some architectures, TP register points to thread
		 * mailbox but not points to kse mailbox, and userland
		 * can not atomically clear km_curthread, but can
		 * use TP register, and set TMF_NOUPCALL in thread
		 * flag	to indicate a critical region.
		 */
		if (flags & TMF_NOUPCALL) {
			td->td_mailbox = NULL;
		} else {
			td->td_mailbox = tmbx;
			td->td_pflags |= TDP_CAN_UNBIND;
			if (__predict_false(td->td_proc->p_flag & P_TRACED)) {
				flags = fuword32(&tmbx->tm_dflags);
				if (flags & TMDF_SUSPEND) {
					mtx_lock_spin(&sched_lock);
					/* fuword can block, check again */
					if (td->td_upcall)
						ku->ku_flags |= KUF_DOUPCALL;
					mtx_unlock_spin(&sched_lock);
				}
			}
		}
	}
}

/*
 * The extra work we go through if we are a threaded process when we
 * return to userland.
 *
 * If we are a KSE process and returning to user mode, check for
 * extra work to do before we return (e.g. for more syscalls
 * to complete first).  If we were in a critical section, we should
 * just return to let it finish. Same if we were in the UTS (in
 * which case the mailbox's context's busy indicator will be set).
 * The only traps we suport will have set the mailbox.
 * We will clear it here.
 */
int
thread_userret(struct thread *td, struct trapframe *frame)
{
	struct kse_upcall *ku;
	struct ksegrp *kg, *kg2;
	struct proc *p;
	struct timespec ts;
	int error = 0, upcalls, uts_crit;

	/* Nothing to do with bound thread */
	if (!(td->td_pflags & TDP_SA))
		return (0);

	/*
	 * Update stat clock count for userland
	 */
	if (td->td_mailbox != NULL) {
		thread_update_usr_ticks(td);
		uts_crit = 0;
	} else {
		uts_crit = 1;
	}

	p = td->td_proc;
	kg = td->td_ksegrp;
	ku = td->td_upcall;

	/*
	 * Optimisation:
	 * This thread has not started any upcall.
	 * If there is no work to report other than ourself,
	 * then it can return direct to userland.
	 */
	if (TD_CAN_UNBIND(td)) {
		td->td_pflags &= ~TDP_CAN_UNBIND;
		if ((td->td_flags & TDF_NEEDSIGCHK) == 0 &&
		    (kg->kg_completed == NULL) &&
		    (ku->ku_flags & KUF_DOUPCALL) == 0 &&
		    (kg->kg_upquantum && ticks < kg->kg_nextupcall)) {
			nanotime(&ts);
			error = copyout(&ts,
				(caddr_t)&ku->ku_mailbox->km_timeofday,
				sizeof(ts));
			td->td_mailbox = 0;
			ku->ku_mflags = 0;
			if (error)
				goto out;
			return (0);
		}
		thread_export_context(td, 0);
		/*
		 * There is something to report, and we own an upcall
		 * strucuture, we can go to userland.
		 * Turn ourself into an upcall thread.
		 */
		td->td_pflags |= TDP_UPCALLING;
	} else if (td->td_mailbox && (ku == NULL)) {
		thread_export_context(td, 1);
		PROC_LOCK(p);
		if (kg->kg_upsleeps)
			wakeup(&kg->kg_completed);
		mtx_lock_spin(&sched_lock);
		thread_stopped(p);
		thread_exit();
		/* NOTREACHED */
	}

	KASSERT(ku != NULL, ("upcall is NULL"));
	KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind"));

	if (p->p_numthreads > max_threads_per_proc) {
		max_threads_hits++;
		PROC_LOCK(p);
		mtx_lock_spin(&sched_lock);
		p->p_maxthrwaits++;
		while (p->p_numthreads > max_threads_per_proc) {
			upcalls = 0;
			FOREACH_KSEGRP_IN_PROC(p, kg2) {
				if (kg2->kg_numupcalls == 0)
					upcalls++;
				else
					upcalls += kg2->kg_numupcalls;
			}
			if (upcalls >= max_threads_per_proc)
				break;
			mtx_unlock_spin(&sched_lock);
			if (msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH,
			    "maxthreads", 0)) {
				mtx_lock_spin(&sched_lock);
				break;
			} else {
				mtx_lock_spin(&sched_lock);
			}
		}
		p->p_maxthrwaits--;
		mtx_unlock_spin(&sched_lock);
		PROC_UNLOCK(p);
	}

	if (td->td_pflags & TDP_UPCALLING) {
		uts_crit = 0;
		kg->kg_nextupcall = ticks+kg->kg_upquantum;
		/*
		 * There is no more work to do and we are going to ride
		 * this thread up to userland as an upcall.
		 * Do the last parts of the setup needed for the upcall.
		 */
		CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)",
		    td, td->td_proc->p_pid, td->td_proc->p_comm);

		td->td_pflags &= ~TDP_UPCALLING;
		if (ku->ku_flags & KUF_DOUPCALL) {
			mtx_lock_spin(&sched_lock);
			ku->ku_flags &= ~KUF_DOUPCALL;
			mtx_unlock_spin(&sched_lock);
		}
		/*
		 * Set user context to the UTS
		 */
		if (!(ku->ku_mflags & KMF_NOUPCALL)) {
			cpu_set_upcall_kse(td, ku);
			if (p->p_flag & P_TRACED)
				ptrace_clear_single_step(td);
			error = suword32(&ku->ku_mailbox->km_lwp,
					td->td_tid);
			if (error)
				goto out;
			error = suword(&ku->ku_mailbox->km_curthread, 0);
			if (error)
				goto out;
		}

		/*
		 * Unhook the list of completed threads.
		 * anything that completes after this gets to
		 * come in next time.
		 * Put the list of completed thread mailboxes on
		 * this KSE's mailbox.
		 */
		if (!(ku->ku_mflags & KMF_NOCOMPLETED) &&
		    (error = thread_link_mboxes(kg, ku)) != 0)
			goto out;
	}
	if (!uts_crit) {
		nanotime(&ts);
		error = copyout(&ts, &ku->ku_mailbox->km_timeofday, sizeof(ts));
	}

out:
	if (error) {
		/*
		 * Things are going to be so screwed we should just kill
		 * the process.
		 * how do we do that?
		 */
		PROC_LOCK(td->td_proc);
		psignal(td->td_proc, SIGSEGV);
		PROC_UNLOCK(td->td_proc);
	}

	ku->ku_mflags = 0;
	td->td_mailbox = NULL;
	td->td_usticks = 0;
	return (error);	/* go sync */
}

int
thread_upcall_check(struct thread *td)
{
	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
	if (td->td_kflags & TDK_WAKEUP)
		return (1);
	else
		return (0);
}

/*
 * called after ptrace resumed a process, force all
 * virtual CPUs to schedule upcall for SA process,
 * because debugger may have changed something in userland,
 * we should notice UTS as soon as possible.
 */
void
thread_continued(struct proc *p)
{
	struct ksegrp *kg;
	struct kse_upcall *ku;
	struct thread *td;

	PROC_LOCK_ASSERT(p, MA_OWNED);
	mtx_assert(&sched_lock, MA_OWNED);

	if (!(p->p_flag & P_SA))
		return;

	if (p->p_flag & P_TRACED) {
		FOREACH_KSEGRP_IN_PROC(p, kg) {
			td = TAILQ_FIRST(&kg->kg_threads);
			if (td == NULL)
				continue;
			/* not a SA group, nothing to do */
			if (!(td->td_pflags & TDP_SA))
				continue;
			FOREACH_UPCALL_IN_GROUP(kg, ku) {
				ku->ku_flags |= KUF_DOUPCALL;
				wakeup(&kg->kg_completed);
				if (TD_IS_SUSPENDED(ku->ku_owner)) {
					thread_unsuspend_one(ku->ku_owner);
				}	
			}
		}
	}
}
OpenPOWER on IntegriCloud