summaryrefslogtreecommitdiffstats
path: root/sys/ia64/ia64/machdep.c
blob: 814517aef6c5dd1dcd0487c9e3eb4e8b5b39f061 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
/*-
 * Copyright (c) 2003,2004 Marcel Moolenaar
 * Copyright (c) 2000,2001 Doug Rabson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_compat.h"
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include "opt_sched.h"
#include "opt_xtrace.h"

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/eventhandler.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/msgbuf.h>
#include <sys/pcpu.h>
#include <sys/ptrace.h>
#include <sys/random.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/syscall.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>
#include <sys/uio.h>
#include <sys/uuid.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>

#include <ddb/ddb.h>

#include <net/netisr.h>

#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>

#include <machine/bootinfo.h>
#include <machine/cpu.h>
#include <machine/efi.h>
#include <machine/elf.h>
#include <machine/fpu.h>
#include <machine/intr.h>
#include <machine/kdb.h>
#include <machine/mca.h>
#include <machine/md_var.h>
#include <machine/pal.h>
#include <machine/pcb.h>
#include <machine/reg.h>
#include <machine/sal.h>
#include <machine/sigframe.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#include <machine/unwind.h>
#include <machine/vmparam.h>

/*
 * For atomicity reasons, we demand that pc_curthread is the first
 * field in the struct pcpu. It allows us to read the pointer with
 * a single atomic instruction:
 *	ld8 %curthread = [r13]
 * Otherwise we would first have to calculate the load address and
 * store the result in a temporary register and that for the load:
 *	add %temp = %offsetof(struct pcpu), r13
 *	ld8 %curthread = [%temp]
 * A context switch inbetween the add and the ld8 could have the
 * thread migrate to a different core. In that case,  %curthread
 * would be the thread running on the original core and not actually
 * the current thread.
 */
CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);

static SYSCTL_NODE(_hw, OID_AUTO, freq, CTLFLAG_RD, 0, "");
static SYSCTL_NODE(_machdep, OID_AUTO, cpu, CTLFLAG_RD, 0, "");

static u_int bus_freq;
SYSCTL_UINT(_hw_freq, OID_AUTO, bus, CTLFLAG_RD, &bus_freq, 0,
    "Bus clock frequency");

static u_int cpu_freq;
SYSCTL_UINT(_hw_freq, OID_AUTO, cpu, CTLFLAG_RD, &cpu_freq, 0,
    "CPU clock frequency");

static u_int itc_freq;
SYSCTL_UINT(_hw_freq, OID_AUTO, itc, CTLFLAG_RD, &itc_freq, 0,
    "ITC frequency");

int cold = 1;

struct bootinfo *bootinfo;

struct pcpu pcpu0;

extern u_int64_t kernel_text[], _end[];

extern u_int64_t ia64_gateway_page[];
extern u_int64_t break_sigtramp[];
extern u_int64_t epc_sigtramp[];

struct fpswa_iface *fpswa_iface;

vm_size_t ia64_pal_size;
vm_paddr_t ia64_pal_base;
vm_offset_t ia64_port_base;

u_int64_t ia64_lapic_addr = PAL_PIB_DEFAULT_ADDR;

struct ia64_pib *ia64_pib;

static int ia64_sync_icache_needed;

char machine[] = MACHINE;
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");

static char cpu_model[64];
SYSCTL_STRING(_hw, HW_MODEL, model, CTLFLAG_RD, cpu_model, 0,
    "The CPU model name");

static char cpu_family[64];
SYSCTL_STRING(_hw, OID_AUTO, family, CTLFLAG_RD, cpu_family, 0,
    "The CPU family name");

#ifdef DDB
extern vm_offset_t ksym_start, ksym_end;
#endif

struct msgbuf *msgbufp = NULL;

/* Other subsystems (e.g., ACPI) can hook this later. */
void (*cpu_idle_hook)(sbintime_t) = NULL;

struct kva_md_info kmi;

static void
identifycpu(void)
{
	char vendor[17];
	char *family_name, *model_name;
	u_int64_t features, tmp;
	int number, revision, model, family, archrev;

	/*
	 * Assumes little-endian.
	 */
	*(u_int64_t *) &vendor[0] = ia64_get_cpuid(0);
	*(u_int64_t *) &vendor[8] = ia64_get_cpuid(1);
	vendor[16] = '\0';

	tmp = ia64_get_cpuid(3);
	number = (tmp >> 0) & 0xff;
	revision = (tmp >> 8) & 0xff;
	model = (tmp >> 16) & 0xff;
	family = (tmp >> 24) & 0xff;
	archrev = (tmp >> 32) & 0xff;

	family_name = model_name = "unknown";
	switch (family) {
	case 0x07:
		family_name = "Itanium";
		model_name = "Merced";
		break;
	case 0x1f:
		family_name = "Itanium 2";
		switch (model) {
		case 0x00:
			model_name = "McKinley";
			break;
		case 0x01:
			/*
			 * Deerfield is a low-voltage variant based on the
			 * Madison core. We need circumstantial evidence
			 * (i.e. the clock frequency) to identify those.
			 * Allow for roughly 1% error margin.
			 */
			if (cpu_freq > 990 && cpu_freq < 1010)
				model_name = "Deerfield";
			else
				model_name = "Madison";
			break;
		case 0x02:
			model_name = "Madison II";
			break;
		}
		break;
	case 0x20:
		ia64_sync_icache_needed = 1;

		family_name = "Itanium 2";
		switch (model) {
		case 0x00:
			model_name = "Montecito";
			break;
		case 0x01:
			model_name = "Montvale";
			break;
		}
		break;
	}
	snprintf(cpu_family, sizeof(cpu_family), "%s", family_name);
	snprintf(cpu_model, sizeof(cpu_model), "%s", model_name);

	features = ia64_get_cpuid(4);

	printf("CPU: %s (", model_name);
	if (cpu_freq)
		printf("%u MHz ", cpu_freq);
	printf("%s)\n", family_name);
	printf("  Origin = \"%s\"  Revision = %d\n", vendor, revision);
	printf("  Features = 0x%b\n", (u_int32_t) features,
	    "\020"
	    "\001LB"	/* long branch (brl) instruction. */
	    "\002SD"	/* Spontaneous deferral. */
	    "\003AO"	/* 16-byte atomic operations (ld, st, cmpxchg). */ );
}

static void
cpu_startup(void *dummy)
{
	char nodename[16];
	struct pcpu *pc;
	struct pcpu_stats *pcs;

	/*
	 * Good {morning,afternoon,evening,night}.
	 */
	identifycpu();

#ifdef PERFMON
	perfmon_init();
#endif
	printf("real memory  = %ld (%ld MB)\n", ptoa(realmem),
	    ptoa(realmem) / 1048576);

	vm_ksubmap_init(&kmi);

	printf("avail memory = %ld (%ld MB)\n", ptoa(cnt.v_free_count),
	    ptoa(cnt.v_free_count) / 1048576);
 
	if (fpswa_iface == NULL)
		printf("Warning: no FPSWA package supplied\n");
	else
		printf("FPSWA Revision = 0x%lx, Entry = %p\n",
		    (long)fpswa_iface->if_rev, (void *)fpswa_iface->if_fpswa);

	/*
	 * Set up buffers, so they can be used to read disk labels.
	 */
	bufinit();
	vm_pager_bufferinit();

	/*
	 * Traverse the MADT to discover IOSAPIC and Local SAPIC
	 * information.
	 */
	ia64_probe_sapics();
	ia64_pib = pmap_mapdev(ia64_lapic_addr, sizeof(*ia64_pib));

	ia64_mca_init();

	/*
	 * Create sysctl tree for per-CPU information.
	 */
	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
		snprintf(nodename, sizeof(nodename), "%u", pc->pc_cpuid);
		sysctl_ctx_init(&pc->pc_md.sysctl_ctx);
		pc->pc_md.sysctl_tree = SYSCTL_ADD_NODE(&pc->pc_md.sysctl_ctx,
		    SYSCTL_STATIC_CHILDREN(_machdep_cpu), OID_AUTO, nodename,
		    CTLFLAG_RD, NULL, "");
		if (pc->pc_md.sysctl_tree == NULL)
			continue;

		pcs = &pc->pc_md.stats;

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nasts", CTLFLAG_RD, &pcs->pcs_nasts,
		    "Number of IPI_AST interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nclks", CTLFLAG_RD, &pcs->pcs_nclks,
		    "Number of clock interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nextints", CTLFLAG_RD, &pcs->pcs_nextints,
		    "Number of ExtINT interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nhardclocks", CTLFLAG_RD, &pcs->pcs_nhardclocks,
		    "Number of IPI_HARDCLOCK interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nhighfps", CTLFLAG_RD, &pcs->pcs_nhighfps,
		    "Number of IPI_HIGH_FP interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nhwints", CTLFLAG_RD, &pcs->pcs_nhwints,
		    "Number of hardware (device) interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "npreempts", CTLFLAG_RD, &pcs->pcs_npreempts,
		    "Number of IPI_PREEMPT interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nrdvs", CTLFLAG_RD, &pcs->pcs_nrdvs,
		    "Number of IPI_RENDEZVOUS interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nstops", CTLFLAG_RD, &pcs->pcs_nstops,
		    "Number of IPI_STOP interrupts");

		SYSCTL_ADD_ULONG(&pc->pc_md.sysctl_ctx,
		    SYSCTL_CHILDREN(pc->pc_md.sysctl_tree), OID_AUTO,
		    "nstrays", CTLFLAG_RD, &pcs->pcs_nstrays,
		    "Number of stray interrupts");
	}
}
SYSINIT(cpu_startup, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);

void
cpu_flush_dcache(void *ptr, size_t len)
{
	vm_offset_t lim, va;

	va = (uintptr_t)ptr & ~31;
	lim = (uintptr_t)ptr + len;
	while (va < lim) {
		ia64_fc(va);
		va += 32;
	}

	ia64_srlz_d();
}

/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{

	if (pcpu_find(cpu_id) == NULL || rate == NULL)
		return (EINVAL);
	*rate = (u_long)cpu_freq * 1000000ul;
	return (0);
}

void
cpu_halt()
{

	efi_reset_system();
}

void
cpu_idle(int busy)
{
	register_t ie;
	sbintime_t sbt = -1;

	if (!busy) {
		critical_enter();
		sbt = cpu_idleclock();
	}

	ie = intr_disable();
	KASSERT(ie != 0, ("%s called with interrupts disabled\n", __func__));

	if (sched_runnable())
		ia64_enable_intr();
	else if (cpu_idle_hook != NULL) {
		(*cpu_idle_hook)(sbt);
		/* The hook must enable interrupts! */
	} else {
		ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0);
		ia64_enable_intr();
	}

	if (!busy) {
		cpu_activeclock();
		critical_exit();
	}
}

int
cpu_idle_wakeup(int cpu)
{

	return (0);
}

void
cpu_reset()
{

	efi_reset_system();
}

void
cpu_switch(struct thread *old, struct thread *new, struct mtx *mtx)
{
	struct pcb *oldpcb, *newpcb;

	oldpcb = old->td_pcb;
#ifdef COMPAT_FREEBSD32
	ia32_savectx(oldpcb);
#endif
	if (PCPU_GET(fpcurthread) == old)
		old->td_frame->tf_special.psr |= IA64_PSR_DFH;
	if (!savectx(oldpcb)) {
		newpcb = new->td_pcb;
		oldpcb->pcb_current_pmap =
		    pmap_switch(newpcb->pcb_current_pmap);

		atomic_store_rel_ptr(&old->td_lock, mtx);

#if defined(SCHED_ULE) && defined(SMP)
		while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
			cpu_spinwait();
#endif

		PCPU_SET(curthread, new);

#ifdef COMPAT_FREEBSD32
		ia32_restorectx(newpcb);
#endif

		if (PCPU_GET(fpcurthread) == new)
			new->td_frame->tf_special.psr &= ~IA64_PSR_DFH;
		restorectx(newpcb);
		/* We should not get here. */
		panic("cpu_switch: restorectx() returned");
		/* NOTREACHED */
	}
}

void
cpu_throw(struct thread *old __unused, struct thread *new)
{
	struct pcb *newpcb;

	newpcb = new->td_pcb;
	(void)pmap_switch(newpcb->pcb_current_pmap);

#if defined(SCHED_ULE) && defined(SMP)
	while (atomic_load_acq_ptr(&new->td_lock) == &blocked_lock)
		cpu_spinwait();
#endif

	PCPU_SET(curthread, new);

#ifdef COMPAT_FREEBSD32
	ia32_restorectx(newpcb);
#endif

	restorectx(newpcb);
	/* We should not get here. */
	panic("cpu_throw: restorectx() returned");
	/* NOTREACHED */
}

void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{

	/*
	 * Set pc_acpi_id to "uninitialized".
	 * See sys/dev/acpica/acpi_cpu.c
	 */
	pcpu->pc_acpi_id = 0xffffffff;
}

void
cpu_pcpu_setup(struct pcpu *pc, u_int acpi_id, u_int sapic_id)
{

	pc->pc_acpi_id = acpi_id;
	pc->pc_md.lid = IA64_LID_SET_SAPIC_ID(sapic_id);
}
 
void
spinlock_enter(void)
{
	struct thread *td;
	int intr;

	td = curthread;
	if (td->td_md.md_spinlock_count == 0) {
		intr = intr_disable();
		td->td_md.md_spinlock_count = 1;
		td->td_md.md_saved_intr = intr;
	} else
		td->td_md.md_spinlock_count++;
	critical_enter();
}

void
spinlock_exit(void)
{
	struct thread *td;
	int intr;

	td = curthread;
	critical_exit();
	intr = td->td_md.md_saved_intr;
	td->td_md.md_spinlock_count--;
	if (td->td_md.md_spinlock_count == 0)
		intr_restore(intr);
}

void
kdb_cpu_trap(int vector, int code __unused)
{

#ifdef XTRACE
	ia64_xtrace_stop();
#endif
	__asm __volatile("flushrs;;");

	/* Restart after the break instruction. */
	if (vector == IA64_VEC_BREAK &&
	    kdb_frame->tf_special.ifa == IA64_FIXED_BREAK)
		kdb_frame->tf_special.psr += IA64_PSR_RI_1;
}

void
map_vhpt(uintptr_t vhpt)
{
	pt_entry_t pte;
	uint64_t psr;

	pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
	    PTE_PL_KERN | PTE_AR_RW;
	pte |= vhpt & PTE_PPN_MASK;

	__asm __volatile("ptr.d %0,%1" :: "r"(vhpt),
	    "r"(pmap_vhpt_log2size << 2));

	__asm __volatile("mov   %0=psr" : "=r"(psr));
	__asm __volatile("rsm   psr.ic|psr.i");
	ia64_srlz_i();
	ia64_set_ifa(vhpt);
	ia64_set_itir(pmap_vhpt_log2size << 2);
	ia64_srlz_d();
	__asm __volatile("itr.d dtr[%0]=%1" :: "r"(3), "r"(pte));
	__asm __volatile("mov   psr.l=%0" :: "r" (psr));
	ia64_srlz_i();
}

void
map_pal_code(void)
{
	pt_entry_t pte;
	vm_offset_t va;
	vm_size_t sz;
	uint64_t psr;
	u_int shft;

	if (ia64_pal_size == 0)
		return;

	va = IA64_PHYS_TO_RR7(ia64_pal_base);

	sz = ia64_pal_size;
	shft = 0;
	while (sz > 1) {
		shft++;
		sz >>= 1;
	}

	pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
	    PTE_PL_KERN | PTE_AR_RWX;
	pte |= ia64_pal_base & PTE_PPN_MASK;

	__asm __volatile("ptr.d %0,%1; ptr.i %0,%1" :: "r"(va), "r"(shft<<2));

	__asm __volatile("mov	%0=psr" : "=r"(psr));
	__asm __volatile("rsm	psr.ic|psr.i");
	ia64_srlz_i();
	ia64_set_ifa(va);
	ia64_set_itir(shft << 2);
	ia64_srlz_d();
	__asm __volatile("itr.d	dtr[%0]=%1" :: "r"(4), "r"(pte));
	ia64_srlz_d();
	__asm __volatile("itr.i	itr[%0]=%1" :: "r"(1), "r"(pte));
	__asm __volatile("mov	psr.l=%0" :: "r" (psr));
	ia64_srlz_i();
}

void
map_gateway_page(void)
{
	pt_entry_t pte;
	uint64_t psr;

	pte = PTE_PRESENT | PTE_MA_WB | PTE_ACCESSED | PTE_DIRTY |
	    PTE_PL_KERN | PTE_AR_X_RX;
	pte |= ia64_tpa((uint64_t)ia64_gateway_page) & PTE_PPN_MASK;

	__asm __volatile("ptr.d %0,%1; ptr.i %0,%1" ::
	    "r"(VM_MAXUSER_ADDRESS), "r"(PAGE_SHIFT << 2));

	__asm __volatile("mov	%0=psr" : "=r"(psr));
	__asm __volatile("rsm	psr.ic|psr.i");
	ia64_srlz_i();
	ia64_set_ifa(VM_MAXUSER_ADDRESS);
	ia64_set_itir(PAGE_SHIFT << 2);
	ia64_srlz_d();
	__asm __volatile("itr.d	dtr[%0]=%1" :: "r"(5), "r"(pte));
	ia64_srlz_d();
	__asm __volatile("itr.i	itr[%0]=%1" :: "r"(2), "r"(pte));
	__asm __volatile("mov	psr.l=%0" :: "r" (psr));
	ia64_srlz_i();

	/* Expose the mapping to userland in ar.k5 */
	ia64_set_k5(VM_MAXUSER_ADDRESS);
}

static u_int
freq_ratio(u_long base, u_long ratio)
{
	u_long f;

	f = (base * (ratio >> 32)) / (ratio & 0xfffffffful);
	return ((f + 500000) / 1000000);
}

static void
calculate_frequencies(void)
{
	struct ia64_sal_result sal;
	struct ia64_pal_result pal;
	register_t ie;

	ie = intr_disable();
	sal = ia64_sal_entry(SAL_FREQ_BASE, 0, 0, 0, 0, 0, 0, 0);
	pal = ia64_call_pal_static(PAL_FREQ_RATIOS, 0, 0, 0);
	intr_restore(ie);

	if (sal.sal_status == 0 && pal.pal_status == 0) {
		if (bootverbose) {
			printf("Platform clock frequency %ld Hz\n",
			       sal.sal_result[0]);
			printf("Processor ratio %ld/%ld, Bus ratio %ld/%ld, "
			       "ITC ratio %ld/%ld\n",
			       pal.pal_result[0] >> 32,
			       pal.pal_result[0] & ((1L << 32) - 1),
			       pal.pal_result[1] >> 32,
			       pal.pal_result[1] & ((1L << 32) - 1),
			       pal.pal_result[2] >> 32,
			       pal.pal_result[2] & ((1L << 32) - 1));
		}
		cpu_freq = freq_ratio(sal.sal_result[0], pal.pal_result[0]);
		bus_freq = freq_ratio(sal.sal_result[0], pal.pal_result[1]);
		itc_freq = freq_ratio(sal.sal_result[0], pal.pal_result[2]);
	}
}

struct ia64_init_return
ia64_init(void)
{
	struct ia64_init_return ret;
	struct efi_md *md;
	pt_entry_t *pbvm_pgtbl_ent, *pbvm_pgtbl_lim;
	char *p;
	vm_size_t mdlen;
	int metadata_missing;

	/*
	 * NO OUTPUT ALLOWED UNTIL FURTHER NOTICE.
	 */

	ia64_set_fpsr(IA64_FPSR_DEFAULT);

	/*
	 * Region 6 is direct mapped UC and region 7 is direct mapped
	 * WC. The details of this is controlled by the Alt {I,D}TLB
	 * handlers. Here we just make sure that they have the largest
	 * possible page size to minimise TLB usage.
	 */
	ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (LOG2_ID_PAGE_SIZE << 2));
	ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (LOG2_ID_PAGE_SIZE << 2));
	ia64_srlz_d();

	/* Initialize/setup physical memory datastructures */
	ia64_physmem_init();

	/*
	 * Process the memory map. This gives us the PAL locations,
	 * the I/O port base address, the available memory regions
	 * for initializing the physical memory map.
	 */
	for (md = efi_md_first(); md != NULL; md = efi_md_next(md)) {
		mdlen = md->md_pages * EFI_PAGE_SIZE;
		switch (md->md_type) {
		case EFI_MD_TYPE_IOPORT:
			ia64_port_base = (uintptr_t)pmap_mapdev(md->md_phys,
			    mdlen);
			break;
		case EFI_MD_TYPE_PALCODE:
			ia64_pal_base = md->md_phys;
			ia64_pal_size = mdlen;
			/*FALLTHROUGH*/
		case EFI_MD_TYPE_BAD:
		case EFI_MD_TYPE_FIRMWARE:
		case EFI_MD_TYPE_RECLAIM:
		case EFI_MD_TYPE_RT_CODE:
		case EFI_MD_TYPE_RT_DATA:
			/* Don't use these memory regions. */
			ia64_physmem_track(md->md_phys, mdlen);
			break;
		case EFI_MD_TYPE_BS_CODE:
		case EFI_MD_TYPE_BS_DATA:
		case EFI_MD_TYPE_CODE:
		case EFI_MD_TYPE_DATA:
		case EFI_MD_TYPE_FREE:
			/* These are ok to use. */
			ia64_physmem_add(md->md_phys, mdlen);
			break;
		}
	}

	/*
	 * Remove the PBVM and its page table from phys_avail. The loader
	 * passes the physical address of the page table to us. The virtual
	 * address of the page table is fixed.
	 * Track and the PBVM limit for later use.
	 */
	ia64_physmem_delete(bootinfo->bi_pbvm_pgtbl, bootinfo->bi_pbvm_pgtblsz);
	pbvm_pgtbl_ent = (void *)IA64_PBVM_PGTBL;
	pbvm_pgtbl_lim = (void *)(IA64_PBVM_PGTBL + bootinfo->bi_pbvm_pgtblsz);
	while (pbvm_pgtbl_ent < pbvm_pgtbl_lim) {
		if ((*pbvm_pgtbl_ent & PTE_PRESENT) == 0)
			break;
		ia64_physmem_delete(*pbvm_pgtbl_ent & PTE_PPN_MASK,
		    IA64_PBVM_PAGE_SIZE);
		pbvm_pgtbl_ent++;
	}

	/* Finalize physical memory datastructures */
	ia64_physmem_fini();

	metadata_missing = 0;
	if (bootinfo->bi_modulep)
		preload_metadata = (caddr_t)bootinfo->bi_modulep;
	else
		metadata_missing = 1;

	if (envmode == 0 && bootinfo->bi_envp)
		kern_envp = (caddr_t)bootinfo->bi_envp;
	else
		kern_envp = static_env;

	/*
	 * Look at arguments passed to us and compute boothowto.
	 */
	boothowto = bootinfo->bi_boothowto;

	if (boothowto & RB_VERBOSE)
		bootverbose = 1;

	/*
	 * Wire things up so we can call the firmware.
	 */
	map_pal_code();
	efi_boot_minimal(bootinfo->bi_systab);
	ia64_xiv_init();
	ia64_sal_init();
	calculate_frequencies();

	set_cputicker(ia64_get_itc, (u_long)itc_freq * 1000000, 0);

	/*
	 * Setup the PCPU data for the bootstrap processor. It is needed
	 * by printf(). Also, since printf() has critical sections, we
	 * need to initialize at least pc_curthread.
	 */
	pcpup = &pcpu0;
	ia64_set_k4((u_int64_t)pcpup);
	pcpu_init(pcpup, 0, sizeof(pcpu0));
	dpcpu_init(ia64_physmem_alloc(DPCPU_SIZE, PAGE_SIZE), 0);
	cpu_pcpu_setup(pcpup, ~0U, ia64_get_lid());
	PCPU_SET(curthread, &thread0);

	/*
	 * Initialize the console before we print anything out.
	 */
	cninit();

	/* OUTPUT NOW ALLOWED */

	if (metadata_missing)
		printf("WARNING: loader(8) metadata is missing!\n");

	/* Get FPSWA interface */
	fpswa_iface = (bootinfo->bi_fpswa == 0) ? NULL :
	    (struct fpswa_iface *)IA64_PHYS_TO_RR7(bootinfo->bi_fpswa);

	/* Init basic tunables, including hz */
	init_param1();

	p = getenv("kernelname");
	if (p != NULL) {
		strlcpy(kernelname, p, sizeof(kernelname));
		freeenv(p);
	}

	init_param2(physmem);

	/*
	 * Initialize error message buffer (at end of core).
	 */
	msgbufp = ia64_physmem_alloc(msgbufsize, PAGE_SIZE);
	msgbufinit(msgbufp, msgbufsize);

	proc_linkup0(&proc0, &thread0);
	/*
	 * Init mapping for kernel stack for proc 0
	 */
	p = ia64_physmem_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
	thread0.td_kstack = (uintptr_t)p;
	thread0.td_kstack_pages = KSTACK_PAGES;

	mutex_init();

	/*
	 * Initialize the rest of proc 0's PCB.
	 *
	 * Set the kernel sp, reserving space for an (empty) trapframe,
	 * and make proc0's trapframe pointer point to it for sanity.
	 * Initialise proc0's backing store to start after u area.
	 */
	cpu_thread_alloc(&thread0);
	thread0.td_frame->tf_flags = FRAME_SYSCALL;
	thread0.td_pcb->pcb_special.sp =
	    (u_int64_t)thread0.td_frame - 16;
	thread0.td_pcb->pcb_special.bspstore = thread0.td_kstack;

	/*
	 * Initialize the virtual memory system.
	 */
	pmap_bootstrap();

#ifdef XTRACE
	ia64_xtrace_init_bsp();
#endif

	/*
	 * Initialize debuggers, and break into them if appropriate.
	 */
#ifdef DDB
	ksym_start = bootinfo->bi_symtab;
	ksym_end = bootinfo->bi_esymtab;
#endif

	kdb_init();

#ifdef KDB
	if (boothowto & RB_KDB)
		kdb_enter(KDB_WHY_BOOTFLAGS,
		    "Boot flags requested debugger\n");
#endif

	ia64_set_tpr(0);
	ia64_srlz_d();

	ret.bspstore = thread0.td_pcb->pcb_special.bspstore;
	ret.sp = thread0.td_pcb->pcb_special.sp;
	return (ret);
}

uint64_t
ia64_get_hcdp(void)
{

	return (bootinfo->bi_hcdp);
}

void
bzero(void *buf, size_t len)
{
	caddr_t p = buf;

	while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
		*p++ = 0;
		len--;
	}
	while (len >= sizeof(u_long) * 8) {
		*(u_long*) p = 0;
		*((u_long*) p + 1) = 0;
		*((u_long*) p + 2) = 0;
		*((u_long*) p + 3) = 0;
		len -= sizeof(u_long) * 8;
		*((u_long*) p + 4) = 0;
		*((u_long*) p + 5) = 0;
		*((u_long*) p + 6) = 0;
		*((u_long*) p + 7) = 0;
		p += sizeof(u_long) * 8;
	}
	while (len >= sizeof(u_long)) {
		*(u_long*) p = 0;
		len -= sizeof(u_long);
		p += sizeof(u_long);
	}
	while (len) {
		*p++ = 0;
		len--;
	}
}

u_int
ia64_itc_freq(void)
{

	return (itc_freq);
}

void
DELAY(int n)
{
	u_int64_t start, end, now;

	sched_pin();

	start = ia64_get_itc();
	end = start + itc_freq * n;
	/* printf("DELAY from 0x%lx to 0x%lx\n", start, end); */
	do {
		now = ia64_get_itc();
	} while (now < end || (now > start && end < start));

	sched_unpin();
}

/*
 * Send an interrupt (signal) to a process.
 */
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
	struct proc *p;
	struct thread *td;
	struct trapframe *tf;
	struct sigacts *psp;
	struct sigframe sf, *sfp;
	u_int64_t sbs, sp;
	int oonstack;
	int sig;
	u_long code;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	sig = ksi->ksi_signo;
	code = ksi->ksi_code;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);
	tf = td->td_frame;
	sp = tf->tf_special.sp;
	oonstack = sigonstack(sp);
	sbs = 0;

	/* save user context */
	bzero(&sf, sizeof(struct sigframe));
	sf.sf_uc.uc_sigmask = *mask;
	sf.sf_uc.uc_stack = td->td_sigstk;
	sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
	    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;

	/*
	 * Allocate and validate space for the signal handler
	 * context. Note that if the stack is in P0 space, the
	 * call to grow() is a nop, and the useracc() check
	 * will fail if the process has not already allocated
	 * the space with a `brk'.
	 */
	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		sbs = (u_int64_t)td->td_sigstk.ss_sp;
		sbs = (sbs + 15) & ~15;
		sfp = (struct sigframe *)(sbs + td->td_sigstk.ss_size);
#if defined(COMPAT_43)
		td->td_sigstk.ss_flags |= SS_ONSTACK;
#endif
	} else
		sfp = (struct sigframe *)sp;
	sfp = (struct sigframe *)((u_int64_t)(sfp - 1) & ~15);

	/* Fill in the siginfo structure for POSIX handlers. */
	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
		sf.sf_si = ksi->ksi_info;
		sf.sf_si.si_signo = sig;
		/*
		 * XXX this shouldn't be here after code in trap.c
		 * is fixed
		 */
		sf.sf_si.si_addr = (void*)tf->tf_special.ifa;
		code = (u_int64_t)&sfp->sf_si;
	}

	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(p);

	get_mcontext(td, &sf.sf_uc.uc_mcontext, 0);

	/* Copy the frame out to userland. */
	if (copyout(&sf, sfp, sizeof(sf)) != 0) {
		/*
		 * Process has trashed its stack; give it an illegal
		 * instruction to halt it in its tracks.
		 */
		PROC_LOCK(p);
		sigexit(td, SIGILL);
		return;
	}

	if ((tf->tf_flags & FRAME_SYSCALL) == 0) {
		tf->tf_special.psr &= ~IA64_PSR_RI;
		tf->tf_special.iip = ia64_get_k5() +
		    ((uint64_t)break_sigtramp - (uint64_t)ia64_gateway_page);
	} else
		tf->tf_special.iip = ia64_get_k5() +
		    ((uint64_t)epc_sigtramp - (uint64_t)ia64_gateway_page);

	/*
	 * Setup the trapframe to return to the signal trampoline. We pass
	 * information to the trampoline in the following registers:
	 *
	 *	gp	new backing store or NULL
	 *	r8	signal number
	 *	r9	signal code or siginfo pointer
	 *	r10	signal handler (function descriptor)
	 */
	tf->tf_special.sp = (u_int64_t)sfp - 16;
	tf->tf_special.gp = sbs;
	tf->tf_special.bspstore = sf.sf_uc.uc_mcontext.mc_special.bspstore;
	tf->tf_special.ndirty = 0;
	tf->tf_special.rnat = sf.sf_uc.uc_mcontext.mc_special.rnat;
	tf->tf_scratch.gr8 = sig;
	tf->tf_scratch.gr9 = code;
	tf->tf_scratch.gr10 = (u_int64_t)catcher;

	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);
}

/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * state to gain improper privileges.
 *
 * MPSAFE
 */
int
sys_sigreturn(struct thread *td,
	struct sigreturn_args /* {
		ucontext_t *sigcntxp;
	} */ *uap)
{
	ucontext_t uc;
	struct trapframe *tf;
	struct pcb *pcb;

	tf = td->td_frame;
	pcb = td->td_pcb;

	/*
	 * Fetch the entire context structure at once for speed.
	 * We don't use a normal argument to simplify RSE handling.
	 */
	if (copyin(uap->sigcntxp, (caddr_t)&uc, sizeof(uc)))
		return (EFAULT);

	set_mcontext(td, &uc.uc_mcontext);

#if defined(COMPAT_43)
	if (sigonstack(tf->tf_special.sp))
		td->td_sigstk.ss_flags |= SS_ONSTACK;
	else
		td->td_sigstk.ss_flags &= ~SS_ONSTACK;
#endif
	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);

	return (EJUSTRETURN);
}

#ifdef COMPAT_FREEBSD4
int
freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
{

	return sys_sigreturn(td, (struct sigreturn_args *)uap);
}
#endif

/*
 * Construct a PCB from a trapframe. This is called from kdb_trap() where
 * we want to start a backtrace from the function that caused us to enter
 * the debugger. We have the context in the trapframe, but base the trace
 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 * enough for a backtrace.
 */
void
makectx(struct trapframe *tf, struct pcb *pcb)
{

	pcb->pcb_special = tf->tf_special;
	pcb->pcb_special.__spare = ~0UL;	/* XXX see unwind.c */
	save_callee_saved(&pcb->pcb_preserved);
	save_callee_saved_fp(&pcb->pcb_preserved_fp);
}

int
ia64_flush_dirty(struct thread *td, struct _special *r)
{
	struct iovec iov;
	struct uio uio;
	uint64_t bspst, kstk, rnat;
	int error, locked;

	if (r->ndirty == 0)
		return (0);

	kstk = td->td_kstack + (r->bspstore & 0x1ffUL);
	if (td == curthread) {
		__asm __volatile("mov	ar.rsc=0;;");
		__asm __volatile("mov	%0=ar.bspstore" : "=r"(bspst));
		/* Make sure we have all the user registers written out. */
		if (bspst - kstk < r->ndirty) {
			__asm __volatile("flushrs;;");
			__asm __volatile("mov	%0=ar.bspstore" : "=r"(bspst));
		}
		__asm __volatile("mov	%0=ar.rnat;;" : "=r"(rnat));
		__asm __volatile("mov	ar.rsc=3");
		error = copyout((void*)kstk, (void*)r->bspstore, r->ndirty);
		kstk += r->ndirty;
		r->rnat = (bspst > kstk && (bspst & 0x1ffL) < (kstk & 0x1ffL))
		    ? *(uint64_t*)(kstk | 0x1f8L) : rnat;
	} else {
		locked = PROC_LOCKED(td->td_proc);
		if (!locked)
			PHOLD(td->td_proc);
		iov.iov_base = (void*)(uintptr_t)kstk;
		iov.iov_len = r->ndirty;
		uio.uio_iov = &iov;
		uio.uio_iovcnt = 1;
		uio.uio_offset = r->bspstore;
		uio.uio_resid = r->ndirty;
		uio.uio_segflg = UIO_SYSSPACE;
		uio.uio_rw = UIO_WRITE;
		uio.uio_td = td;
		error = proc_rwmem(td->td_proc, &uio);
		/*
		 * XXX proc_rwmem() doesn't currently return ENOSPC,
		 * so I think it can bogusly return 0. Neither do
		 * we allow short writes.
		 */
		if (uio.uio_resid != 0 && error == 0)
			error = ENOSPC;
		if (!locked)
			PRELE(td->td_proc);
	}

	r->bspstore += r->ndirty;
	r->ndirty = 0;
	return (error);
}

int
get_mcontext(struct thread *td, mcontext_t *mc, int flags)
{
	struct trapframe *tf;
	int error;

	tf = td->td_frame;
	bzero(mc, sizeof(*mc));
	mc->mc_special = tf->tf_special;
	error = ia64_flush_dirty(td, &mc->mc_special);
	if (tf->tf_flags & FRAME_SYSCALL) {
		mc->mc_flags |= _MC_FLAGS_SYSCALL_CONTEXT;
		mc->mc_scratch = tf->tf_scratch;
		if (flags & GET_MC_CLEAR_RET) {
			mc->mc_scratch.gr8 = 0;
			mc->mc_scratch.gr9 = 0;
			mc->mc_scratch.gr10 = 0;
			mc->mc_scratch.gr11 = 0;
		}
	} else {
		mc->mc_flags |= _MC_FLAGS_ASYNC_CONTEXT;
		mc->mc_scratch = tf->tf_scratch;
		mc->mc_scratch_fp = tf->tf_scratch_fp;
		/*
		 * XXX If the thread never used the high FP registers, we
		 * probably shouldn't waste time saving them.
		 */
		ia64_highfp_save(td);
		mc->mc_flags |= _MC_FLAGS_HIGHFP_VALID;
		mc->mc_high_fp = td->td_pcb->pcb_high_fp;
	}
	save_callee_saved(&mc->mc_preserved);
	save_callee_saved_fp(&mc->mc_preserved_fp);
	return (error);
}

int
set_mcontext(struct thread *td, const mcontext_t *mc)
{
	struct _special s;
	struct trapframe *tf;
	uint64_t psrmask;

	tf = td->td_frame;

	KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
	    ("Whoa there! We have more than 8KB of dirty registers!"));

	s = mc->mc_special;
	/*
	 * Only copy the user mask and the restart instruction bit from
	 * the new context.
	 */
	psrmask = IA64_PSR_BE | IA64_PSR_UP | IA64_PSR_AC | IA64_PSR_MFL |
	    IA64_PSR_MFH | IA64_PSR_RI;
	s.psr = (tf->tf_special.psr & ~psrmask) | (s.psr & psrmask);
	/* We don't have any dirty registers of the new context. */
	s.ndirty = 0;
	if (mc->mc_flags & _MC_FLAGS_ASYNC_CONTEXT) {
		/*
		 * We can get an async context passed to us while we
		 * entered the kernel through a syscall: sigreturn(2)
		 * takes contexts that could previously be the result of
		 * a trap or interrupt.
		 * Hence, we cannot assert that the trapframe is not
		 * a syscall frame, but we can assert that it's at
		 * least an expected syscall.
		 */
		if (tf->tf_flags & FRAME_SYSCALL) {
			KASSERT(tf->tf_scratch.gr15 == SYS_sigreturn, ("foo"));
			tf->tf_flags &= ~FRAME_SYSCALL;
		}
		tf->tf_scratch = mc->mc_scratch;
		tf->tf_scratch_fp = mc->mc_scratch_fp;
		if (mc->mc_flags & _MC_FLAGS_HIGHFP_VALID)
			td->td_pcb->pcb_high_fp = mc->mc_high_fp;
	} else {
		KASSERT((tf->tf_flags & FRAME_SYSCALL) != 0, ("foo"));
		if ((mc->mc_flags & _MC_FLAGS_SYSCALL_CONTEXT) == 0) {
			s.cfm = tf->tf_special.cfm;
			s.iip = tf->tf_special.iip;
			tf->tf_scratch.gr15 = 0;	/* Clear syscall nr. */
		} else
			tf->tf_scratch = mc->mc_scratch;
	}
	tf->tf_special = s;
	restore_callee_saved(&mc->mc_preserved);
	restore_callee_saved_fp(&mc->mc_preserved_fp);

	return (0);
}

/*
 * Clear registers on exec.
 */
void
exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
{
	struct trapframe *tf;
	uint64_t *ksttop, *kst;

	tf = td->td_frame;
	ksttop = (uint64_t*)(td->td_kstack + tf->tf_special.ndirty +
	    (tf->tf_special.bspstore & 0x1ffUL));

	/*
	 * We can ignore up to 8KB of dirty registers by masking off the
	 * lower 13 bits in exception_restore() or epc_syscall(). This
	 * should be enough for a couple of years, but if there are more
	 * than 8KB of dirty registers, we lose track of the bottom of
	 * the kernel stack. The solution is to copy the active part of
	 * the kernel stack down 1 page (or 2, but not more than that)
	 * so that we always have less than 8KB of dirty registers.
	 */
	KASSERT((tf->tf_special.ndirty & ~PAGE_MASK) == 0,
	    ("Whoa there! We have more than 8KB of dirty registers!"));

	bzero(&tf->tf_special, sizeof(tf->tf_special));
	if ((tf->tf_flags & FRAME_SYSCALL) == 0) {	/* break syscalls. */
		bzero(&tf->tf_scratch, sizeof(tf->tf_scratch));
		bzero(&tf->tf_scratch_fp, sizeof(tf->tf_scratch_fp));
		tf->tf_special.cfm = (1UL<<63) | (3UL<<7) | 3UL;
		tf->tf_special.bspstore = IA64_BACKINGSTORE;
		/*
		 * Copy the arguments onto the kernel register stack so that
		 * they get loaded by the loadrs instruction. Skip over the
		 * NaT collection points.
		 */
		kst = ksttop - 1;
		if (((uintptr_t)kst & 0x1ff) == 0x1f8)
			*kst-- = 0;
		*kst-- = 0;
		if (((uintptr_t)kst & 0x1ff) == 0x1f8)
			*kst-- = 0;
		*kst-- = imgp->ps_strings;
		if (((uintptr_t)kst & 0x1ff) == 0x1f8)
			*kst-- = 0;
		*kst = stack;
		tf->tf_special.ndirty = (ksttop - kst) << 3;
	} else {				/* epc syscalls (default). */
		tf->tf_special.cfm = (3UL<<62) | (3UL<<7) | 3UL;
		tf->tf_special.bspstore = IA64_BACKINGSTORE + 24;
		/*
		 * Write values for out0, out1 and out2 to the user's backing
		 * store and arrange for them to be restored into the user's
		 * initial register frame.
		 * Assumes that (bspstore & 0x1f8) < 0x1e0.
		 */
		suword((caddr_t)tf->tf_special.bspstore - 24, stack);
		suword((caddr_t)tf->tf_special.bspstore - 16, imgp->ps_strings);
		suword((caddr_t)tf->tf_special.bspstore -  8, 0);
	}

	tf->tf_special.iip = imgp->entry_addr;
	tf->tf_special.sp = (stack & ~15) - 16;
	tf->tf_special.rsc = 0xf;
	tf->tf_special.fpsr = IA64_FPSR_DEFAULT;
	tf->tf_special.psr = IA64_PSR_IC | IA64_PSR_I | IA64_PSR_IT |
	    IA64_PSR_DT | IA64_PSR_RT | IA64_PSR_DFH | IA64_PSR_BN |
	    IA64_PSR_CPL_USER;
}

int
ptrace_set_pc(struct thread *td, unsigned long addr)
{
	uint64_t slot;

	switch (addr & 0xFUL) {
	case 0:
		slot = IA64_PSR_RI_0;
		break;
	case 1:
		/* XXX we need to deal with MLX bundles here */
		slot = IA64_PSR_RI_1;
		break;
	case 2:
		slot = IA64_PSR_RI_2;
		break;
	default:
		return (EINVAL);
	}

	td->td_frame->tf_special.iip = addr & ~0x0FULL;
	td->td_frame->tf_special.psr =
	    (td->td_frame->tf_special.psr & ~IA64_PSR_RI) | slot;
	return (0);
}

int
ptrace_single_step(struct thread *td)
{
	struct trapframe *tf;

	/*
	 * There's no way to set single stepping when we're leaving the
	 * kernel through the EPC syscall path. The way we solve this is
	 * by enabling the lower-privilege trap so that we re-enter the
	 * kernel as soon as the privilege level changes. See trap.c for
	 * how we proceed from there.
	 */
	tf = td->td_frame;
	if (tf->tf_flags & FRAME_SYSCALL)
		tf->tf_special.psr |= IA64_PSR_LP;
	else
		tf->tf_special.psr |= IA64_PSR_SS;
	return (0);
}

int
ptrace_clear_single_step(struct thread *td)
{
	struct trapframe *tf;

	/*
	 * Clear any and all status bits we may use to implement single
	 * stepping.
	 */
	tf = td->td_frame;
	tf->tf_special.psr &= ~IA64_PSR_SS;
	tf->tf_special.psr &= ~IA64_PSR_LP;
	tf->tf_special.psr &= ~IA64_PSR_TB;
	return (0);
}

int
fill_regs(struct thread *td, struct reg *regs)
{
	struct trapframe *tf;

	tf = td->td_frame;
	regs->r_special = tf->tf_special;
	regs->r_scratch = tf->tf_scratch;
	save_callee_saved(&regs->r_preserved);
	return (0);
}

int
set_regs(struct thread *td, struct reg *regs)
{
	struct trapframe *tf;
	int error;

	tf = td->td_frame;
	error = ia64_flush_dirty(td, &tf->tf_special);
	if (!error) {
		tf->tf_special = regs->r_special;
		tf->tf_special.bspstore += tf->tf_special.ndirty;
		tf->tf_special.ndirty = 0;
		tf->tf_scratch = regs->r_scratch;
		restore_callee_saved(&regs->r_preserved);
	}
	return (error);
}

int
fill_dbregs(struct thread *td, struct dbreg *dbregs)
{

	return (ENOSYS);
}

int
set_dbregs(struct thread *td, struct dbreg *dbregs)
{

	return (ENOSYS);
}

int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
	struct trapframe *frame = td->td_frame;
	struct pcb *pcb = td->td_pcb;

	/* Save the high FP registers. */
	ia64_highfp_save(td);

	fpregs->fpr_scratch = frame->tf_scratch_fp;
	save_callee_saved_fp(&fpregs->fpr_preserved);
	fpregs->fpr_high = pcb->pcb_high_fp;
	return (0);
}

int
set_fpregs(struct thread *td, struct fpreg *fpregs)
{
	struct trapframe *frame = td->td_frame;
	struct pcb *pcb = td->td_pcb;

	/* Throw away the high FP registers (should be redundant). */
	ia64_highfp_drop(td);

	frame->tf_scratch_fp = fpregs->fpr_scratch;
	restore_callee_saved_fp(&fpregs->fpr_preserved);
	pcb->pcb_high_fp = fpregs->fpr_high;
	return (0);
}

void
ia64_sync_icache(vm_offset_t va, vm_offset_t sz)
{
	vm_offset_t lim;

	if (!ia64_sync_icache_needed)
		return;

	lim = va + sz;
	while (va < lim) {
		ia64_fc_i(va);
		va += 32;	/* XXX */
	}

	ia64_sync_i();
	ia64_srlz_i();
}
OpenPOWER on IntegriCloud