1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
/*
* random.c -- A strong random number generator
*
* $Id: random.c,v 1.2 1995/11/04 16:00:50 markm Exp $
*
* Version 0.92, last modified 21-Sep-95
*
* Copyright Theodore Ts'o, 1994, 1995. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/kernel.h>
#include <sys/uio.h>
#include <sys/systm.h>
#include <i386/isa/isa.h>
#include <i386/isa/icu.h>
#include <i386/isa/timerreg.h>
#include <i386/isa/isa_device.h>
#include <machine/random.h>
#define RANDPOOL 512
struct random_bucket {
int add_ptr;
int entropy_count;
int length;
int bit_length;
int delay_mix:1;
u_int8_t *pool;
};
struct timer_rand_state {
u_int32_t last_time;
int last_delta;
int nbits;
};
static struct random_bucket random_state;
static u_int32_t rand_pool_key[16];
static u_int8_t random_pool[RANDPOOL];
static u_int32_t random_counter[16];
static struct timer_rand_state keyboard_timer_state;
static struct timer_rand_state irq_timer_state[ICU_LEN];
inthand2_t add_interrupt_randomness;
u_int16_t interrupt_allowed = 0;
#ifndef MIN
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif
static void
flush_random(struct random_bucket *random_state)
{
random_state->add_ptr = 0;
random_state->bit_length = random_state->length * 8;
random_state->entropy_count = 0;
random_state->delay_mix = 0;
}
void
rand_initialize(void)
{
random_state.length = RANDPOOL;
random_state.pool = random_pool;
flush_random(&random_state);
#if 0
{
int irq;
long interrupts;
/* XXX Dreadful hack - should be replaced by something more elegant */
interrupts = RANDOM_INTERRUPTS;
for (irq = 0; irq < ICU_LEN; irq++) {
interrupt_allowed[irq] = interrupts & 0x0001;
interrupts >>= 1;
printf("Randomising irq %d %s\n", irq, interrupt_allowed[irq] ?
"on" : "off");
}
}
#endif
}
/*
* MD5 transform algorithm, taken from code written by Colin Plumb,
* and put into the public domain
*/
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void
MD5Transform(u_int32_t buf[4], u_int32_t const in[16])
{
u_int32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP
static void
mix_bucket(struct random_bucket *v)
{
struct random_bucket *r = v;
int i, num_passes;
u_int32_t *p;
u_int32_t iv[4];
r->delay_mix = 0;
/* Start IV from last block of the random pool */
memcpy(iv, r->pool + r->length - sizeof(iv), sizeof(iv));
num_passes = r->length / 16;
for (i = 0, p = (u_int32_t *) r->pool; i < num_passes; i++) {
MD5Transform(iv, rand_pool_key);
iv[0] = (*p++ ^= iv[0]);
iv[1] = (*p++ ^= iv[1]);
iv[2] = (*p++ ^= iv[2]);
iv[3] = (*p++ ^= iv[3]);
}
memcpy(rand_pool_key, r->pool, sizeof(rand_pool_key));
/* Wipe iv from memory */
bzero(iv, sizeof(iv));
r->add_ptr = 0;
}
/*
* This function adds a byte into the entropy "pool". It does not
* update the entropy estimate. The caller must do this if appropriate.
*/
static inline void
add_entropy_byte(struct random_bucket *r, const u_int8_t ch, int delay)
{
if (!delay && r->delay_mix)
mix_bucket(r);
r->pool[r->add_ptr++] ^= ch;
if (r->add_ptr >= r->length) {
if (delay) {
r->delay_mix = 1;
r->add_ptr = 0;
} else
mix_bucket(r);
}
}
/*
* This function adds some number of bytes into the entropy pool and
* updates the entropy count as appropriate.
*/
static void
add_entropy(struct random_bucket *r, const u_int8_t *ptr, int length,
int entropy_level, int delay)
{
while (length-- > 0)
add_entropy_byte(r, *ptr++, delay);
r->entropy_count += entropy_level;
if (r->entropy_count > r->length*8)
r->entropy_count = r->length * 8;
}
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*/
static void
add_timer_randomness(struct random_bucket *r, struct timer_rand_state *state,
int delay)
{
int delta, delta2;
int nbits;
/*
* Calculate number of bits of randomness we probably
* added. We take into account the first and second order
* delta's in order to make our estimate.
*/
delta = ticks - state->last_time;
delta2 = delta - state->last_delta;
state->last_time = ticks;
state->last_delta = delta;
if (delta < 0) delta = -delta;
if (delta2 < 0) delta2 = -delta2;
delta = MIN(delta, delta2) >> 1;
for (nbits = 0; delta; nbits++)
delta >>= 1;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), nbits, delay);
#if defined (__i386__)
/*
* On a 386, read the high resolution timer. We assume that
* this gives us 2 bits of randomness. XXX This needs
* investigation.
*/
outb(TIMER_LATCH|TIMER_SEL0, TIMER_MODE); /* latch the count ASAP */
add_entropy_byte(r, inb(TIMER_CNTR0), 1);
add_entropy_byte(r, inb(TIMER_CNTR0), 1);
r->entropy_count += 2;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
#endif
}
void
add_keyboard_randomness(u_char scancode)
{
struct random_bucket *r = &random_state;
add_timer_randomness(r, &keyboard_timer_state, 0);
add_entropy_byte(r, scancode, 0);
r->entropy_count += 6;
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
}
void
add_interrupt_randomness(int irq)
{
static struct random_bucket *r = &random_state;
u_int16_t intbit = 1 << irq;
/* printf("Trapping interrupt %d\n", irq); */
if (interrupt_allowed & intbit)
add_timer_randomness(r, &irq_timer_state[irq], 1);
}
/*
* This function extracts randomness from the "entropy pool", and
* returns it in a buffer. This function computes how many remaining
* bits of entropy are left in the pool, but it does not restrict the
* number of bytes that are actually obtained.
*/
static inline u_int
extract_entropy(struct random_bucket *r, char *buf, u_int nbytes)
{
int passes, i;
u_int length, ret;
u_int32_t tmp[4];
u_int8_t *cp;
add_entropy(r, (u_int8_t *) &ticks, sizeof(ticks), 0, 0);
if (r->entropy_count > r->bit_length)
r->entropy_count = r->bit_length;
if (nbytes > 32768)
nbytes = 32768;
ret = nbytes;
r->entropy_count -= ret * 8;
if (r->entropy_count < 0)
r->entropy_count = 0;
passes = r->length / 64;
while (nbytes) {
length = MIN(nbytes, 16);
for (i=0; i < 16; i++) {
if (++random_counter[i] != 0)
break;
}
tmp[0] = 0x67452301;
tmp[1] = 0xefcdab89;
tmp[2] = 0x98badcfe;
tmp[3] = 0x10325476;
MD5Transform(tmp, random_counter);
for (i = 0, cp = r->pool; i < passes; i++, cp+=64)
MD5Transform(tmp, (u_int32_t *) cp);
memcpy(buf, tmp, length);
nbytes -= length;
buf += length;
}
return ret;
}
/*
* This function is the exported kernel interface. It returns some
* number of good random numbers, suitable for seeding TCP sequence
* numbers, etc.
*/
void
get_random_bytes(void *buf, u_int nbytes)
{
extract_entropy(&random_state, (char *) buf, nbytes);
}
u_int
read_random(char * buf, u_int nbytes)
{
if ((nbytes * 8) > random_state.entropy_count)
nbytes = random_state.entropy_count / 8;
return extract_entropy(&random_state, buf, nbytes);
}
u_int
read_random_unlimited(char * buf, u_int nbytes)
{
return extract_entropy(&random_state, buf, nbytes);
}
|