summaryrefslogtreecommitdiffstats
path: root/sys/i386/i386/vm_machdep.c
blob: a7c4e596dfa56d4b04b2a896b017677e53f048ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
/*-
 * Copyright (c) 1982, 1986 The Regents of the University of California.
 * Copyright (c) 1989, 1990 William Jolitz
 * Copyright (c) 1994 John Dyson
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department, and William Jolitz.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
 *	$Id: vm_machdep.c,v 1.20 1994/04/20 07:06:20 davidg Exp $
 */

#include "npx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/user.h>

#include <machine/cpu.h>

#include <vm/vm.h>
#include <vm/vm_kern.h>

#define b_cylin b_resid

caddr_t		bouncememory;
vm_offset_t	bouncepa, bouncepaend;
int		bouncepages, bpwait;
vm_map_t	io_map;
int		bmwait, bmfreeing;

#define BITS_IN_UNSIGNED (8*sizeof(unsigned))
int		bounceallocarraysize;
unsigned	*bounceallocarray;
int		bouncefree;

#define SIXTEENMEG (4096*4096)
#define MAXBKVA 512
int		maxbkva=MAXBKVA*NBPG;

/* special list that can be used at interrupt time for eventual kva free */
struct kvasfree {
	vm_offset_t addr;
	vm_offset_t size;
} kvaf[MAXBKVA];

int		kvasfreecnt;

vm_offset_t vm_bounce_kva();
/*
 * get bounce buffer pages (count physically contiguous)
 * (only 1 inplemented now)
 */
vm_offset_t
vm_bounce_page_find(count)
	int count;
{
	int bit;
	int s,i;

	if (count != 1)
		panic("vm_bounce_page_find -- no support for > 1 page yet!!!");

	s = splbio();
retry:
	for (i = 0; i < bounceallocarraysize; i++) {
		if (bounceallocarray[i] != 0xffffffff) {
			if (bit = ffs(~bounceallocarray[i])) {
				bounceallocarray[i] |= 1 << (bit - 1) ;
				bouncefree -= count;
				splx(s);
				return bouncepa + (i * BITS_IN_UNSIGNED + (bit - 1)) * NBPG;
			}
		}
	}
	bpwait = 1;
	tsleep((caddr_t) &bounceallocarray, PRIBIO, "bncwai", 0);
	goto retry;
}

void
vm_bounce_kva_free(addr, size, now)
	vm_offset_t addr;
	vm_offset_t size;
	int now;
{
	int s = splbio();
	kvaf[kvasfreecnt].addr = addr;
	kvaf[kvasfreecnt++].size = size;
	if( now) {
		/*
		 * this will do wakeups
		 */
		vm_bounce_kva(0,0);
	} else {
		if (bmwait) {
		/*
		 * if anyone is waiting on the bounce-map, then wakeup
		 */
			wakeup((caddr_t) io_map);
			bmwait = 0;
		}
	}
	splx(s);
}

/*
 * free count bounce buffer pages
 */
void
vm_bounce_page_free(pa, count)
	vm_offset_t pa;
	int count;
{
	int allocindex;
	int index;
	int bit;

	if (count != 1)
		panic("vm_bounce_page_free -- no support for > 1 page yet!!!\n");

	index = (pa - bouncepa) / NBPG;

	if ((index < 0) || (index >= bouncepages))
		panic("vm_bounce_page_free -- bad index\n");

	allocindex = index / BITS_IN_UNSIGNED;
	bit = index % BITS_IN_UNSIGNED;

	bounceallocarray[allocindex] &= ~(1 << bit);

	bouncefree += count;
	if (bpwait) {
		bpwait = 0;
		wakeup((caddr_t) &bounceallocarray);
	}
}

/*
 * allocate count bounce buffer kva pages
 */
vm_offset_t
vm_bounce_kva(count, waitok)
	int count;
	int waitok;
{
	int tofree;
	int i;
	int startfree;
	vm_offset_t kva = 0;
	int s = splbio();
	int size = count;
	startfree = 0;
more:
	if (!bmfreeing && (tofree = kvasfreecnt)) {
		bmfreeing = 1;
		for (i = startfree; i < kvasfreecnt; i++) {
			/*
			 * if we have a kva of the right size, no sense
			 * in freeing/reallocating...
			 * might affect fragmentation short term, but
			 * as long as the amount of io_map is
			 * significantly more than the maximum transfer
			 * size, I don't think that it is a problem.
			 */
			pmap_remove(kernel_pmap,
				kvaf[i].addr, kvaf[i].addr + kvaf[i].size);
			if( size && !kva && kvaf[i].size == size) {
				kva = kvaf[i].addr;
			} else {
				kmem_free_wakeup(io_map, kvaf[i].addr,
					kvaf[i].size);
			}
		}
		if (kvasfreecnt != tofree) {
			startfree = i;
			bmfreeing = 0;
			goto more;
		}
		kvasfreecnt = 0;
		bmfreeing = 0;
	}

	if( size == 0) {
		splx(s);
		return NULL;
	}

	if (!kva && !(kva = kmem_alloc_pageable(io_map, size))) {
		if( !waitok) {
			splx(s);
			return NULL;
		}
		bmwait = 1;
		tsleep((caddr_t) io_map, PRIBIO, "bmwait", 0);
		goto more;
	}
	splx(s);

	return kva;
}

/*
 * same as vm_bounce_kva -- but really allocate
 */
vm_offset_t
vm_bounce_kva_alloc(count) 
int count;
{
	int i;
	vm_offset_t kva;
	vm_offset_t pa;
	if( bouncepages == 0) {
		kva = (vm_offset_t) malloc(count*NBPG, M_TEMP, M_WAITOK);
		return kva;
	}
	kva = vm_bounce_kva(count, 1);
	for(i=0;i<count;i++) {
		pa = vm_bounce_page_find(1);
		pmap_kenter(kva + i * NBPG, pa);
	}
	pmap_update();
	return kva;
}

/*
 * same as vm_bounce_kva_free -- but really free
 */
void
vm_bounce_kva_alloc_free(kva, count)
	vm_offset_t kva;
	int count;
{
	int i;
	vm_offset_t pa;
	if( bouncepages == 0) {
		free((caddr_t) kva, M_TEMP);
		return;
	}
	for(i = 0; i < count; i++) {
		pa = pmap_kextract(kva + i * NBPG);
		vm_bounce_page_free(pa, 1);
	}
	vm_bounce_kva_free(kva, count);
}

/*
 * do the things necessary to the struct buf to implement
 * bounce buffers...  inserted before the disk sort
 */
void
vm_bounce_alloc(bp)
	struct buf *bp;
{
	int countvmpg;
	vm_offset_t vastart, vaend;
	vm_offset_t vapstart, vapend;
	vm_offset_t va, kva;
	vm_offset_t pa;
	int dobounceflag = 0;
	int bounceindex;
	int i;
	int s;

	if (bouncepages == 0)
		return;

	if (bp->b_bufsize < bp->b_bcount) {
		printf("vm_bounce_alloc: b_bufsize(%d) < b_bcount(%d) !!!!\n",
			bp->b_bufsize, bp->b_bcount);
		bp->b_bufsize = bp->b_bcount;
	}

	vastart = (vm_offset_t) bp->b_data;
	vaend = (vm_offset_t) bp->b_data + bp->b_bufsize;

	vapstart = i386_trunc_page(vastart);
	vapend = i386_round_page(vaend);
	countvmpg = (vapend - vapstart) / NBPG;

/*
 * if any page is above 16MB, then go into bounce-buffer mode
 */
	va = vapstart;
	for (i = 0; i < countvmpg; i++) {
		pa = pmap_kextract(va);
		if (pa >= SIXTEENMEG)
			++dobounceflag;
		va += NBPG;
	}
	if (dobounceflag == 0)
		return;

	if (bouncepages < dobounceflag) 
		panic("Not enough bounce buffers!!!");

/*
 * allocate a replacement kva for b_addr
 */
	kva = vm_bounce_kva(countvmpg*NBPG, 1);
	va = vapstart;
	for (i = 0; i < countvmpg; i++) {
		pa = pmap_kextract(va);
		if (pa >= SIXTEENMEG) {
			/*
			 * allocate a replacement page
			 */
			vm_offset_t bpa = vm_bounce_page_find(1);
			pmap_kenter(kva + (NBPG * i), bpa);
			/*
			 * if we are writing, the copy the data into the page
			 */
			if ((bp->b_flags & B_READ) == 0) {
				pmap_update();
				bcopy((caddr_t) va, (caddr_t) kva + (NBPG * i), NBPG);
			}
		} else {
			/*
			 * use original page
			 */
			pmap_kenter(kva + (NBPG * i), pa);
		}
		va += NBPG;
	}
	pmap_update();

/*
 * flag the buffer as being bounced
 */
	bp->b_flags |= B_BOUNCE;
/*
 * save the original buffer kva
 */
	bp->b_savekva = bp->b_data;
/*
 * put our new kva into the buffer (offset by original offset)
 */
	bp->b_data = (caddr_t) (((vm_offset_t) kva) |
				((vm_offset_t) bp->b_savekva & (NBPG - 1)));
	return;
}

/*
 * hook into biodone to free bounce buffer
 */
void
vm_bounce_free(bp)
	struct buf *bp;
{
	int i;
	vm_offset_t origkva, bouncekva;
	vm_offset_t vastart, vaend;
	vm_offset_t vapstart, vapend;
	int countbounce = 0;
	vm_offset_t firstbouncepa = 0;
	int firstbounceindex;
	int countvmpg;
	vm_offset_t bcount;
	int s;

/*
 * if this isn't a bounced buffer, then just return
 */
	if ((bp->b_flags & B_BOUNCE) == 0)
		return;

	origkva = (vm_offset_t) bp->b_savekva;
	bouncekva = (vm_offset_t) bp->b_data;

	vastart = bouncekva;
	vaend = bouncekva + bp->b_bufsize;
	bcount = bp->b_bufsize;
	
	vapstart = i386_trunc_page(vastart);
	vapend = i386_round_page(vaend);

	countvmpg = (vapend - vapstart) / NBPG;

/*
 * check every page in the kva space for b_addr
 */
	for (i = 0; i < countvmpg; i++) {
		vm_offset_t mybouncepa;
		vm_offset_t copycount;

		copycount = i386_round_page(bouncekva + 1) - bouncekva;
		mybouncepa = pmap_kextract(i386_trunc_page(bouncekva));

/*
 * if this is a bounced pa, then process as one
 */
		if ((mybouncepa >= bouncepa) && (mybouncepa < bouncepaend)) {
			if (copycount > bcount)
				copycount = bcount;
/*
 * if this is a read, then copy from bounce buffer into original buffer
 */
			if (bp->b_flags & B_READ)
				bcopy((caddr_t) bouncekva, (caddr_t) origkva, copycount);
/*
 * free the bounce allocation
 */
			vm_bounce_page_free(i386_trunc_page(mybouncepa), 1);
		}

		origkva += copycount;
		bouncekva += copycount;
		bcount -= copycount;
	}

/*
 * add the old kva into the "to free" list
 */
	bouncekva = i386_trunc_page((vm_offset_t) bp->b_data);
	vm_bounce_kva_free( bouncekva, countvmpg*NBPG, 0);
	bp->b_data = bp->b_savekva;
	bp->b_savekva = 0;
	bp->b_flags &= ~B_BOUNCE;

	return;
}

/*
 * init the bounce buffer system
 */
void
vm_bounce_init()
{
	vm_offset_t minaddr, maxaddr;

	kvasfreecnt = 0;

	if (bouncepages == 0)
		return;
	
	bounceallocarraysize = (bouncepages + BITS_IN_UNSIGNED - 1) / BITS_IN_UNSIGNED;
	bounceallocarray = malloc(bounceallocarraysize * sizeof(unsigned), M_TEMP, M_NOWAIT);

	if (!bounceallocarray)
		panic("Cannot allocate bounce resource array\n");

	bzero(bounceallocarray, bounceallocarraysize * sizeof(long));


	bouncepa = pmap_kextract((vm_offset_t) bouncememory);
	bouncepaend = bouncepa + bouncepages * NBPG;
	bouncefree = bouncepages;
}


#ifdef BROKEN_IN_44
static void
cldiskvamerge( kvanew, orig1, orig1cnt, orig2, orig2cnt)
	vm_offset_t kvanew;
	vm_offset_t orig1, orig1cnt;
	vm_offset_t orig2, orig2cnt;
{
	int i;
	vm_offset_t pa;
/*
 * enter the transfer physical addresses into the new kva
 */
	for(i=0;i<orig1cnt;i++) {
		vm_offset_t pa;
		pa = pmap_kextract((caddr_t) orig1 + i * PAGE_SIZE);
		pmap_kenter(kvanew + i * PAGE_SIZE, pa);
	}

	for(i=0;i<orig2cnt;i++) {
		vm_offset_t pa;
		pa = pmap_kextract((caddr_t) orig2 + i * PAGE_SIZE);
		pmap_kenter(kvanew + (i + orig1cnt) * PAGE_SIZE, pa);
	}
	pmap_update();
}

void
cldisksort(struct buf *dp, struct buf *bp, vm_offset_t maxio)
{
	register struct buf *ap, *newbp;
	int i, trycount=0;
	vm_offset_t orig1pages, orig2pages;
	vm_offset_t orig1begin, orig2begin;
	vm_offset_t kvanew, kvaorig;

	if( bp->b_bcount < MAXCLSTATS*PAGE_SIZE)
		++rqstats[bp->b_bcount/PAGE_SIZE];
	/*
	 * If nothing on the activity queue, then
	 * we become the only thing.
	 */
	ap = dp->b_actf;
	if(ap == NULL) {
		dp->b_actf = bp;
		dp->b_actl = bp;
		bp->av_forw = NULL;
		return;
	}

	/*
	 * If we lie after the first (currently active)
	 * request, then we must locate the second request list
	 * and add ourselves to it.
	 */

	if (bp->b_pblkno < ap->b_pblkno) {
		while (ap->av_forw) {
			/*
			 * Check for an ``inversion'' in the
			 * normally ascending block numbers,
			 * indicating the start of the second request list.
			 */
			if (ap->av_forw->b_pblkno < ap->b_pblkno) {
				/*
				 * Search the second request list
				 * for the first request at a larger
				 * block number.  We go before that;
				 * if there is no such request, we go at end.
				 */
				do {
					if (bp->b_pblkno < ap->av_forw->b_pblkno)
						goto insert;
					ap = ap->av_forw;
				} while (ap->av_forw);
				goto insert;		/* after last */
			}
			ap = ap->av_forw;
		}
		/*
		 * No inversions... we will go after the last, and
		 * be the first request in the second request list.
		 */
		goto insert;
	}
	/*
	 * Request is at/after the current request...
	 * sort in the first request list.
	 */
	while (ap->av_forw) {
		/*
		 * We want to go after the current request
		 * if there is an inversion after it (i.e. it is
		 * the end of the first request list), or if
		 * the next request is a larger block than our request.
		 */
		if (ap->av_forw->b_pblkno < ap->b_pblkno ||
		    bp->b_pblkno < ap->av_forw->b_pblkno )
			goto insert;
		ap = ap->av_forw;
	}

insert:

	/*
	 * read clustering with new read-ahead disk drives hurts mostly, so
	 * we don't bother...
	 */
	if( bp->b_flags & B_READ)
		goto nocluster;
	/*
	 * we currently only cluster I/O transfers that are at page-aligned
	 * kvas and transfers that are multiples of page lengths.
	 */
	if ((bp->b_flags & B_BAD) == 0 &&
		((bp->b_bcount & PAGE_MASK) == 0) &&
		(((vm_offset_t) bp->b_un.b_addr & PAGE_MASK) == 0)) {
		if( maxio > MAXCLSTATS*PAGE_SIZE)
			maxio = MAXCLSTATS*PAGE_SIZE;
		/*
		 * merge with previous?
		 * conditions:
		 * 	1) We reside physically immediately after the previous block.
		 *	2) The previous block is not first on the device queue because
		 *	   such a block might be active.
		 *  3) The mode of the two I/Os is identical.
		 *  4) The previous kva is page aligned and the previous transfer
		 *	   is a multiple of a page in length.
		 *	5) And the total I/O size would be below the maximum.
		 */
		if( (ap->b_pblkno + (ap->b_bcount / DEV_BSIZE) == bp->b_pblkno) &&
			(dp->b_actf != ap) &&
			((ap->b_flags & ~B_CLUSTER) == bp->b_flags) &&
			((ap->b_flags & B_BAD) == 0) &&
			((ap->b_bcount & PAGE_MASK) == 0) &&
			(((vm_offset_t) ap->b_un.b_addr & PAGE_MASK) == 0) &&
			(ap->b_bcount + bp->b_bcount < maxio)) {

			orig1begin = (vm_offset_t) ap->b_un.b_addr;
			orig1pages = ap->b_bcount / PAGE_SIZE;

			orig2begin = (vm_offset_t) bp->b_un.b_addr;
			orig2pages = bp->b_bcount / PAGE_SIZE;
			/*
			 * see if we can allocate a kva, if we cannot, the don't
			 * cluster.
			 */
			kvanew = vm_bounce_kva( PAGE_SIZE * (orig1pages + orig2pages), 0);
			if( !kvanew) {
				goto nocluster;
			}


			if( (ap->b_flags & B_CLUSTER) == 0) {

				/*
				 * get a physical buf pointer
				 */
				newbp = (struct buf *)trypbuf();
				if( !newbp) {
					vm_bounce_kva_free( kvanew, PAGE_SIZE * (orig1pages + orig2pages), 1);
					goto nocluster;
				}

				cldiskvamerge( kvanew, orig1begin, orig1pages, orig2begin, orig2pages);

				/*
				 * build the new bp to be handed off to the device
				 */

				--clstats[ap->b_bcount/PAGE_SIZE];
				*newbp = *ap;
				newbp->b_flags |= B_CLUSTER;
				newbp->b_un.b_addr = (caddr_t) kvanew;
				newbp->b_bcount += bp->b_bcount;
				newbp->b_bufsize = newbp->b_bcount;
				newbp->b_clusterf = ap;
				newbp->b_clusterl = bp;
				++clstats[newbp->b_bcount/PAGE_SIZE];

				/*
				 * enter the new bp onto the device queue
				 */
				if( ap->av_forw)
					ap->av_forw->av_back = newbp;
				else
					dp->b_actl = newbp;

				if( dp->b_actf != ap )
					ap->av_back->av_forw = newbp;
				else
					dp->b_actf = newbp;

				/*
				 * enter the previous bps onto the cluster queue
				 */
				ap->av_forw = bp;
				bp->av_back = ap;
	
				ap->av_back = NULL;
				bp->av_forw = NULL;

			} else {
				vm_offset_t addr;

				cldiskvamerge( kvanew, orig1begin, orig1pages, orig2begin, orig2pages);
				/*
				 * free the old kva
				 */
				vm_bounce_kva_free( orig1begin, ap->b_bufsize, 0);
				--clstats[ap->b_bcount/PAGE_SIZE];

				ap->b_un.b_addr = (caddr_t) kvanew;

				ap->b_clusterl->av_forw = bp;
				bp->av_forw = NULL;
				bp->av_back = ap->b_clusterl;
				ap->b_clusterl = bp;

				ap->b_bcount += bp->b_bcount;
				ap->b_bufsize = ap->b_bcount;
				++clstats[ap->b_bcount/PAGE_SIZE];
			}
			return;
		/*
		 * merge with next?
		 * conditions:
		 * 	1) We reside physically before the next block.
		 *  3) The mode of the two I/Os is identical.
		 *  4) The next kva is page aligned and the next transfer
		 *	   is a multiple of a page in length.
		 *	5) And the total I/O size would be below the maximum.
		 */
		} else if( ap->av_forw &&
			(bp->b_pblkno + (bp->b_bcount / DEV_BSIZE) == ap->av_forw->b_pblkno) &&
			(bp->b_flags == (ap->av_forw->b_flags & ~B_CLUSTER)) &&
			((ap->av_forw->b_flags & B_BAD) == 0) &&
			((ap->av_forw->b_bcount & PAGE_MASK) == 0) &&
			(((vm_offset_t) ap->av_forw->b_un.b_addr & PAGE_MASK) == 0) &&
			(ap->av_forw->b_bcount + bp->b_bcount < maxio)) {

			orig1begin = (vm_offset_t) bp->b_un.b_addr;
			orig1pages = bp->b_bcount / PAGE_SIZE;

			orig2begin = (vm_offset_t) ap->av_forw->b_un.b_addr;
			orig2pages = ap->av_forw->b_bcount / PAGE_SIZE;

			/*
			 * see if we can allocate a kva, if we cannot, the don't
			 * cluster.
			 */
			kvanew = vm_bounce_kva( PAGE_SIZE * (orig1pages + orig2pages), 0);
			if( !kvanew) {
				goto nocluster;
			}
			
			/*
			 * if next isn't a cluster we need to create one
			 */
			if( (ap->av_forw->b_flags & B_CLUSTER) == 0) {

				/*
				 * get a physical buf pointer
				 */
				newbp = (struct buf *)trypbuf();
				if( !newbp) {
					vm_bounce_kva_free( kvanew, PAGE_SIZE * (orig1pages + orig2pages), 1);
					goto nocluster;
				}

				cldiskvamerge( kvanew, orig1begin, orig1pages, orig2begin, orig2pages);
				ap = ap->av_forw;
				--clstats[ap->b_bcount/PAGE_SIZE];
				*newbp = *ap;
				newbp->b_flags |= B_CLUSTER;
				newbp->b_un.b_addr = (caddr_t) kvanew;
				newbp->b_blkno = bp->b_blkno;
				newbp->b_pblkno = bp->b_pblkno;
				newbp->b_bcount += bp->b_bcount;
				newbp->b_bufsize = newbp->b_bcount;
				newbp->b_clusterf = bp;
				newbp->b_clusterl = ap;
				++clstats[newbp->b_bcount/PAGE_SIZE];

				if( ap->av_forw)
					ap->av_forw->av_back = newbp;
				else
					dp->b_actl = newbp;

				if( dp->b_actf != ap )
					ap->av_back->av_forw = newbp;
				else
					dp->b_actf = newbp;

				bp->av_forw = ap;
				ap->av_back = bp;
	
				bp->av_back = NULL;
				ap->av_forw = NULL;
			} else {
				vm_offset_t addr;

				cldiskvamerge( kvanew, orig1begin, orig1pages, orig2begin, orig2pages);
				ap = ap->av_forw;
				vm_bounce_kva_free( orig2begin, ap->b_bufsize, 0);

				ap->b_un.b_addr = (caddr_t) kvanew;
				bp->av_forw = ap->b_clusterf;
				ap->b_clusterf->av_back = bp;
				ap->b_clusterf = bp;
				bp->av_back = NULL;
				--clstats[ap->b_bcount/PAGE_SIZE];
			
				ap->b_blkno = bp->b_blkno;
				ap->b_pblkno = bp->b_pblkno;
				ap->b_bcount += bp->b_bcount;
				ap->b_bufsize = ap->b_bcount;
				++clstats[ap->b_bcount/PAGE_SIZE];

			}
			return;
		}
	}
	/*
	 * don't merge
	 */
nocluster:
	++clstats[bp->b_bcount/PAGE_SIZE];
	bp->av_forw = ap->av_forw;
	if( bp->av_forw)
		bp->av_forw->av_back = bp;
	else
		dp->b_actl = bp;

	ap->av_forw = bp;
	bp->av_back = ap;
}
#endif

/*
 * quick version of vm_fault
 */

void
vm_fault_quick( v, prot)
	vm_offset_t v;
	int prot;
{
	if( (cpu_class == CPUCLASS_386) &&
		(prot & VM_PROT_WRITE))
		vm_fault(&curproc->p_vmspace->vm_map, v,
			VM_PROT_READ|VM_PROT_WRITE, FALSE);
	else if( prot & VM_PROT_WRITE)
		*(volatile char *)v += 0;
	else
		*(volatile char *)v;
}


/*
 * Finish a fork operation, with process p2 nearly set up.
 * Copy and update the kernel stack and pcb, making the child
 * ready to run, and marking it so that it can return differently
 * than the parent.  Returns 1 in the child process, 0 in the parent.
 * We currently double-map the user area so that the stack is at the same
 * address in each process; in the future we will probably relocate
 * the frame pointers on the stack after copying.
 */
int
cpu_fork(p1, p2)
	register struct proc *p1, *p2;
{
	register struct user *up = p2->p_addr;
	int foo, offset, addr, i;
	extern char kstack[];
	extern int mvesp();

	/*
	 * Copy pcb and stack from proc p1 to p2. 
	 * We do this as cheaply as possible, copying only the active
	 * part of the stack.  The stack and pcb need to agree;
	 * this is tricky, as the final pcb is constructed by savectx,
	 * but its frame isn't yet on the stack when the stack is copied.
	 * swtch compensates for this when the child eventually runs.
	 * This should be done differently, with a single call
	 * that copies and updates the pcb+stack,
	 * replacing the bcopy and savectx.
	 */
	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
	offset = mvesp() - (int)kstack;
	bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
	    (unsigned) ctob(UPAGES) - offset);
	p2->p_md.md_regs = p1->p_md.md_regs;

	/*
	 * Wire top of address space of child to it's kstack.
	 * First, fault in a page of pte's to map it.
	 */
#if 0
        addr = trunc_page((u_int)vtopte(kstack));
	vm_map_pageable(&p2->p_vmspace->vm_map, addr, addr+NBPG, FALSE);
	for (i=0; i < UPAGES; i++)
		pmap_enter(&p2->p_vmspace->vm_pmap, kstack+i*NBPG,
			   pmap_extract(kernel_pmap, ((int)p2->p_addr)+i*NBPG),
			   /*
			    * The user area has to be mapped writable because
			    * it contains the kernel stack (when CR0_WP is on
			    * on a 486 there is no user-read/kernel-write
			    * mode).  It is protected from user mode access
			    * by the segment limits.
			    */
			   VM_PROT_READ|VM_PROT_WRITE, TRUE);
#endif
	pmap_activate(&p2->p_vmspace->vm_pmap, &up->u_pcb);

	/*
	 * 
	 * Arrange for a non-local goto when the new process
	 * is started, to resume here, returning nonzero from setjmp.
	 */
	if (savectx(up, 1)) {
		/*
		 * Return 1 in child.
		 */
		return (1);
	}
	return (0);
}

#ifdef notyet
/*
 * cpu_exit is called as the last action during exit.
 *
 * We change to an inactive address space and a "safe" stack,
 * passing thru an argument to the new stack. Now, safely isolated
 * from the resources we're shedding, we release the address space
 * and any remaining machine-dependent resources, including the
 * memory for the user structure and kernel stack.
 *
 * Next, we assign a dummy context to be written over by swtch,
 * calling it to send this process off to oblivion.
 * [The nullpcb allows us to minimize cost in mi_switch() by not having
 * a special case].
 */
struct proc *swtch_to_inactive();
volatile void
cpu_exit(p)
	register struct proc *p;
{
	static struct pcb nullpcb;	/* pcb to overwrite on last swtch */

#if NNPX > 0
	npxexit(p);
#endif	/* NNPX */

	/* move to inactive space and stack, passing arg accross */
	p = swtch_to_inactive(p);

	/* drop per-process resources */
	vmspace_free(p->p_vmspace);
	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));

	p->p_addr = (struct user *) &nullpcb;
	mi_switch();
	/* NOTREACHED */
}
#else
void
cpu_exit(p)
	register struct proc *p;
{
	
#if NNPX > 0
	npxexit(p);
#endif	/* NNPX */
	curproc = p;
	mi_switch();
	/* 
	 * This is to shutup the compiler, and if swtch() failed I suppose
	 * this would be a good thing.  This keeps gcc happy because panic
	 * is a volatile void function as well.
	 */
	panic("cpu_exit");
}

void
cpu_wait(p) struct proc *p; {
/*	extern vm_map_t upages_map; */
	extern char kstack[];

	/* drop per-process resources */
 	pmap_remove(vm_map_pmap(kernel_map), (vm_offset_t) p->p_addr,
		((vm_offset_t) p->p_addr) + ctob(UPAGES));
	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
	vmspace_free(p->p_vmspace);
}
#endif

/*
 * Dump the machine specific header information at the start of a core dump.
 */
int
cpu_coredump(p, vp, cred)
	struct proc *p;
	struct vnode *vp;
	struct ucred *cred;
{

	return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES),
	    (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
	    p));
}

/*
 * Set a red zone in the kernel stack after the u. area.
 */
void
setredzone(pte, vaddr)
	u_short *pte;
	caddr_t vaddr;
{
/* eventually do this by setting up an expand-down stack segment
   for ss0: selector, allowing stack access down to top of u.
   this means though that protection violations need to be handled
   thru a double fault exception that must do an integral task
   switch to a known good context, within which a dump can be
   taken. a sensible scheme might be to save the initial context
   used by sched (that has physical memory mapped 1:1 at bottom)
   and take the dump while still in mapped mode */
}

/*
 * Move pages from one kernel virtual address to another.
 * Both addresses are assumed to reside in the Sysmap,
 * and size must be a multiple of CLSIZE.
 */

/*
 * Move pages from one kernel virtual address to another.
 * Both addresses are assumed to reside in the Sysmap,
 * and size must be a multiple of CLSIZE.
 */

void
pagemove(from, to, size)
	register caddr_t from, to;
	int size;
{
	register vm_offset_t pa;

	if (size & CLOFSET)
		panic("pagemove");
	while (size > 0) {
		pa = pmap_kextract((vm_offset_t)from);
		if (pa == 0)
			panic("pagemove 2");
		if (pmap_kextract((vm_offset_t)to) != 0)
			panic("pagemove 3");
		pmap_remove(kernel_pmap,
			    (vm_offset_t)from, (vm_offset_t)from + PAGE_SIZE);
		pmap_kenter( (vm_offset_t)to, pa);
		from += PAGE_SIZE;
		to += PAGE_SIZE;
		size -= PAGE_SIZE;
	}
	pmap_update();
}

/*
 * Convert kernel VA to physical address
 */
u_long
kvtop(void *addr)
{
	vm_offset_t va;

	va = pmap_kextract((vm_offset_t)addr);
	if (va == 0)
		panic("kvtop: zero page frame");
	return((int)va);
}

extern vm_map_t phys_map;

/*
 * Map an IO request into kernel virtual address space.
 *
 * All requests are (re)mapped into kernel VA space.
 * Notice that we use b_bufsize for the size of the buffer
 * to be mapped.  b_bcount might be modified by the driver.
 */
void
vmapbuf(bp)
	register struct buf *bp;
{
	register int npf;
	register caddr_t addr;
	int off;
	vm_offset_t kva;
	vm_offset_t pa, lastv, v;

	if ((bp->b_flags & B_PHYS) == 0)
		panic("vmapbuf");

	lastv = 0;
	for (addr = (caddr_t)trunc_page(bp->b_data);
		addr < bp->b_data + bp->b_bufsize;
		addr += PAGE_SIZE) {

/*
 * make sure that the pde is valid and held
 */
		v = trunc_page(((vm_offset_t)vtopte(addr)));
		if (v != lastv) {
			vm_fault_quick(v, VM_PROT_READ);
			pa = pmap_extract(&curproc->p_vmspace->vm_pmap, v);
			vm_page_hold(PHYS_TO_VM_PAGE(pa));
			lastv = v;
		}

/*
 * do the vm_fault if needed, do the copy-on-write thing when
 * reading stuff off device into memory.
 */
		vm_fault_quick(addr,
			(bp->b_flags&B_READ)?(VM_PROT_READ|VM_PROT_WRITE):VM_PROT_READ);
		pa = pmap_extract(&curproc->p_vmspace->vm_pmap, (vm_offset_t) addr);
/*
 * hold the data page
 */
		vm_page_hold(PHYS_TO_VM_PAGE(pa));
	}

	addr = bp->b_saveaddr = bp->b_un.b_addr;
	off = (int)addr & PGOFSET;
	npf = btoc(round_page(bp->b_bufsize + off));
	kva = kmem_alloc_wait(phys_map, ctob(npf));
	bp->b_un.b_addr = (caddr_t) (kva + off);
	while (npf--) {
		pa = pmap_extract(&curproc->p_vmspace->vm_pmap, (vm_offset_t)addr);
		if (pa == 0)
			panic("vmapbuf: null page frame");
		pmap_kenter(kva, trunc_page(pa));
		addr += PAGE_SIZE;
		kva += PAGE_SIZE;
	}
	pmap_update();
}

/*
 * Free the io map PTEs associated with this IO operation.
 * We also invalidate the TLB entries and restore the original b_addr.
 */
void
vunmapbuf(bp)
	register struct buf *bp;
{
	register int npf;
	register caddr_t addr = bp->b_un.b_addr;
	vm_offset_t kva,va,v,lastv,pa;

	if ((bp->b_flags & B_PHYS) == 0)
		panic("vunmapbuf");
	npf = btoc(round_page(bp->b_bufsize + ((int)addr & PGOFSET)));
	kva = (vm_offset_t)((int)addr & ~PGOFSET);
	kmem_free_wakeup(phys_map, kva, ctob(npf));
	bp->b_un.b_addr = bp->b_saveaddr;
	bp->b_saveaddr = NULL;


/*
 * unhold the pde, and data pages
 */
	lastv = 0;
	for (addr = (caddr_t)trunc_page(bp->b_data);
		addr < bp->b_data + bp->b_bufsize;
		addr += NBPG) {

	/*
	 * release the data page
	 */
		pa = pmap_extract(&curproc->p_vmspace->vm_pmap, (vm_offset_t) addr);
		vm_page_unhold(PHYS_TO_VM_PAGE(pa));

	/*
	 * and unhold the page table
	 */
		v = trunc_page(((vm_offset_t)vtopte(addr)));
		if (v != lastv) {
			pa = pmap_extract(&curproc->p_vmspace->vm_pmap, v);
			vm_page_unhold(PHYS_TO_VM_PAGE(pa));
			lastv = v;
		}
	}
}

/*
 * Force reset the processor by invalidating the entire address space!
 */
void
cpu_reset() {

	/* force a shutdown by unmapping entire address space ! */
	bzero((caddr_t) PTD, NBPG);

	/* "good night, sweet prince .... <THUNK!>" */
	tlbflush(); 
	/* NOTREACHED */
	while(1);
}

/*
 * Grow the user stack to allow for 'sp'. This version grows the stack in
 *	chunks of SGROWSIZ.
 */
int
grow(p, sp)
	struct proc *p;
	u_int sp;
{
	unsigned int nss;
	caddr_t v;
	struct vmspace *vm = p->p_vmspace;

	if ((caddr_t)sp <= vm->vm_maxsaddr || (unsigned)sp >= (unsigned)USRSTACK)
	    return (1);

	nss = roundup(USRSTACK - (unsigned)sp, PAGE_SIZE);

	if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur)
		return (0);

	if (vm->vm_ssize && roundup(vm->vm_ssize << PAGE_SHIFT,
	    SGROWSIZ) < nss) {
		int grow_amount;
		/*
		 * If necessary, grow the VM that the stack occupies
		 * to allow for the rlimit. This allows us to not have
		 * to allocate all of the VM up-front in execve (which
		 * is expensive).
		 * Grow the VM by the amount requested rounded up to
		 * the nearest SGROWSIZ to provide for some hysteresis.
		 */
		grow_amount = roundup((nss - (vm->vm_ssize << PAGE_SHIFT)), SGROWSIZ);
		v = (char *)USRSTACK - roundup(vm->vm_ssize << PAGE_SHIFT,
		    SGROWSIZ) - grow_amount;
		/*
		 * If there isn't enough room to extend by SGROWSIZ, then
		 * just extend to the maximum size
		 */
		if (v < vm->vm_maxsaddr) {
			v = vm->vm_maxsaddr;
			grow_amount = MAXSSIZ - (vm->vm_ssize << PAGE_SHIFT);
		}
		if (vm_allocate(&vm->vm_map, (vm_offset_t *)&v,
		    grow_amount, FALSE) != KERN_SUCCESS) {
			return (0);
		}
		vm->vm_ssize += grow_amount >> PAGE_SHIFT;
	}

	return (1);
}
OpenPOWER on IntegriCloud