summaryrefslogtreecommitdiffstats
path: root/sys/dev/uart/uart_dev_lpc.c
blob: 992e89008934e7339991661c097ed09574a7242b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*-
 * Copyright (c) 2003 Marcel Moolenaar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <machine/fdt.h>

#include <dev/uart/uart.h>
#include <dev/uart/uart_cpu.h>
#include <dev/uart/uart_cpu_fdt.h>
#include <dev/uart/uart_bus.h>

#include <dev/ic/ns16550.h>
#include <arm/lpc/lpcreg.h>

#include "uart_if.h"

#define	DEFAULT_RCLK		(13 * 1000 * 1000)

static bus_space_handle_t bsh_clkpwr;

#define	lpc_ns8250_get_clkreg(_bas, _reg)	\
    bus_space_read_4(fdtbus_bs_tag, bsh_clkpwr, (_reg))
#define	lpc_ns8250_set_clkreg(_bas, _reg, _val)	\
    bus_space_write_4(fdtbus_bs_tag, bsh_clkpwr, (_reg), (_val))

/*
 * Clear pending interrupts. THRE is cleared by reading IIR. Data
 * that may have been received gets lost here.
 */
static void
lpc_ns8250_clrint(struct uart_bas *bas)
{
	uint8_t iir, lsr;

	iir = uart_getreg(bas, REG_IIR);
	while ((iir & IIR_NOPEND) == 0) {
		iir &= IIR_IMASK;
		if (iir == IIR_RLS) {
			lsr = uart_getreg(bas, REG_LSR);
			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
				(void)uart_getreg(bas, REG_DATA);
		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
			(void)uart_getreg(bas, REG_DATA);
		else if (iir == IIR_MLSC)
			(void)uart_getreg(bas, REG_MSR);
		uart_barrier(bas);
		iir = uart_getreg(bas, REG_IIR);
	}
}

static int
lpc_ns8250_delay(struct uart_bas *bas)
{
	uint32_t uclk;
	int x, y;

	uclk = lpc_ns8250_get_clkreg(bas, LPC_CLKPWR_UART_U5CLK);
	
	x = (uclk >> 8) & 0xff;
	y = uclk & 0xff;

	return (16000000 / (bas->rclk * x / y));
}

static void
lpc_ns8250_divisor(int rclk, int baudrate, int *x, int *y)
{

	switch (baudrate) {
	case 2400:
		*x = 1;
		*y = 255;
		return;
	case 4800:
		*x = 1;
		*y = 169;
		return;
	case 9600:
		*x = 3;
		*y = 254;
		return;
	case 19200:
		*x = 3;
		*y = 127;
		return;
	case 38400:
		*x = 6;
		*y = 127;
		return;
	case 57600:
		*x = 9;
		*y = 127;
		return;
	default:
	case 115200:
		*x = 19;
		*y = 134;
		return;
	case 230400:
		*x = 19;
		*y = 67;
		return;	
	case 460800:
		*x = 38;
		*y = 67;
		return;
	}
}

static int
lpc_ns8250_drain(struct uart_bas *bas, int what)
{
	int delay, limit;

	delay = lpc_ns8250_delay(bas);

	if (what & UART_DRAIN_TRANSMITTER) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop when the hardware is broken. Make the
		 * limit high enough to handle large FIFOs.
		 */
		limit = 10*1024;
		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
			DELAY(delay);
		if (limit == 0) {
			/* printf("lpc_ns8250: transmitter appears stuck... "); */
			return (EIO);
		}
	}

	if (what & UART_DRAIN_RECEIVER) {
		/*
		 * Pick an arbitrary high limit to avoid getting stuck in
		 * an infinite loop when the hardware is broken. Make the
		 * limit high enough to handle large FIFOs and integrated
		 * UARTs. The HP rx2600 for example has 3 UARTs on the
		 * management board that tend to get a lot of data send
		 * to it when the UART is first activated.
		 */
		limit=10*4096;
		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
			(void)uart_getreg(bas, REG_DATA);
			uart_barrier(bas);
			DELAY(delay << 2);
		}
		if (limit == 0) {
			/* printf("lpc_ns8250: receiver appears broken... "); */
			return (EIO);
		}
	}

	return (0);
}

/*
 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
 * drained. WARNING: this function clobbers the FIFO setting!
 */
static void
lpc_ns8250_flush(struct uart_bas *bas, int what)
{
	uint8_t fcr;

	fcr = FCR_ENABLE;
	if (what & UART_FLUSH_TRANSMITTER)
		fcr |= FCR_XMT_RST;
	if (what & UART_FLUSH_RECEIVER)
		fcr |= FCR_RCV_RST;
	uart_setreg(bas, REG_FCR, fcr);
	uart_barrier(bas);
}

static int
lpc_ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
    int parity)
{
	int xdiv, ydiv;
	uint8_t lcr;

	lcr = 0;
	if (databits >= 8)
		lcr |= LCR_8BITS;
	else if (databits == 7)
		lcr |= LCR_7BITS;
	else if (databits == 6)
		lcr |= LCR_6BITS;
	else
		lcr |= LCR_5BITS;
	if (stopbits > 1)
		lcr |= LCR_STOPB;
	lcr |= parity << 3;

	/* Set baudrate. */
	if (baudrate > 0) {
		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
		uart_barrier(bas);
		uart_setreg(bas, REG_DLL, 0x00);
		uart_setreg(bas, REG_DLH, 0x00);
		uart_barrier(bas);

		lpc_ns8250_divisor(bas->rclk, baudrate, &xdiv, &ydiv);
		lpc_ns8250_set_clkreg(bas,
		    LPC_CLKPWR_UART_U5CLK,
		    LPC_CLKPWR_UART_UCLK_X(xdiv) |
		    LPC_CLKPWR_UART_UCLK_Y(ydiv));
	}

	/* Set LCR and clear DLAB. */
	uart_setreg(bas, REG_LCR, lcr);
	uart_barrier(bas);
	return (0);
}

/*
 * Low-level UART interface.
 */
static int lpc_ns8250_probe(struct uart_bas *bas);
static void lpc_ns8250_init(struct uart_bas *bas, int, int, int, int);
static void lpc_ns8250_term(struct uart_bas *bas);
static void lpc_ns8250_putc(struct uart_bas *bas, int);
static int lpc_ns8250_rxready(struct uart_bas *bas);
static int lpc_ns8250_getc(struct uart_bas *bas, struct mtx *);

static struct uart_ops uart_lpc_ns8250_ops = {
	.probe = lpc_ns8250_probe,
	.init = lpc_ns8250_init,
	.term = lpc_ns8250_term,
	.putc = lpc_ns8250_putc,
	.rxready = lpc_ns8250_rxready,
	.getc = lpc_ns8250_getc,
};

static int
lpc_ns8250_probe(struct uart_bas *bas)
{
#if 0
	u_char val;

	/* Check known 0 bits that don't depend on DLAB. */
	val = uart_getreg(bas, REG_IIR);
	if (val & 0x30)
		return (ENXIO);
	/*
	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
	 * chip, but otherwise doesn't seem to have a function. In
	 * other words, uart(4) works regardless. Ignore that bit so
	 * the probe succeeds.
	 */
	val = uart_getreg(bas, REG_MCR);
	if (val & 0xa0)
		return (ENXIO);
#endif
	return (0);
}

static void
lpc_ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
    int parity)
{
	u_char	ier;
	u_long	clkmode;
	
	/* Enable UART clock */
	bus_space_map(fdtbus_bs_tag, LPC_CLKPWR_PHYS_BASE, LPC_CLKPWR_SIZE, 0,
	    &bsh_clkpwr);
	clkmode = lpc_ns8250_get_clkreg(bas, LPC_UART_CLKMODE);
	lpc_ns8250_set_clkreg(bas, LPC_UART_CLKMODE, clkmode | 
	    LPC_UART_CLKMODE_UART5(1));

#if 0
	/* Work around H/W bug */
	uart_setreg(bas, REG_DATA, 0x00);
#endif
	if (bas->rclk == 0)
		bas->rclk = DEFAULT_RCLK;
	lpc_ns8250_param(bas, baudrate, databits, stopbits, parity);

	/* Disable all interrupt sources. */
	/*
	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
	 * UARTs split the receive time-out interrupt bit out separately as
	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
	 */
	ier = uart_getreg(bas, REG_IER) & 0xe0;
	uart_setreg(bas, REG_IER, ier);
	uart_barrier(bas);

	/* Disable the FIFO (if present). */
	uart_setreg(bas, REG_FCR, 0);
	uart_barrier(bas);

	/* Set RTS & DTR. */
	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
	uart_barrier(bas);

	lpc_ns8250_clrint(bas);
}

static void
lpc_ns8250_term(struct uart_bas *bas)
{

	/* Clear RTS & DTR. */
	uart_setreg(bas, REG_MCR, MCR_IE);
	uart_barrier(bas);
}

static void
lpc_ns8250_putc(struct uart_bas *bas, int c)
{
	int limit;

	limit = 250000;
	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
		DELAY(4);
	uart_setreg(bas, REG_DATA, c);
	uart_barrier(bas);
	limit = 250000;
	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
		DELAY(4);
}

static int
lpc_ns8250_rxready(struct uart_bas *bas)
{

	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
}

static int
lpc_ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
{
	int c;

	uart_lock(hwmtx);

	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
		uart_unlock(hwmtx);
		DELAY(4);
		uart_lock(hwmtx);
	}

	c = uart_getreg(bas, REG_DATA);

	uart_unlock(hwmtx);

	return (c);
}

/*
 * High-level UART interface.
 */
struct lpc_ns8250_softc {
	struct uart_softc base;
	uint8_t		fcr;
	uint8_t		ier;
	uint8_t		mcr;
	
	uint8_t		ier_mask;
	uint8_t		ier_rxbits;
};

static int lpc_ns8250_bus_attach(struct uart_softc *);
static int lpc_ns8250_bus_detach(struct uart_softc *);
static int lpc_ns8250_bus_flush(struct uart_softc *, int);
static int lpc_ns8250_bus_getsig(struct uart_softc *);
static int lpc_ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
static int lpc_ns8250_bus_ipend(struct uart_softc *);
static int lpc_ns8250_bus_param(struct uart_softc *, int, int, int, int);
static int lpc_ns8250_bus_probe(struct uart_softc *);
static int lpc_ns8250_bus_receive(struct uart_softc *);
static int lpc_ns8250_bus_setsig(struct uart_softc *, int);
static int lpc_ns8250_bus_transmit(struct uart_softc *);
static void lpc_ns8250_bus_grab(struct uart_softc *);
static void lpc_ns8250_bus_ungrab(struct uart_softc *);

static kobj_method_t lpc_ns8250_methods[] = {
	KOBJMETHOD(uart_attach,		lpc_ns8250_bus_attach),
	KOBJMETHOD(uart_detach,		lpc_ns8250_bus_detach),
	KOBJMETHOD(uart_flush,		lpc_ns8250_bus_flush),
	KOBJMETHOD(uart_getsig,		lpc_ns8250_bus_getsig),
	KOBJMETHOD(uart_ioctl,		lpc_ns8250_bus_ioctl),
	KOBJMETHOD(uart_ipend,		lpc_ns8250_bus_ipend),
	KOBJMETHOD(uart_param,		lpc_ns8250_bus_param),
	KOBJMETHOD(uart_probe,		lpc_ns8250_bus_probe),
	KOBJMETHOD(uart_receive,	lpc_ns8250_bus_receive),
	KOBJMETHOD(uart_setsig,		lpc_ns8250_bus_setsig),
	KOBJMETHOD(uart_transmit,	lpc_ns8250_bus_transmit),
	KOBJMETHOD(uart_grab,		lpc_ns8250_bus_grab),
	KOBJMETHOD(uart_ungrab,		lpc_ns8250_bus_ungrab),
	{ 0, 0 }
};

static struct uart_class uart_lpc_class = {
	"lpc_ns8250",
	lpc_ns8250_methods,
	sizeof(struct lpc_ns8250_softc),
	.uc_ops = &uart_lpc_ns8250_ops,
	.uc_range = 8,
	.uc_rclk = DEFAULT_RCLK
};

static struct ofw_compat_data compat_data[] = {
	{"lpc,uart",		(uintptr_t)&uart_lpc_class},
	{NULL,			(uintptr_t)NULL},
};
UART_FDT_CLASS_AND_DEVICE(compat_data);

#define	SIGCHG(c, i, s, d)				\
	if (c) {					\
		i |= (i & s) ? s : s | d;		\
	} else {					\
		i = (i & s) ? (i & ~s) | d : i;		\
	}

static int
lpc_ns8250_bus_attach(struct uart_softc *sc)
{
	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
	struct uart_bas *bas;
	unsigned int ivar;

	bas = &sc->sc_bas;

	lpc_ns8250->mcr = uart_getreg(bas, REG_MCR);
	lpc_ns8250->fcr = FCR_ENABLE | FCR_DMA;
	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
	    &ivar)) {
		if (UART_FLAGS_FCR_RX_LOW(ivar)) 
			lpc_ns8250->fcr |= FCR_RX_LOW;
		else if (UART_FLAGS_FCR_RX_MEDL(ivar)) 
			lpc_ns8250->fcr |= FCR_RX_MEDL;
		else if (UART_FLAGS_FCR_RX_HIGH(ivar)) 
			lpc_ns8250->fcr |= FCR_RX_HIGH;
		else
			lpc_ns8250->fcr |= FCR_RX_MEDH;
	} else 
		lpc_ns8250->fcr |= FCR_RX_HIGH;
	
	/* Get IER mask */
	ivar = 0xf0;
	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
	    &ivar);
	lpc_ns8250->ier_mask = (uint8_t)(ivar & 0xff);
	
	/* Get IER RX interrupt bits */
	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
	    &ivar);
	lpc_ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
	
	uart_setreg(bas, REG_FCR, lpc_ns8250->fcr);
	uart_barrier(bas);
	lpc_ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);

	if (lpc_ns8250->mcr & MCR_DTR)
		sc->sc_hwsig |= SER_DTR;
	if (lpc_ns8250->mcr & MCR_RTS)
		sc->sc_hwsig |= SER_RTS;
	lpc_ns8250_bus_getsig(sc);

	lpc_ns8250_clrint(bas);
	lpc_ns8250->ier = uart_getreg(bas, REG_IER) & lpc_ns8250->ier_mask;
	lpc_ns8250->ier |= lpc_ns8250->ier_rxbits;
	uart_setreg(bas, REG_IER, lpc_ns8250->ier);
	uart_barrier(bas);
	
	return (0);
}

static int
lpc_ns8250_bus_detach(struct uart_softc *sc)
{
	struct lpc_ns8250_softc *lpc_ns8250;
	struct uart_bas *bas;
	u_char ier;

	lpc_ns8250 = (struct lpc_ns8250_softc *)sc;
	bas = &sc->sc_bas;
	ier = uart_getreg(bas, REG_IER) & lpc_ns8250->ier_mask;
	uart_setreg(bas, REG_IER, ier);
	uart_barrier(bas);
	lpc_ns8250_clrint(bas);
	return (0);
}

static int
lpc_ns8250_bus_flush(struct uart_softc *sc, int what)
{
	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
	struct uart_bas *bas;
	int error;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);
	if (sc->sc_rxfifosz > 1) {
		lpc_ns8250_flush(bas, what);
		uart_setreg(bas, REG_FCR, lpc_ns8250->fcr);
		uart_barrier(bas);
		error = 0;
	} else
		error = lpc_ns8250_drain(bas, what);
	uart_unlock(sc->sc_hwmtx);
	return (error);
}

static int
lpc_ns8250_bus_getsig(struct uart_softc *sc)
{
	uint32_t new, old, sig;
	uint8_t msr;

	do {
		old = sc->sc_hwsig;
		sig = old;
		uart_lock(sc->sc_hwmtx);
		msr = uart_getreg(&sc->sc_bas, REG_MSR);
		uart_unlock(sc->sc_hwmtx);
		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
		new = sig & ~SER_MASK_DELTA;
	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
	return (sig);
}

static int
lpc_ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
{
	struct uart_bas *bas;
	int baudrate, divisor, error;
	uint8_t efr, lcr;

	bas = &sc->sc_bas;
	error = 0;
	uart_lock(sc->sc_hwmtx);
	switch (request) {
	case UART_IOCTL_BREAK:
		lcr = uart_getreg(bas, REG_LCR);
		if (data)
			lcr |= LCR_SBREAK;
		else
			lcr &= ~LCR_SBREAK;
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
	case UART_IOCTL_IFLOW:
		lcr = uart_getreg(bas, REG_LCR);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, 0xbf);
		uart_barrier(bas);
		efr = uart_getreg(bas, REG_EFR);
		if (data)
			efr |= EFR_RTS;
		else
			efr &= ~EFR_RTS;
		uart_setreg(bas, REG_EFR, efr);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
	case UART_IOCTL_OFLOW:
		lcr = uart_getreg(bas, REG_LCR);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, 0xbf);
		uart_barrier(bas);
		efr = uart_getreg(bas, REG_EFR);
		if (data)
			efr |= EFR_CTS;
		else
			efr &= ~EFR_CTS;
		uart_setreg(bas, REG_EFR, efr);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		break;
	case UART_IOCTL_BAUD:
		lcr = uart_getreg(bas, REG_LCR);
		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
		uart_barrier(bas);
		divisor = uart_getreg(bas, REG_DLL) |
		    (uart_getreg(bas, REG_DLH) << 8);
		uart_barrier(bas);
		uart_setreg(bas, REG_LCR, lcr);
		uart_barrier(bas);
		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
		if (baudrate > 0)
			*(int*)data = baudrate;
		else
			error = ENXIO;
		break;
	default:
		error = EINVAL;
		break;
	}
	uart_unlock(sc->sc_hwmtx);
	return (error);
}

static int
lpc_ns8250_bus_ipend(struct uart_softc *sc)
{
	struct uart_bas *bas;
	struct lpc_ns8250_softc *lpc_ns8250;
	int ipend;
	uint8_t iir, lsr;

	lpc_ns8250 = (struct lpc_ns8250_softc *)sc;
	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);
	iir = uart_getreg(bas, REG_IIR);
	if (iir & IIR_NOPEND) {
		uart_unlock(sc->sc_hwmtx);
		return (0);
	}
	ipend = 0;
	if (iir & IIR_RXRDY) {
		lsr = uart_getreg(bas, REG_LSR);
		if (lsr & LSR_OE)
			ipend |= SER_INT_OVERRUN;
		if (lsr & LSR_BI)
			ipend |= SER_INT_BREAK;
		if (lsr & LSR_RXRDY)
			ipend |= SER_INT_RXREADY;
	} else {
		if (iir & IIR_TXRDY) {
			ipend |= SER_INT_TXIDLE;
			uart_setreg(bas, REG_IER, lpc_ns8250->ier);
		} else
			ipend |= SER_INT_SIGCHG;
	}
	if (ipend == 0)
		lpc_ns8250_clrint(bas);
	uart_unlock(sc->sc_hwmtx);
	return (ipend);
}

static int
lpc_ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
    int stopbits, int parity)
{
	struct uart_bas *bas;
	int error;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);
	error = lpc_ns8250_param(bas, baudrate, databits, stopbits, parity);
	uart_unlock(sc->sc_hwmtx);
	return (error);
}

static int
lpc_ns8250_bus_probe(struct uart_softc *sc)
{
	struct lpc_ns8250_softc *lpc_ns8250;
	struct uart_bas *bas;
	int count, delay, error, limit;
	uint8_t lsr, mcr, ier;

	lpc_ns8250 = (struct lpc_ns8250_softc *)sc;
	bas = &sc->sc_bas;

	error = lpc_ns8250_probe(bas);
	if (error)
		return (error);

	mcr = MCR_IE;
	if (sc->sc_sysdev == NULL) {
		/* By using lpc_ns8250_init() we also set DTR and RTS. */
		lpc_ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
	} else
		mcr |= MCR_DTR | MCR_RTS;

	error = lpc_ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
	if (error)
		return (error);

	/*
	 * Set loopback mode. This avoids having garbage on the wire and
	 * also allows us send and receive data. We set DTR and RTS to
	 * avoid the possibility that automatic flow-control prevents
	 * any data from being sent.
	 */
	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
	uart_barrier(bas);

	/*
	 * Enable FIFOs. And check that the UART has them. If not, we're
	 * done. Since this is the first time we enable the FIFOs, we reset
	 * them.
	 */
	uart_setreg(bas, REG_FCR, FCR_ENABLE);
	uart_barrier(bas);
	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
		/*
		 * NS16450 or INS8250. We don't bother to differentiate
		 * between them. They're too old to be interesting.
		 */
		uart_setreg(bas, REG_MCR, mcr);
		uart_barrier(bas);
		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
		return (0);
	}

	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
	uart_barrier(bas);

	count = 0;
	delay = lpc_ns8250_delay(bas);

	/* We have FIFOs. Drain the transmitter and receiver. */
	error = lpc_ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
	if (error) {
		uart_setreg(bas, REG_MCR, mcr);
		uart_setreg(bas, REG_FCR, 0);
		uart_barrier(bas);
		goto done;
	}

	/*
	 * We should have a sufficiently clean "pipe" to determine the
	 * size of the FIFOs. We send as much characters as is reasonable
	 * and wait for the overflow bit in the LSR register to be
	 * asserted, counting the characters as we send them. Based on
	 * that count we know the FIFO size.
	 */
	do {
		uart_setreg(bas, REG_DATA, 0);
		uart_barrier(bas);
		count++;

		limit = 30;
		lsr = 0;
		/*
		 * LSR bits are cleared upon read, so we must accumulate
		 * them to be able to test LSR_OE below.
		 */
		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
		    --limit)
			DELAY(delay);
		if (limit == 0) {
			ier = uart_getreg(bas, REG_IER) & lpc_ns8250->ier_mask;
			uart_setreg(bas, REG_IER, ier);
			uart_setreg(bas, REG_MCR, mcr);
			uart_setreg(bas, REG_FCR, 0);
			uart_barrier(bas);
			count = 0;
			goto done;
		}
	} while ((lsr & LSR_OE) == 0 && count < 130);
	count--;

	uart_setreg(bas, REG_MCR, mcr);

	/* Reset FIFOs. */
	lpc_ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);

done:
	sc->sc_rxfifosz = 64;
	device_set_desc(sc->sc_dev, "LPC32x0 UART with FIFOs");

	/*
	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
	 * Tx trigger. Also, we assume that all data has been sent when the
	 * interrupt happens.
	 */
	sc->sc_txfifosz = 16;

#if 0
	/*
	 * XXX there are some issues related to hardware flow control and
	 * it's likely that uart(4) is the cause. This basicly needs more
	 * investigation, but we avoid using for hardware flow control
	 * until then.
	 */
	/* 16650s or higher have automatic flow control. */
	if (sc->sc_rxfifosz > 16) {
		sc->sc_hwiflow = 1;
		sc->sc_hwoflow = 1;
	}
#endif
	return (0);
}

static int
lpc_ns8250_bus_receive(struct uart_softc *sc)
{
	struct uart_bas *bas;
	int xc;
	uint8_t lsr;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);
	lsr = uart_getreg(bas, REG_LSR);
	while (lsr & LSR_RXRDY) {
		if (uart_rx_full(sc)) {
			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
			break;
		}
		xc = uart_getreg(bas, REG_DATA);
		if (lsr & LSR_FE)
			xc |= UART_STAT_FRAMERR;
		if (lsr & LSR_PE)
			xc |= UART_STAT_PARERR;
		uart_rx_put(sc, xc);
		lsr = uart_getreg(bas, REG_LSR);
	}
	/* Discard everything left in the Rx FIFO. */
	while (lsr & LSR_RXRDY) {
		(void)uart_getreg(bas, REG_DATA);
		uart_barrier(bas);
		lsr = uart_getreg(bas, REG_LSR);
	}
	uart_unlock(sc->sc_hwmtx);
 	return (0);
}

static int
lpc_ns8250_bus_setsig(struct uart_softc *sc, int sig)
{
	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
	struct uart_bas *bas;
	uint32_t new, old;

	bas = &sc->sc_bas;
	do {
		old = sc->sc_hwsig;
		new = old;
		if (sig & SER_DDTR) {
			SIGCHG(sig & SER_DTR, new, SER_DTR,
			    SER_DDTR);
		}
		if (sig & SER_DRTS) {
			SIGCHG(sig & SER_RTS, new, SER_RTS,
			    SER_DRTS);
		}
	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
	uart_lock(sc->sc_hwmtx);
	lpc_ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
	if (new & SER_DTR)
		lpc_ns8250->mcr |= MCR_DTR;
	if (new & SER_RTS)
		lpc_ns8250->mcr |= MCR_RTS;
	uart_setreg(bas, REG_MCR, lpc_ns8250->mcr);
	uart_barrier(bas);
	uart_unlock(sc->sc_hwmtx);
	return (0);
}

static int
lpc_ns8250_bus_transmit(struct uart_softc *sc)
{
	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
	struct uart_bas *bas;
	int i;

	bas = &sc->sc_bas;
	uart_lock(sc->sc_hwmtx);
	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
		;
	uart_setreg(bas, REG_IER, lpc_ns8250->ier | IER_ETXRDY);
	uart_barrier(bas);
	for (i = 0; i < sc->sc_txdatasz; i++) {
		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
		uart_barrier(bas);
	}
	sc->sc_txbusy = 1;
	uart_unlock(sc->sc_hwmtx);
	return (0);
}

void
lpc_ns8250_bus_grab(struct uart_softc *sc)
{
	struct uart_bas *bas = &sc->sc_bas;

	/*
	 * turn off all interrupts to enter polling mode. Leave the
	 * saved mask alone. We'll restore whatever it was in ungrab.
	 * All pending interupt signals are reset when IER is set to 0.
	 */
	uart_lock(sc->sc_hwmtx);
	uart_setreg(bas, REG_IER, 0);
	uart_barrier(bas);
	uart_unlock(sc->sc_hwmtx);
}

void
lpc_ns8250_bus_ungrab(struct uart_softc *sc)
{
	struct lpc_ns8250_softc *lpc_ns8250 = (struct lpc_ns8250_softc*)sc;
	struct uart_bas *bas = &sc->sc_bas;

	/*
	 * Restore previous interrupt mask
	 */
	uart_lock(sc->sc_hwmtx);
	uart_setreg(bas, REG_IER, lpc_ns8250->ier);
	uart_barrier(bas);
	uart_unlock(sc->sc_hwmtx);
}
OpenPOWER on IntegriCloud