1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
|
/*
* Copyright (c) Comtrol Corporation <support@comtrol.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted prodived that the follwoing conditions
* are met.
* 1. Redistributions of source code must retain the above copyright
* notive, this list of conditions and the following disclainer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials prodided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Comtrol Corporation.
* 4. The name of Comtrol Corporation may not be used to endorse or
* promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY COMTROL CORPORATION ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL COMTROL CORPORATION BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, LIFE OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* rp.c - for RocketPort FreeBSD
*/
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <i386/isa/isa_device.h>
#include <pci/pcivar.h>
#define ROCKET_C
#include <i386/isa/rpreg.h>
#include <i386/isa/rpvar.h>
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
static Byte_t RData[RDATASIZE] =
{
0x00, 0x09, 0xf6, 0x82,
0x02, 0x09, 0x86, 0xfb,
0x04, 0x09, 0x00, 0x0a,
0x06, 0x09, 0x01, 0x0a,
0x08, 0x09, 0x8a, 0x13,
0x0a, 0x09, 0xc5, 0x11,
0x0c, 0x09, 0x86, 0x85,
0x0e, 0x09, 0x20, 0x0a,
0x10, 0x09, 0x21, 0x0a,
0x12, 0x09, 0x41, 0xff,
0x14, 0x09, 0x82, 0x00,
0x16, 0x09, 0x82, 0x7b,
0x18, 0x09, 0x8a, 0x7d,
0x1a, 0x09, 0x88, 0x81,
0x1c, 0x09, 0x86, 0x7a,
0x1e, 0x09, 0x84, 0x81,
0x20, 0x09, 0x82, 0x7c,
0x22, 0x09, 0x0a, 0x0a
};
static Byte_t RRegData[RREGDATASIZE]=
{
0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
};
static CONTROLLER_T sController[CTL_SIZE] =
{
{-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}},
{-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}},
{-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}},
{-1,-1,0,0,0,0,0,0,0,0,0,{0,0,0,0},{0,0,0,0},{-1,-1,-1,-1},{0,0,0,0}}
};
#if 0
/* IRQ number to MUDBAC register 2 mapping */
Byte_t sIRQMap[16] =
{
0,0,0,0x10,0x20,0x30,0,0,0,0x40,0x50,0x60,0x70,0,0,0x80
};
#endif
static Byte_t sBitMapClrTbl[8] =
{
0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f
};
static Byte_t sBitMapSetTbl[8] =
{
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80
};
/***************************************************************************
Function: sInitController
Purpose: Initialization of controller global registers and controller
structure.
Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
IRQNum,Frequency,PeriodicOnly)
CONTROLLER_T *CtlP; Ptr to controller structure
int CtlNum; Controller number
ByteIO_t MudbacIO; Mudbac base I/O address.
ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
This list must be in the order the AIOPs will be found on the
controller. Once an AIOP in the list is not found, it is
assumed that there are no more AIOPs on the controller.
int AiopIOListSize; Number of addresses in AiopIOList
int IRQNum; Interrupt Request number. Can be any of the following:
0: Disable global interrupts
3: IRQ 3
4: IRQ 4
5: IRQ 5
9: IRQ 9
10: IRQ 10
11: IRQ 11
12: IRQ 12
15: IRQ 15
Byte_t Frequency: A flag identifying the frequency
of the periodic interrupt, can be any one of the following:
FREQ_DIS - periodic interrupt disabled
FREQ_137HZ - 137 Hertz
FREQ_69HZ - 69 Hertz
FREQ_34HZ - 34 Hertz
FREQ_17HZ - 17 Hertz
FREQ_9HZ - 9 Hertz
FREQ_4HZ - 4 Hertz
If IRQNum is set to 0 the Frequency parameter is
overidden, it is forced to a value of FREQ_DIS.
int PeriodicOnly: TRUE if all interrupts except the periodic
interrupt are to be blocked.
FALSE is both the periodic interrupt and
other channel interrupts are allowed.
If IRQNum is set to 0 the PeriodicOnly parameter is
overidden, it is forced to a value of FALSE.
Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
initialization failed.
Comments:
If periodic interrupts are to be disabled but AIOP interrupts
are allowed, set Frequency to FREQ_DIS and PeriodicOnly to FALSE.
If interrupts are to be completely disabled set IRQNum to 0.
Setting Frequency to FREQ_DIS and PeriodicOnly to TRUE is an
invalid combination.
This function performs initialization of global interrupt modes,
but it does not actually enable global interrupts. To enable
and disable global interrupts use functions sEnGlobalInt() and
sDisGlobalInt(). Enabling of global interrupts is normally not
done until all other initializations are complete.
Even if interrupts are globally enabled, they must also be
individually enabled for each channel that is to generate
interrupts.
Warnings: No range checking on any of the parameters is done.
No context switches are allowed while executing this function.
After this function all AIOPs on the controller are disabled,
they can be enabled with sEnAiop().
*/
int sInitController( CONTROLLER_T *CtlP,
int CtlNum,
ByteIO_t MudbacIO,
ByteIO_t *AiopIOList,
int AiopIOListSize,
int IRQNum,
Byte_t Frequency,
int PeriodicOnly)
{
int i;
ByteIO_t io;
CtlP->CtlNum = CtlNum;
CtlP->BusType = isISA;
CtlP->CtlID = CTLID_0001; /* controller release 1 */
CtlP->MBaseIO = MudbacIO;
CtlP->MReg1IO = MudbacIO + 1;
CtlP->MReg2IO = MudbacIO + 2;
CtlP->MReg3IO = MudbacIO + 3;
#if 1
CtlP->MReg2 = 0; /* interrupt disable */
CtlP->MReg3 = 0; /* no periodic interrupts */
#else
if(sIRQMap[IRQNum] == 0) /* interrupts globally disabled */
{
CtlP->MReg2 = 0; /* interrupt disable */
CtlP->MReg3 = 0; /* no periodic interrupts */
}
else
{
CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
CtlP->MReg3 = Frequency; /* set frequency */
if(PeriodicOnly) /* periodic interrupt only */
{
CtlP->MReg3 |= PERIODIC_ONLY;
}
}
#endif
sOutB(CtlP->MReg2IO,CtlP->MReg2);
sOutB(CtlP->MReg3IO,CtlP->MReg3);
sControllerEOI(CtlP); /* clear EOI if warm init */
/* Init AIOPs */
CtlP->NumAiop = 0;
for(i=0; i < AiopIOListSize; i++)
{
io = AiopIOList[i];
CtlP->AiopIO[i] = (WordIO_t)io;
CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
sOutB(CtlP->MReg2IO,CtlP->MReg2 | (i & 0x03)); /* AIOP index */
sOutB(MudbacIO,(Byte_t)(io >> 6)); /* set up AIOP I/O in MUDBAC */
sEnAiop(CtlP,i); /* enable the AIOP */
CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
if(CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
{
sDisAiop(CtlP,i); /* disable AIOP */
break; /* done looking for AIOPs */
}
CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t)io); /* num channels in AIOP */
sOutW((WordIO_t)io + _INDX_ADDR,_CLK_PRE); /* clock prescaler */
sOutB(io + _INDX_DATA,CLOCK_PRESC);
CtlP->NumAiop++; /* bump count of AIOPs */
sDisAiop(CtlP,i); /* disable AIOP */
}
if(CtlP->NumAiop == 0)
return(-1);
else
return(CtlP->NumAiop);
}
int sPCIInitController( CONTROLLER_T *CtlP,
int CtlNum,
ByteIO_t *AiopIOList,
int AiopIOListSize,
int IRQNum,
Byte_t Frequency,
int PeriodicOnly)
{
int i;
ByteIO_t io;
CtlP->CtlNum = CtlNum;
CtlP->BusType = isPCI;
CtlP->CtlID = CTLID_0001; /* controller release 1 */
CtlP->PCIIO = (WordIO_t)((ByteIO_t)AiopIOList[0] + _PCI_INT_FUNC);
sPCIControllerEOI(CtlP);
/* Init AIOPs */
CtlP->NumAiop = 0;
for(i=0; i < AiopIOListSize; i++)
{
io = AiopIOList[i];
CtlP->AiopIO[i] = (WordIO_t)io;
CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
if(CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
{
break; /* done looking for AIOPs */
}
CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t)io); /* num channels in AIOP */
sOutW((WordIO_t)io + _INDX_ADDR,_CLK_PRE); /* clock prescaler */
sOutB(io + _INDX_DATA,CLOCK_PRESC);
CtlP->NumAiop++; /* bump count of AIOPs */
}
if(CtlP->NumAiop == 0)
return(-1);
else
return(CtlP->NumAiop);
}
/***************************************************************************
Function: sReadAiopID
Purpose: Read the AIOP idenfication number directly from an AIOP.
Call: sReadAiopID(io)
ByteIO_t io: AIOP base I/O address
Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
is replace by an identifying number.
Flag AIOPID_NULL if no valid AIOP is found
Warnings: No context switches are allowed while executing this function.
*/
int sReadAiopID(ByteIO_t io)
{
Byte_t AiopID; /* ID byte from AIOP */
sOutB(io + _CMD_REG,RESET_ALL); /* reset AIOP */
sOutB(io + _CMD_REG,0x0);
AiopID = sInB(io + _CHN_STAT0) & 0x07;
if(AiopID == 0x06)
return(1);
else /* AIOP does not exist */
return(-1);
}
/***************************************************************************
Function: sReadAiopNumChan
Purpose: Read the number of channels available in an AIOP directly from
an AIOP.
Call: sReadAiopNumChan(io)
WordIO_t io: AIOP base I/O address
Return: int: The number of channels available
Comments: The number of channels is determined by write/reads from identical
offsets within the SRAM address spaces for channels 0 and 4.
If the channel 4 space is mirrored to channel 0 it is a 4 channel
AIOP, otherwise it is an 8 channel.
Warnings: No context switches are allowed while executing this function.
*/
int sReadAiopNumChan(WordIO_t io)
{
Word_t x;
sOutDW((DWordIO_t)io + _INDX_ADDR,0x12340000L); /* write to chan 0 SRAM */
sOutW(io + _INDX_ADDR,0); /* read from SRAM, chan 0 */
x = sInW(io + _INDX_DATA);
sOutW(io + _INDX_ADDR,0x4000); /* read from SRAM, chan 4 */
if(x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
return(8);
else
return(4);
}
/***************************************************************************
Function: sInitChan
Purpose: Initialization of a channel and channel structure
Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
CONTROLLER_T *CtlP; Ptr to controller structure
CHANNEL_T *ChP; Ptr to channel structure
int AiopNum; AIOP number within controller
int ChanNum; Channel number within AIOP
Return: int: TRUE if initialization succeeded, FALSE if it fails because channel
number exceeds number of channels available in AIOP.
Comments: This function must be called before a channel can be used.
Warnings: No range checking on any of the parameters is done.
No context switches are allowed while executing this function.
*/
int sInitChan( CONTROLLER_T *CtlP,
CHANNEL_T *ChP,
int AiopNum,
int ChanNum)
{
int i;
WordIO_t AiopIO;
WordIO_t ChIOOff;
Byte_t *ChR;
Word_t ChOff;
static Byte_t R[4];
if(ChanNum >= CtlP->AiopNumChan[AiopNum])
return(FALSE); /* exceeds num chans in AIOP */
/* Channel, AIOP, and controller identifiers */
ChP->CtlP = CtlP;
ChP->ChanID = CtlP->AiopID[AiopNum];
ChP->AiopNum = AiopNum;
ChP->ChanNum = ChanNum;
/* Global direct addresses */
AiopIO = CtlP->AiopIO[AiopNum];
ChP->Cmd = (ByteIO_t)AiopIO + _CMD_REG;
ChP->IntChan = (ByteIO_t)AiopIO + _INT_CHAN;
ChP->IntMask = (ByteIO_t)AiopIO + _INT_MASK;
ChP->IndexAddr = (DWordIO_t)AiopIO + _INDX_ADDR;
ChP->IndexData = AiopIO + _INDX_DATA;
/* Channel direct addresses */
ChIOOff = AiopIO + ChP->ChanNum * 2;
ChP->TxRxData = ChIOOff + _TD0;
ChP->ChanStat = ChIOOff + _CHN_STAT0;
ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
ChP->IntID = (ByteIO_t)AiopIO + ChP->ChanNum + _INT_ID0;
/* Initialize the channel from the RData array */
for(i=0; i < RDATASIZE; i+=4)
{
R[0] = RData[i];
R[1] = RData[i+1] + 0x10 * ChanNum;
R[2] = RData[i+2];
R[3] = RData[i+3];
sOutDW(ChP->IndexAddr,*((DWord_t *)&R[0]));
}
ChR = ChP->R;
for(i=0; i < RREGDATASIZE; i+=4)
{
ChR[i] = RRegData[i];
ChR[i+1] = RRegData[i+1] + 0x10 * ChanNum;
ChR[i+2] = RRegData[i+2];
ChR[i+3] = RRegData[i+3];
}
/* Indexed registers */
ChOff = (Word_t)ChanNum * 0x1000;
ChP->BaudDiv[0] = (Byte_t)(ChOff + _BAUD);
ChP->BaudDiv[1] = (Byte_t)((ChOff + _BAUD) >> 8);
ChP->BaudDiv[2] = (Byte_t)BRD9600;
ChP->BaudDiv[3] = (Byte_t)(BRD9600 >> 8);
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->BaudDiv[0]);
ChP->TxControl[0] = (Byte_t)(ChOff + _TX_CTRL);
ChP->TxControl[1] = (Byte_t)((ChOff + _TX_CTRL) >> 8);
ChP->TxControl[2] = 0;
ChP->TxControl[3] = 0;
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxControl[0]);
ChP->RxControl[0] = (Byte_t)(ChOff + _RX_CTRL);
ChP->RxControl[1] = (Byte_t)((ChOff + _RX_CTRL) >> 8);
ChP->RxControl[2] = 0;
ChP->RxControl[3] = 0;
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->RxControl[0]);
ChP->TxEnables[0] = (Byte_t)(ChOff + _TX_ENBLS);
ChP->TxEnables[1] = (Byte_t)((ChOff + _TX_ENBLS) >> 8);
ChP->TxEnables[2] = 0;
ChP->TxEnables[3] = 0;
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxEnables[0]);
ChP->TxCompare[0] = (Byte_t)(ChOff + _TXCMP1);
ChP->TxCompare[1] = (Byte_t)((ChOff + _TXCMP1) >> 8);
ChP->TxCompare[2] = 0;
ChP->TxCompare[3] = 0;
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxCompare[0]);
ChP->TxReplace1[0] = (Byte_t)(ChOff + _TXREP1B1);
ChP->TxReplace1[1] = (Byte_t)((ChOff + _TXREP1B1) >> 8);
ChP->TxReplace1[2] = 0;
ChP->TxReplace1[3] = 0;
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxReplace1[0]);
ChP->TxReplace2[0] = (Byte_t)(ChOff + _TXREP2);
ChP->TxReplace2[1] = (Byte_t)((ChOff + _TXREP2) >> 8);
ChP->TxReplace2[2] = 0;
ChP->TxReplace2[3] = 0;
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxReplace2[0]);
ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
ChP->TxFIFO = ChOff + _TX_FIFO;
sOutB(ChP->Cmd,(Byte_t)ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
sOutB(ChP->Cmd,(Byte_t)ChanNum); /* remove reset Tx FIFO count */
sOutW((WordIO_t)ChP->IndexAddr,ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
sOutW(ChP->IndexData,0);
ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
ChP->RxFIFO = ChOff + _RX_FIFO;
sOutB(ChP->Cmd,(Byte_t)ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
sOutB(ChP->Cmd,(Byte_t)ChanNum); /* remove reset Rx FIFO count */
sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs); /* clear Rx out ptr */
sOutW(ChP->IndexData,0);
sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
sOutW(ChP->IndexData,0);
ChP->TxPrioCnt = ChOff + _TXP_CNT;
sOutW((WordIO_t)ChP->IndexAddr,ChP->TxPrioCnt);
sOutB(ChP->IndexData,0);
ChP->TxPrioPtr = ChOff + _TXP_PNTR;
sOutW((WordIO_t)ChP->IndexAddr,ChP->TxPrioPtr);
sOutB(ChP->IndexData,0);
ChP->TxPrioBuf = ChOff + _TXP_BUF;
sEnRxProcessor(ChP); /* start the Rx processor */
return(TRUE);
}
/***************************************************************************
Function: sStopRxProcessor
Purpose: Stop the receive processor from processing a channel.
Call: sStopRxProcessor(ChP)
CHANNEL_T *ChP; Ptr to channel structure
Comments: The receive processor can be started again with sStartRxProcessor().
This function causes the receive processor to skip over the
stopped channel. It does not stop it from processing other channels.
Warnings: No context switches are allowed while executing this function.
Do not leave the receive processor stopped for more than one
character time.
After calling this function a delay of 4 uS is required to ensure
that the receive processor is no longer processing this channel.
*/
void sStopRxProcessor(CHANNEL_T *ChP)
{
Byte_t R[4];
R[0] = ChP->R[0];
R[1] = ChP->R[1];
R[2] = 0x0a;
R[3] = ChP->R[3];
sOutDW(ChP->IndexAddr,*(DWord_t *)&R[0]);
}
/***************************************************************************
Function: sFlushRxFIFO
Purpose: Flush the Rx FIFO
Call: sFlushRxFIFO(ChP)
CHANNEL_T *ChP; Ptr to channel structure
Return: void
Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
while it is being flushed the receive processor is stopped
and the transmitter is disabled. After these operations a
4 uS delay is done before clearing the pointers to allow
the receive processor to stop. These items are handled inside
this function.
Warnings: No context switches are allowed while executing this function.
*/
void sFlushRxFIFO(CHANNEL_T *ChP)
{
int i;
Byte_t Ch; /* channel number within AIOP */
int RxFIFOEnabled; /* TRUE if Rx FIFO enabled */
if(sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
return; /* don't need to flush */
RxFIFOEnabled = FALSE;
if(ChP->R[0x32] == 0x08) /* Rx FIFO is enabled */
{
RxFIFOEnabled = TRUE;
sDisRxFIFO(ChP); /* disable it */
for(i=0; i < 2000/200; i++) /* delay 2 uS to allow proc to disable FIFO*/
sInB(ChP->IntChan); /* depends on bus i/o timing */
}
sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
Ch = (Byte_t)sGetChanNum(ChP);
sOutB(ChP->Cmd,Ch | RESRXFCNT); /* apply reset Rx FIFO count */
sOutB(ChP->Cmd,Ch); /* remove reset Rx FIFO count */
sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs); /* clear Rx out ptr */
sOutW(ChP->IndexData,0);
sOutW((WordIO_t)ChP->IndexAddr,ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
sOutW(ChP->IndexData,0);
if(RxFIFOEnabled)
sEnRxFIFO(ChP); /* enable Rx FIFO */
}
/***************************************************************************
Function: sFlushTxFIFO
Purpose: Flush the Tx FIFO
Call: sFlushTxFIFO(ChP)
CHANNEL_T *ChP; Ptr to channel structure
Return: void
Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
while it is being flushed the receive processor is stopped
and the transmitter is disabled. After these operations a
4 uS delay is done before clearing the pointers to allow
the receive processor to stop. These items are handled inside
this function.
Warnings: No context switches are allowed while executing this function.
*/
void sFlushTxFIFO(CHANNEL_T *ChP)
{
int i;
Byte_t Ch; /* channel number within AIOP */
int TxEnabled; /* TRUE if transmitter enabled */
if(sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
return; /* don't need to flush */
TxEnabled = FALSE;
if(ChP->TxControl[3] & TX_ENABLE)
{
TxEnabled = TRUE;
sDisTransmit(ChP); /* disable transmitter */
}
sStopRxProcessor(ChP); /* stop Rx processor */
for(i = 0; i < 4000/200; i++) /* delay 4 uS to allow proc to stop */
sInB(ChP->IntChan); /* depends on bus i/o timing */
Ch = (Byte_t)sGetChanNum(ChP);
sOutB(ChP->Cmd,Ch | RESTXFCNT); /* apply reset Tx FIFO count */
sOutB(ChP->Cmd,Ch); /* remove reset Tx FIFO count */
sOutW((WordIO_t)ChP->IndexAddr,ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
sOutW(ChP->IndexData,0);
if(TxEnabled)
sEnTransmit(ChP); /* enable transmitter */
sStartRxProcessor(ChP); /* restart Rx processor */
}
/***************************************************************************
Function: sWriteTxPrioByte
Purpose: Write a byte of priority transmit data to a channel
Call: sWriteTxPrioByte(ChP,Data)
CHANNEL_T *ChP; Ptr to channel structure
Byte_t Data; The transmit data byte
Return: int: 1 if the bytes is successfully written, otherwise 0.
Comments: The priority byte is transmitted before any data in the Tx FIFO.
Warnings: No context switches are allowed while executing this function.
*/
int sWriteTxPrioByte(CHANNEL_T *ChP, Byte_t Data)
{
Byte_t DWBuf[4]; /* buffer for double word writes */
Word_t *WordPtr; /* must be far because Win SS != DS */
register DWordIO_t IndexAddr;
if(sGetTxCnt(ChP) > 1) /* write it to Tx priority buffer */
{
IndexAddr = ChP->IndexAddr;
sOutW((WordIO_t)IndexAddr,ChP->TxPrioCnt); /* get priority buffer status */
if(sInB((ByteIO_t)ChP->IndexData) & PRI_PEND) /* priority buffer busy */
return(0); /* nothing sent */
WordPtr = (Word_t *)(&DWBuf[0]);
*WordPtr = ChP->TxPrioBuf; /* data byte address */
DWBuf[2] = Data; /* data byte value */
sOutDW(IndexAddr,*((DWord_t *)(&DWBuf[0]))); /* write it out */
*WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
DWBuf[3] = 0; /* priority buffer pointer */
sOutDW(IndexAddr,*((DWord_t *)(&DWBuf[0]))); /* write it out */
}
else /* write it to Tx FIFO */
{
sWriteTxByte(sGetTxRxDataIO(ChP),Data);
}
return(1); /* 1 byte sent */
}
/***************************************************************************
Function: sEnInterrupts
Purpose: Enable one or more interrupts for a channel
Call: sEnInterrupts(ChP,Flags)
CHANNEL_T *ChP; Ptr to channel structure
Word_t Flags: Interrupt enable flags, can be any combination
of the following flags:
TXINT_EN: Interrupt on Tx FIFO empty
RXINT_EN: Interrupt on Rx FIFO at trigger level (see
sSetRxTrigger())
SRCINT_EN: Interrupt on SRC (Special Rx Condition)
MCINT_EN: Interrupt on modem input change
CHANINT_EN: Allow channel interrupt signal to the AIOP's
Interrupt Channel Register.
Return: void
Comments: If an interrupt enable flag is set in Flags, that interrupt will be
enabled. If an interrupt enable flag is not set in Flags, that
interrupt will not be changed. Interrupts can be disabled with
function sDisInterrupts().
This function sets the appropriate bit for the channel in the AIOP's
Interrupt Mask Register if the CHANINT_EN flag is set. This allows
this channel's bit to be set in the AIOP's Interrupt Channel Register.
Interrupts must also be globally enabled before channel interrupts
will be passed on to the host. This is done with function
sEnGlobalInt().
In some cases it may be desirable to disable interrupts globally but
enable channel interrupts. This would allow the global interrupt
status register to be used to determine which AIOPs need service.
*/
void sEnInterrupts(CHANNEL_T *ChP,Word_t Flags)
{
Byte_t Mask; /* Interrupt Mask Register */
ChP->RxControl[2] |=
((Byte_t)Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->RxControl[0]);
ChP->TxControl[2] |= ((Byte_t)Flags & TXINT_EN);
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxControl[0]);
if(Flags & CHANINT_EN)
{
Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
sOutB(ChP->IntMask,Mask);
}
}
/***************************************************************************
Function: sDisInterrupts
Purpose: Disable one or more interrupts for a channel
Call: sDisInterrupts(ChP,Flags)
CHANNEL_T *ChP; Ptr to channel structure
Word_t Flags: Interrupt flags, can be any combination
of the following flags:
TXINT_EN: Interrupt on Tx FIFO empty
RXINT_EN: Interrupt on Rx FIFO at trigger level (see
sSetRxTrigger())
SRCINT_EN: Interrupt on SRC (Special Rx Condition)
MCINT_EN: Interrupt on modem input change
CHANINT_EN: Disable channel interrupt signal to the
AIOP's Interrupt Channel Register.
Return: void
Comments: If an interrupt flag is set in Flags, that interrupt will be
disabled. If an interrupt flag is not set in Flags, that
interrupt will not be changed. Interrupts can be enabled with
function sEnInterrupts().
This function clears the appropriate bit for the channel in the AIOP's
Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
this channel's bit from being set in the AIOP's Interrupt Channel
Register.
*/
void sDisInterrupts(CHANNEL_T *ChP,Word_t Flags)
{
Byte_t Mask; /* Interrupt Mask Register */
ChP->RxControl[2] &=
~((Byte_t)Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->RxControl[0]);
ChP->TxControl[2] &= ~((Byte_t)Flags & TXINT_EN);
sOutDW(ChP->IndexAddr,*(DWord_t *)&ChP->TxControl[0]);
if(Flags & CHANINT_EN)
{
Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
sOutB(ChP->IntMask,Mask);
}
}
/*********************************************************************
Begin FreeBsd-specific driver code
**********************************************************************/
static int rpprobe __P((struct isa_device *));
static int rpattach __P((struct isa_device *));
static char* rp_pciprobe(pcici_t tag, pcidi_t type);
static void rp_pciattach(pcici_t tag, int unit);
static u_long rp_pcicount;
static struct pci_device rp_pcidevice = {
"rp",
rp_pciprobe,
rp_pciattach,
&rp_pcicount,
NULL
};
DATA_SET (pcidevice_set, rp_pcidevice);
static timeout_t rpdtrwakeup;
struct isa_driver rpdriver = {
rpprobe, rpattach, "rp"
};
#define CDEV_MAJOR 81
static char driver_name[] = "rp";
static d_open_t rpopen;
static d_close_t rpclose;
static d_read_t rpread;
static d_write_t rpwrite;
static d_ioctl_t rpioctl;
static d_stop_t rpstop;
static d_devtotty_t rpdevtotty;
static struct cdevsw rp_cdevsw =
{ rpopen, rpclose, rpread, rpwrite,
rpioctl, rpstop, noreset, rpdevtotty,
ttpoll, nommap, NULL, driver_name,
NULL, -1};
static int rp_controller_port = 0;
static int rp_num_ports_open = 0;
static int rp_timeout;
static int ndevs = 0;
static int minor_to_unit[128];
static struct tty rp_tty[128];
static int rp_num_ports[4]; /* Number of ports on each controller */
#define _INLINE_ __inline
#define POLL_INTERVAL 1
#define CALLOUT_MASK 0x80
#define CONTROL_MASK 0x60
#define CONTROL_INIT_STATE 0x20
#define CONTROL_LOCK_STATE 0x40
#define DEV_UNIT(dev) (MINOR_TO_UNIT(minor(dev))
#define MINOR_MAGIC_MASK (CALLOUT_MASK | CONTROL_MASK)
#define MINOR_MAGIC(dev) ((minor(dev)) & ~MINOR_MAGIC_MASK)
#define IS_CALLOUT(dev) (minor(dev) & CALLOUT_MASK)
#define IS_CONTROL(dev) (minor(dev) & CONTROL_MASK)
#define RP_ISMULTIPORT(dev) ((dev)->id_flags & 0x1)
#define RP_MPMASTER(dev) (((dev)->id_flags >> 8) & 0xff)
#define RP_NOTAST4(dev) ((dev)->id_flags & 0x04)
static struct rp_port *p_rp_addr[4];
static struct rp_port *p_rp_table[MAX_RP_PORTS];
#define rp_addr(unit) (p_rp_addr[unit])
#define rp_table(port) (p_rp_table[port])
/*
* The top-level routines begin here
*/
int rpselect __P((dev_t, int, struct proc *));
static int rpparam __P((struct tty *, struct termios *));
static void rpstart __P((struct tty *));
static void rphardclose __P((struct rp_port *));
#define rpmap nomap
#define rpreset noreset
#define rpstrategy nostrategy
static void rp_disc_optim __P((struct tty *tp, struct termios *t,
struct rp_port *rp));
static _INLINE_ void rp_do_receive(struct rp_port *rp, struct tty *tp,
CHANNEL_t *cp, unsigned int ChanStatus)
{
int spl;
unsigned int CharNStat;
int ToRecv, wRecv, ch;
ToRecv = sGetRxCnt(cp);
if(ToRecv == 0)
return;
/* If status indicates there are errored characters in the
FIFO, then enter status mode (a word in FIFO holds
characters and status)
*/
if(ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
if(!(ChanStatus & STATMODE)) {
ChanStatus |= STATMODE;
sEnRxStatusMode(cp);
}
}
/*
if we previously entered status mode then read down the
FIFO one word at a time, pulling apart the character and
the status. Update error counters depending on status.
*/
if(ChanStatus & STATMODE) {
while(ToRecv) {
if(tp->t_state & TS_TBLOCK) {
break;
}
CharNStat = sInW(sGetTxRxDataIO(cp));
ch = CharNStat & 0xff;
if((CharNStat & STMBREAK) || (CharNStat & STMFRAMEH))
ch |= TTY_FE;
else if (CharNStat & STMPARITYH)
ch |= TTY_PE;
else if (CharNStat & STMRCVROVRH)
rp->rp_overflows++;
(*linesw[tp->t_line].l_rint)(ch, tp);
ToRecv--;
}
/*
After emtying FIFO in status mode, turn off status mode
*/
if(sGetRxCnt(cp) == 0)
sDisRxStatusMode(cp);
}
else {
while (ToRecv) {
if(tp->t_state & TS_TBLOCK) {
break;
}
ch = (u_char) sInB(sGetTxRxDataIO(cp));
spl = spltty();
(*linesw[tp->t_line].l_rint)(ch, tp);
splx(spl);
ToRecv--;
}
}
}
static _INLINE_ void rp_handle_port(struct rp_port *rp)
{
CHANNEL_t *cp;
struct tty *tp;
unsigned int IntMask, ChanStatus;
int oldcts, ToRecv;
if(!rp)
return;
cp = &rp->rp_channel;
tp = rp->rp_tty;
IntMask = sGetChanIntID(cp);
IntMask = IntMask & rp->rp_intmask;
ChanStatus = sGetChanStatus(cp);
if(IntMask & RXF_TRIG)
if(!(tp->t_state & TS_TBLOCK) && (tp->t_state & TS_CARR_ON) && (tp->t_state & TS_ISOPEN)) {
rp_do_receive(rp, tp, cp, ChanStatus);
}
if(IntMask & DELTA_CD) {
if(ChanStatus & CD_ACT) {
if(!(tp->t_state & TS_CARR_ON) ) {
(void)(*linesw[tp->t_line].l_modem)(tp, 1);
}
} else {
if((tp->t_state & TS_CARR_ON)) {
(void)(*linesw[tp->t_line].l_modem)(tp, 0);
if((*linesw[tp->t_line].l_modem)(tp, 0) == 0) {
rphardclose(rp);
}
}
}
}
/* oldcts = rp->rp_cts;
rp->rp_cts = ((ChanStatus & CTS_ACT) != 0);
if(oldcts != rp->rp_cts) {
printf("CTS change (now %s)... on port %d\n", rp->rp_cts ? "on" : "off", rp->rp_port);
}
*/
}
static void rp_do_poll(void *not_used)
{
CONTROLLER_t *ctl;
struct rp_port *rp;
struct tty *tp;
int unit, aiop, ch, line, count;
unsigned char CtlMask, AiopMask;
for(unit = 0; unit <= ndevs; unit++) {
rp = rp_addr(unit);
ctl = rp->rp_ctlp;
if(ctl->BusType == isPCI)
CtlMask = sPCIGetControllerIntStatus(ctl);
else
CtlMask = sGetControllerIntStatus(ctl);
for(aiop=0; CtlMask; CtlMask >>=1, aiop++) {
if(CtlMask & 1) {
AiopMask = sGetAiopIntStatus(ctl, aiop);
for(ch = 0; AiopMask; AiopMask >>=1, ch++) {
if(AiopMask & 1) {
line = (unit << 5) | (aiop << 3) | ch;
rp = rp_table(line);
rp_handle_port(rp);
}
}
}
}
for(line = 0, rp = rp_addr(unit); line < rp_num_ports[unit];
line++, rp++) {
tp = rp->rp_tty;
if((tp->t_state & TS_BUSY) && (tp->t_state & TS_ISOPEN)) {
count = sGetTxCnt(&rp->rp_channel);
if(count == 0)
tp->t_state &= ~(TS_BUSY);
if(!(tp->t_state & TS_TTSTOP) &&
(count <= rp->rp_restart)) {
(*linesw[tp->t_line].l_start)(tp);
}
}
}
}
if(rp_num_ports_open)
timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL);
}
static char*
rp_pciprobe(pcici_t tag, pcidi_t type)
{
int vendor_id;
vendor_id = type & 0xffff;
switch(vendor_id)
case 0x11fe:
return("rp");
return(NULL);
}
static
int
rpprobe(dev)
struct isa_device *dev;
{
struct isa_device *idev;
int controller, unit;
int i, aiop, num_aiops;
unsigned int aiopio[MAX_AIOPS_PER_BOARD];
CONTROLLER_t *ctlp;
unit = dev->id_unit;
if (dev->id_unit >= 4) {
printf("rpprobe: unit number %d invalid.\n", dev->id_unit);
return 1;
}
printf("probing for RocketPort(ISA) unit %d\n", unit);
if (rp_controller_port)
controller = rp_controller_port;
else {
controller = dev->id_iobase + 0x40;
}
for (aiop=0; aiop<MAX_AIOPS_PER_BOARD; aiop++)
aiopio[aiop]= dev->id_iobase + (aiop * 0x400);
ctlp = sCtlNumToCtlPtr(dev->id_unit);
num_aiops = sInitController(ctlp, dev->id_unit,
controller + ((unit-rp_pcicount)*0x400),
aiopio, MAX_AIOPS_PER_BOARD, 0,
FREQ_DIS, 0);
if (num_aiops <= 0) {
printf("board%d init failed\n", unit);
return 0;
}
if (rp_controller_port) {
dev->id_msize = 64;
} else {
dev->id_msize = 68;
rp_controller_port = controller;
}
dev->id_irq = 0;
return 1;
}
static void
rp_pciattach(pcici_t tag, int unit)
{
dev_t rp_dev;
int success, rpmajor, oldspl;
u_short iobase;
int num_ports, num_chan, num_aiops;
int aiop, chan, port;
int ChanStatus, line, i, count;
unsigned int aiopio[MAX_AIOPS_PER_BOARD];
struct rp_port *rp;
struct tty *tty;
CONTROLLER_t *ctlp;
char status;
success = pci_map_port(tag, 0x10, &iobase);
if(!success)
printf("ioaddr mapping failed for RocketPort(PCI)\n");
for(aiop=0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
aiopio[aiop] = iobase + (aiop * 0x40);
ctlp = sCtlNumToCtlPtr(unit);
num_aiops = sPCIInitController(ctlp, unit,
aiopio, MAX_AIOPS_PER_BOARD, 0,
FREQ_DIS, 0);
num_ports = 0;
for(aiop=0; aiop < num_aiops; aiop++) {
sResetAiopByNum(ctlp, aiop);
num_ports += sGetAiopNumChan(ctlp, aiop);
}
printf("RocketPort%d = %d ports\n", unit, num_ports);
rp_num_ports[unit] = num_ports;
rp = (struct rp_port *)
malloc(sizeof(struct rp_port) * num_ports, M_TTYS, M_NOWAIT);
if(rp == 0) {
printf("rp_attach: Could not malloc rp_ports structures\n");
return;
}
count = unit * 32; /* board times max ports per card SG */
for(i=count;i < (count + rp_num_ports[unit]);i++)
minor_to_unit[i] = unit;
bzero(rp, sizeof(struct rp_port) * num_ports);
tty = (struct tty *)
malloc(sizeof(struct tty) * num_ports, M_TTYS, M_NOWAIT);
if(tty == 0) {
printf("rp_attach: Could not malloc tty structures\n");
return;
}
bzero(tty, sizeof(struct tty) * num_ports);
oldspl = spltty();
rp_addr(unit) = rp;
splx(oldspl);
rp_dev = makedev(CDEV_MAJOR, unit);
cdevsw_add(&rp_dev, &rp_cdevsw, NULL);
port = 0;
for(aiop=0; aiop < num_aiops; aiop++) {
num_chan = sGetAiopNumChan(ctlp, aiop);
for(chan=0; chan < num_chan; chan++, port++, rp++, tty++) {
rp->rp_tty = tty;
rp->rp_port = port;
rp->rp_ctlp = ctlp;
rp->rp_unit = unit;
rp->rp_chan = chan;
rp->rp_aiop = aiop;
tty->t_line = 0;
/* tty->t_termios = deftermios;
*/
rp->dtr_wait = 3 * hz;
rp->it_in.c_iflag = 0;
rp->it_in.c_oflag = 0;
rp->it_in.c_cflag = TTYDEF_CFLAG;
rp->it_in.c_lflag = 0;
termioschars(&rp->it_in);
/* termioschars(&tty->t_termios);
*/
rp->it_in.c_ispeed = rp->it_in.c_ospeed = TTYDEF_SPEED;
rp->it_out = rp->it_in;
rp->rp_intmask = RXF_TRIG | TXFIFO_MT | SRC_INT |
DELTA_CD | DELTA_CTS | DELTA_DSR;
ChanStatus = sGetChanStatus(&rp->rp_channel);
if(sInitChan(ctlp, &rp->rp_channel, aiop, chan) == 0) {
printf("RocketPort sInitChan(%d, %d, %d) failed
\n", unit, aiop, chan);
return;
}
ChanStatus = sGetChanStatus(&rp->rp_channel);
rp->rp_cts = (ChanStatus & CTS_ACT) != 0;
line = (unit << 5) | (aiop << 3) | chan;
rp_table(line) = rp;
/* devfs_add_devswf(&rp_cdevsw,
port, DV_CHR, UID_ROOT, GID_WHEEL, 0600,
"ttyR%n", port);
devfs_add_devswf(&rp_cdevsw,
port | CONTROL_INIT_STATE, DV_CHR, UID_ROOT,
GID_WHEEL, 0600, "ttyRi%n", port);
*/
}
}
}
static
int
rpattach(dev)
struct isa_device *dev;
{
struct isa_device *idev;
dev_t rp_dev;
int iobase, unit, rpmajor, oldspl;
int num_ports, num_chan, num_aiops;
int aiop, chan, port;
int ChanStatus, line, i, count;
unsigned int aiopio[MAX_AIOPS_PER_BOARD];
struct rp_port *rp;
struct tty *tty;
CONTROLLER_t *ctlp;
char status;
iobase = dev->id_iobase;
unit = dev->id_unit;
ndevs = unit;
for(aiop=0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
aiopio[aiop] = iobase + (aiop * 0x400);
ctlp = sCtlNumToCtlPtr(unit);
num_aiops = sInitController(ctlp, unit,
rp_controller_port + ((unit-rp_pcicount) * 0x400),
aiopio, MAX_AIOPS_PER_BOARD, 0,
FREQ_DIS, 0);
num_ports = 0;
for(aiop=0; aiop < num_aiops; aiop++) {
sResetAiopByNum(ctlp, aiop);
sEnAiop(ctlp, aiop);
num_ports += sGetAiopNumChan(ctlp, aiop);
}
printf("RocketPort%d = %d ports\n", unit, num_ports);
rp_num_ports[unit] = num_ports;
rp = (struct rp_port *)
malloc(sizeof(struct rp_port) * num_ports, M_TTYS, M_NOWAIT);
if(rp == 0) {
printf("rp_attach: Could not malloc rp_ports structures\n");
return(0);
}
count = unit * 32; /* board # times max ports per card SG */
for(i=count;i < (count + rp_num_ports[unit]);i++)
minor_to_unit[i] = unit;
bzero(rp, sizeof(struct rp_port) * num_ports);
tty = (struct tty *)
malloc(sizeof(struct tty) * num_ports, M_TTYS, M_NOWAIT);
if(tty == 0) {
printf("rp_attach: Could not malloc tty structures\n");
return(0);
}
bzero(tty, sizeof(struct tty) * num_ports);
oldspl = spltty();
rp_addr(unit) = rp;
splx(oldspl);
rp_dev = makedev(CDEV_MAJOR, unit);
cdevsw_add(&rp_dev, &rp_cdevsw, NULL);
port = 0;
for(aiop=0; aiop < num_aiops; aiop++) {
num_chan = sGetAiopNumChan(ctlp, aiop);
for(chan=0; chan < num_chan; chan++, port++, rp++, tty++) {
rp->rp_tty = tty;
rp->rp_port = port;
rp->rp_ctlp = ctlp;
rp->rp_unit = unit;
rp->rp_chan = chan;
rp->rp_aiop = aiop;
tty->t_line = 0;
/* tty->t_termios = deftermios;
*/
rp->dtr_wait = 3 * hz;
rp->it_in.c_iflag = 0;
rp->it_in.c_oflag = 0;
rp->it_in.c_cflag = TTYDEF_CFLAG;
rp->it_in.c_lflag = 0;
termioschars(&rp->it_in);
/* termioschars(&tty->t_termios);
*/
rp->it_in.c_ispeed = rp->it_in.c_ospeed = TTYDEF_SPEED;
rp->it_out = rp->it_in;
rp->rp_intmask = RXF_TRIG | TXFIFO_MT | SRC_INT |
DELTA_CD | DELTA_CTS | DELTA_DSR;
ChanStatus = sGetChanStatus(&rp->rp_channel);
if(sInitChan(ctlp, &rp->rp_channel, aiop, chan) == 0) {
printf("RocketPort sInitChan(%d, %d, %d) failed
\n", unit, aiop, chan);
return(0);
}
ChanStatus = sGetChanStatus(&rp->rp_channel);
rp->rp_cts = (ChanStatus & CTS_ACT) != 0;
line = (unit << 5) | (aiop << 3) | chan;
rp_table(line) = rp;
}
}
idev = find_isadev(isa_devtab_tty, &rpdriver,
RP_MPMASTER(dev) + rp_pcicount);
if(idev == NULL) {
printf("rp%d: master device %d not configured\n",
dev->id_unit, RP_MPMASTER(dev));
}
/* printf("COOL!! Device is found!!\n");
for(rpmajor=0;rpmajor<nchrdev;rpmajor++)
if(cdevsw[rpmajor].d_open == rpopen)
printf("From %d entries: Found entry at major = %d\n",nchrdev,rpmajor);
*/
return(1);
}
int
rpopen(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
struct rp_port *rp;
int unit, i, port, mynor, umynor, flags; /* SG */
struct tty *tp;
int oldspl, error;
unsigned int IntMask, ChanStatus;
umynor = (((minor(dev) >> 16) -1) * 32); /* SG */
port = (minor(dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor];
if(IS_CONTROL(dev))
return(0);
rp = rp_addr(unit) + port;
/* rp->rp_tty = &rp_tty[rp->rp_port];
*/
tp = rp->rp_tty;
oldspl = spltty();
open_top:
while(rp->state & ~SET_DTR) {
error = tsleep(&rp->dtr_wait, TTIPRI | PCATCH, "rpdtr", 0);
if(error != 0)
goto out;
}
if(tp->t_state & TS_ISOPEN) {
if(IS_CALLOUT(dev)) {
if(!rp->active_out) {
error = EBUSY;
goto out;
}
} else {
if(rp->active_out) {
if(flag & O_NONBLOCK) {
error = EBUSY;
goto out;
}
error = tsleep(&rp->active_out,
TTIPRI | PCATCH, "rpbi", 0);
if(error != 0)
goto out;
goto open_top;
}
}
if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
splx(oldspl);
return(EBUSY);
}
}
else {
tp->t_dev = dev;
tp->t_param = rpparam;
tp->t_oproc = rpstart;
tp->t_line = 0;
tp->t_termios = IS_CALLOUT(dev) ? rp->it_out : rp->it_in;
flags = 0;
flags |= SET_RTS;
flags |= SET_DTR;
rp->rp_channel.TxControl[3] =
((rp->rp_channel.TxControl[3]
& ~(SET_RTS | SET_DTR)) | flags);
sOutDW(rp->rp_channel.IndexAddr,
*(DWord_t *) &(rp->rp_channel.TxControl[0]));
sSetRxTrigger(&rp->rp_channel, TRIG_1);
sDisRxStatusMode(&rp->rp_channel);
sFlushRxFIFO(&rp->rp_channel);
sFlushTxFIFO(&rp->rp_channel);
sEnInterrupts(&rp->rp_channel,
(TXINT_EN|MCINT_EN|RXINT_EN|SRCINT_EN|CHANINT_EN));
sSetRxTrigger(&rp->rp_channel, TRIG_1);
sDisRxStatusMode(&rp->rp_channel);
sClrTxXOFF(&rp->rp_channel);
/* sDisRTSFlowCtl(&rp->rp_channel);
sDisCTSFlowCtl(&rp->rp_channel);
*/
sDisTxSoftFlowCtl(&rp->rp_channel);
sStartRxProcessor(&rp->rp_channel);
sEnRxFIFO(&rp->rp_channel);
sEnTransmit(&rp->rp_channel);
/* sSetDTR(&rp->rp_channel);
sSetRTS(&rp->rp_channel);
*/
++rp->wopeners;
error = rpparam(tp, &tp->t_termios);
--rp->wopeners;
if(error != 0) {
splx(oldspl);
return(error);
}
ttsetwater(tp);
rp_num_ports_open++;
IntMask = sGetChanIntID(&rp->rp_channel);
IntMask = IntMask & rp->rp_intmask;
ChanStatus = sGetChanStatus(&rp->rp_channel);
if((IntMask & DELTA_CD) || IS_CALLOUT(dev)) {
if((ChanStatus & CD_ACT) || IS_CALLOUT(dev)) {
(void)(*linesw[tp->t_line].l_modem)(tp, 1);
}
}
if(rp_num_ports_open == 1)
timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL);
}
if(!(flag&O_NONBLOCK) && !(tp->t_cflag&CLOCAL) &&
!(tp->t_state & TS_CARR_ON) && !(IS_CALLOUT(dev))) {
++rp->wopeners;
error = tsleep(TSA_CARR_ON(tp), TTIPRI | PCATCH,
"rpdcd", 0);
--rp->wopeners;
if(error != 0)
goto out;
goto open_top;
}
error = (*linesw[tp->t_line].l_open)(dev, tp);
rp_disc_optim(tp, &tp->t_termios, rp);
if(tp->t_state & TS_ISOPEN && IS_CALLOUT(dev))
rp->active_out = TRUE;
/* if(rp_num_ports_open == 1)
timeout(rp_do_poll, (void *)NULL, POLL_INTERVAL);
*/
out:
splx(oldspl);
if(!(tp->t_state & TS_ISOPEN) && rp->wopeners == 0) {
rphardclose(rp);
}
return(error);
}
int
rpclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
int oldspl, unit, mynor, umynor, port, status, i; /* SG */
struct rp_port *rp;
struct tty *tp;
CHANNEL_t *cp;
umynor = (((minor(dev) >> 16) -1) * 32); /* SG */
port = (minor(dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor]; /* SG */
if(IS_CONTROL(dev))
return(0);
rp = rp_addr(unit) + port;
cp = &rp->rp_channel;
tp = rp->rp_tty;
oldspl = spltty();
(*linesw[tp->t_line].l_close)(tp, flag);
rp_disc_optim(tp, &tp->t_termios, rp);
rpstop(tp, FREAD | FWRITE);
rphardclose(rp);
tp->t_state &= ~TS_BUSY;
ttyclose(tp);
splx(oldspl);
return(0);
}
static void
rphardclose(struct rp_port *rp)
{
int status, oldspl, mynor;
struct tty *tp;
CHANNEL_t *cp;
cp = &rp->rp_channel;
tp = rp->rp_tty;
mynor = MINOR_MAGIC(tp->t_dev);
sFlushRxFIFO(cp);
sFlushTxFIFO(cp);
sDisTransmit(cp);
sDisInterrupts(cp, TXINT_EN|MCINT_EN|RXINT_EN|SRCINT_EN|CHANINT_EN);
sDisRTSFlowCtl(cp);
sDisCTSFlowCtl(cp);
sDisTxSoftFlowCtl(cp);
sClrTxXOFF(cp);
if(tp->t_cflag&HUPCL || !(tp->t_state&TS_ISOPEN) || !rp->active_out) {
sClrDTR(cp);
}
if(IS_CALLOUT(tp->t_dev)) {
sClrDTR(cp);
}
if(rp->dtr_wait != 0) {
timeout(rpdtrwakeup, rp, rp->dtr_wait);
rp->state |= ~SET_DTR;
}
rp->active_out = FALSE;
wakeup(&rp->active_out);
wakeup(TSA_CARR_ON(tp));
}
static
int
rpread(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
struct rp_port *rp;
struct tty *tp;
int unit, i, mynor, umynor, port, error = 0; /* SG */
umynor = (((minor(dev) >> 16) -1) * 32); /* SG */
port = (minor(dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor]; /* SG */
if(IS_CONTROL(dev))
return(ENODEV);
rp = rp_addr(unit) + port;
tp = rp->rp_tty;
error = (*linesw[tp->t_line].l_read)(tp, uio, flag);
return(error);
}
static
int
rpwrite(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
struct rp_port *rp;
struct tty *tp;
int unit, i, mynor, port, umynor, error = 0; /* SG */
umynor = (((minor(dev) >> 16) -1) * 32); /* SG */
port = (minor(dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor]; /* SG */
if(IS_CONTROL(dev))
return(ENODEV);
rp = rp_addr(unit) + port;
tp = rp->rp_tty;
while(rp->rp_disable_writes) {
rp->rp_waiting = 1;
if(error = ttysleep(tp, (caddr_t)rp, TTOPRI|PCATCH,
"rp_write", 0)) {
return(error);
}
}
error = (*linesw[tp->t_line].l_write)(tp, uio, flag);
return error;
}
static void
rpdtrwakeup(void *chan)
{
struct rp_port *rp;
rp = (struct rp_port *)chan;
rp->state &= SET_DTR;
wakeup(&rp->dtr_wait);
}
int
rpioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd;
caddr_t data;
int flag;
struct proc *p;
{
struct rp_port *rp;
CHANNEL_t *cp;
struct tty *tp;
int unit, mynor, port, umynor; /* SG */
int oldspl, cflag, iflag, oflag, lflag;
int i, error = 0;
char status;
int arg, flags, result, ChanStatus;
int oldcmd;
struct termios term, *t;
umynor = (((minor(dev) >> 16) -1) * 32); /* SG */
port = (minor(dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor];
rp = rp_addr(unit) + port;
if(IS_CONTROL(dev)) {
struct termios *ct;
switch (IS_CONTROL(dev)) {
case CONTROL_INIT_STATE:
ct = IS_CALLOUT(dev) ? &rp->it_out : &rp->it_in;
break;
case CONTROL_LOCK_STATE:
ct = IS_CALLOUT(dev) ? &rp->lt_out : &rp->lt_in;
break;
default:
return(ENODEV); /* /dev/nodev */
}
switch (cmd) {
case TIOCSETA:
error = suser(p->p_ucred, &p->p_acflag);
if(error != 0)
return(error);
*ct = *(struct termios *)data;
return(0);
case TIOCGETA:
*(struct termios *)data = *ct;
return(0);
case TIOCGETD:
*(int *)data = TTYDISC;
return(0);
case TIOCGWINSZ:
bzero(data, sizeof(struct winsize));
return(0);
default:
return(ENOTTY);
}
}
tp = rp->rp_tty;
cp = &rp->rp_channel;
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
term = tp->t_termios;
oldcmd = cmd;
error = ttsetcompat(tp, &cmd, data, &term);
if(error != 0)
return(error);
if(cmd != oldcmd) {
data = (caddr_t)&term;
}
#endif
if((cmd == TIOCSETA) || (cmd == TIOCSETAW) || (cmd == TIOCSETAF)) {
int cc;
struct termios *dt = (struct termios *)data;
struct termios *lt = IS_CALLOUT(dev)
? &rp->lt_out : &rp->lt_in;
dt->c_iflag = (tp->t_iflag & lt->c_iflag)
| (dt->c_iflag & ~lt->c_iflag);
dt->c_oflag = (tp->t_oflag & lt->c_oflag)
| (dt->c_oflag & ~lt->c_oflag);
dt->c_cflag = (tp->t_cflag & lt->c_cflag)
| (dt->c_cflag & ~lt->c_cflag);
dt->c_lflag = (tp->t_lflag & lt->c_lflag)
| (dt->c_lflag & ~lt->c_lflag);
for(cc = 0; cc < NCCS; ++cc)
if(lt->c_cc[cc] = tp->t_cc[cc])
dt->c_cc[cc] = tp->t_cc[cc];
if(lt->c_ispeed != 0)
dt->c_ispeed = tp->t_ispeed;
if(lt->c_ospeed != 0)
dt->c_ospeed = tp->t_ospeed;
}
t = &tp->t_termios;
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
if(error != ENOIOCTL) {
return(error);
}
oldspl = spltty();
flags = rp->rp_channel.TxControl[3];
error = ttioctl(tp, cmd, data, flag);
flags = rp->rp_channel.TxControl[3];
rp_disc_optim(tp, &tp->t_termios, rp);
if(error != ENOIOCTL) {
splx(oldspl);
return(error);
}
switch(cmd) {
case TIOCSBRK:
sSendBreak(&rp->rp_channel);
break;
case TIOCCBRK:
sClrBreak(&rp->rp_channel);
break;
case TIOCSDTR:
sSetDTR(&rp->rp_channel);
sSetRTS(&rp->rp_channel);
break;
case TIOCCDTR:
sClrDTR(&rp->rp_channel);
break;
case TIOCMSET:
arg = *(int *) data;
flags = 0;
if(arg & TIOCM_RTS)
flags |= SET_RTS;
if(arg & TIOCM_DTR)
flags |= SET_DTR;
rp->rp_channel.TxControl[3] =
((rp->rp_channel.TxControl[3]
& ~(SET_RTS | SET_DTR)) | flags);
sOutDW(rp->rp_channel.IndexAddr,
*(DWord_t *) &(rp->rp_channel.TxControl[0]));
break;
case TIOCMBIS:
arg = *(int *) data;
flags = 0;
if(arg & TIOCM_RTS)
flags |= SET_RTS;
if(arg & TIOCM_DTR)
flags |= SET_DTR;
rp->rp_channel.TxControl[3] |= flags;
sOutDW(rp->rp_channel.IndexAddr,
*(DWord_t *) &(rp->rp_channel.TxControl[0]));
break;
case TIOCMBIC:
arg = *(int *) data;
flags = 0;
if(arg & TIOCM_RTS)
flags |= SET_RTS;
if(arg & TIOCM_DTR)
flags |= SET_DTR;
rp->rp_channel.TxControl[3] &= ~flags;
sOutDW(rp->rp_channel.IndexAddr,
*(DWord_t *) &(rp->rp_channel.TxControl[0]));
break;
case TIOCMGET:
ChanStatus = sGetChanStatusLo(&rp->rp_channel);
flags = rp->rp_channel.TxControl[3];
result = TIOCM_LE; /* always on while open for some reason */
result |= (((flags & SET_DTR) ? TIOCM_DTR : 0)
| ((flags & SET_RTS) ? TIOCM_RTS : 0)
| ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0)
| ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0)
| ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0));
if(rp->rp_channel.RxControl[2] & RTSFC_EN)
{
result |= TIOCM_RTS;
}
*(int *)data = result;
break;
case TIOCMSDTRWAIT:
error = suser(p->p_ucred, &p->p_acflag);
if(error != 0) {
splx(oldspl);
return(error);
}
rp->dtr_wait = *(int *)data * hz/100;
break;
case TIOCMGDTRWAIT:
*(int *)data = rp->dtr_wait * 100/hz;
break;
default:
splx(oldspl);
return ENOTTY;
}
splx(oldspl);
return(0);
}
static struct speedtab baud_table[] = {
B0, 0, B50, BRD50, B75, BRD75,
B110, BRD110, B134, BRD134, B150, BRD150,
B200, BRD200, B300, BRD300, B600, BRD600,
B1200, BRD1200, B1800, BRD1800, B2400, BRD2400,
B4800, BRD4800, B9600, BRD9600, B19200, BRD19200,
B38400, BRD38400, B7200, BRD7200, B14400, BRD14400,
B57600, BRD57600, B76800, BRD76800,
B115200, BRD115200, B230400, BRD230400,
-1, -1
};
static int
rpparam(tp, t)
struct tty *tp;
struct termios *t;
{
struct rp_port *rp;
CHANNEL_t *cp;
int unit, i, mynor, port, umynor; /* SG */
int oldspl, cflag, iflag, oflag, lflag;
int ospeed, flags;
umynor = (((minor(tp->t_dev) >> 16) -1) * 32); /* SG */
port = (minor(tp->t_dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor];
rp = rp_addr(unit) + port;
cp = &rp->rp_channel;
oldspl = spltty();
cflag = t->c_cflag;
iflag = t->c_iflag;
oflag = t->c_oflag;
lflag = t->c_lflag;
ospeed = ttspeedtab(t->c_ispeed, baud_table);
if(ospeed < 0 || t->c_ispeed != t->c_ospeed)
return(EINVAL);
tp->t_ispeed = t->c_ispeed;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = cflag;
tp->t_iflag = iflag;
tp->t_oflag = oflag;
tp->t_lflag = lflag;
if(t->c_ospeed == 0) {
sClrDTR(cp);
return(0);
}
rp->rp_fifo_lw = ((t->c_ospeed*2) / 1000) +1;
/* Set baud rate ----- we only pay attention to ispeed */
sSetDTR(cp);
sSetRTS(cp);
sSetBaud(cp, ospeed);
if(cflag & CSTOPB) {
sSetStop2(cp);
} else {
sSetStop1(cp);
}
if(cflag & PARENB) {
sEnParity(cp);
if(cflag & PARODD) {
sSetOddParity(cp);
} else {
sSetEvenParity(cp);
}
}
else {
sDisParity(cp);
}
if((cflag & CSIZE) == CS8) {
sSetData8(cp);
rp->rp_imask = 0xFF;
} else {
sSetData7(cp);
rp->rp_imask = 0x7F;
}
if(iflag & ISTRIP) {
rp->rp_imask &= 0x7F;
}
if(cflag & CLOCAL) {
rp->rp_intmask &= ~DELTA_CD;
} else {
rp->rp_intmask |= DELTA_CD;
}
/* Put flow control stuff here */
if(cflag & CCTS_OFLOW) {
sEnCTSFlowCtl(cp);
} else {
sDisCTSFlowCtl(cp);
}
if(cflag & CRTS_IFLOW) {
rp->rp_rts_iflow = 1;
} else {
rp->rp_rts_iflow = 0;
}
if(cflag & CRTS_IFLOW) {
sEnRTSFlowCtl(cp);
} else {
sDisRTSFlowCtl(cp);
}
rp_disc_optim(tp, t, rp);
if((cflag & CLOCAL) || (sGetChanStatusLo(cp) & CD_ACT)) {
tp->t_state |= TS_CARR_ON;
wakeup(TSA_CARR_ON(tp));
}
/* tp->t_state |= TS_CAN_BYPASS_L_RINT;
flags = rp->rp_channel.TxControl[3];
if(flags & SET_DTR)
else
if(flags & SET_RTS)
else
*/
splx(oldspl);
return(0);
}
static void
rp_disc_optim(tp, t, rp)
struct tty *tp;
struct termios *t;
struct rp_port *rp;
{
if(!(t->c_iflag & (ICRNL | IGNCR | IMAXBEL | INLCR | ISTRIP | IXON))
&&(!(t->c_iflag & BRKINT) || (t->c_iflag & IGNBRK))
&&(!(t->c_iflag & PARMRK)
||(t->c_iflag & (IGNPAR | IGNBRK)) == (IGNPAR | IGNBRK))
&& !(t->c_lflag & (ECHO | ICANON | IEXTEN | ISIG | PENDIN))
&& linesw[tp->t_line].l_rint == ttyinput)
tp->t_state |= TS_CAN_BYPASS_L_RINT;
else
tp->t_state &= ~TS_CAN_BYPASS_L_RINT;
}
static void
rpstart(tp)
struct tty *tp;
{
struct rp_port *rp;
CHANNEL_t *cp;
struct clist *qp;
int unit, i, mynor, port, umynor; /* SG */
char status, ch, flags;
int spl, xmit_fifo_room;
int count, ToRecv;
umynor = (((minor(tp->t_dev) >> 16) -1) * 32); /* SG */
port = (minor(tp->t_dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor];
rp = rp_addr(unit) + port;
cp = &rp->rp_channel;
flags = rp->rp_channel.TxControl[3];
spl = spltty();
if(tp->t_state & (TS_TIMEOUT | TS_TTSTOP)) {
ttwwakeup(tp);
splx(spl);
return;
}
if(rp->rp_xmit_stopped) {
sEnTransmit(cp);
rp->rp_xmit_stopped = 0;
}
count = sGetTxCnt(cp);
if(tp->t_outq.c_cc == 0) {
if((tp->t_state & TS_BUSY) && (count == 0)) {
tp->t_state &= ~TS_BUSY;
}
ttwwakeup(tp);
splx(spl);
return;
}
xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
qp = &tp->t_outq;
count = 0;
if(xmit_fifo_room > 0 && qp->c_cc > 0) {
tp->t_state |= TS_BUSY;
}
while(xmit_fifo_room > 0 && qp->c_cc > 0) {
ch = getc(qp);
sOutB(sGetTxRxDataIO(cp), ch);
xmit_fifo_room--;
count++;
}
rp->rp_restart = (qp->c_cc > 0) ? rp->rp_fifo_lw : 0;
ttwwakeup(tp);
splx(spl);
}
static
void
rpstop(tp, flag)
register struct tty *tp;
int flag;
{
struct rp_port *rp;
CHANNEL_t *cp;
struct clist *qp;
int unit, mynor, port, umynor; /* SG */
char status, ch;
int spl, xmit_fifo_room;
int i, count;
umynor = (((minor(tp->t_dev) >> 16) -1) * 32); /* SG */
port = (minor(tp->t_dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor];
rp = rp_addr(unit) + port;
cp = &rp->rp_channel;
spl = spltty();
if(tp->t_state & TS_BUSY) {
if((tp->t_state&TS_TTSTOP) == 0) {
sFlushTxFIFO(cp);
} else {
if(rp->rp_xmit_stopped == 0) {
sDisTransmit(cp);
rp->rp_xmit_stopped = 1;
}
}
}
splx(spl);
rpstart(tp);
}
int
rpselect(dev, flag, p)
dev_t dev;
int flag;
struct proc *p;
{
return(0);
}
struct tty *
rpdevtotty(dev_t dev)
{
struct rp_port *rp;
int unit, i, port, mynor, umynor; /* SG */
umynor = (((minor(dev) >> 16) -1) * 32); /* SG */
port = (minor(dev) & 0x1f); /* SG */
mynor = (port + umynor); /* SG */
unit = minor_to_unit[mynor]; /* SG */
if(IS_CONTROL(dev))
return(NULL);
rp = rp_addr(unit) + port;
return(rp->rp_tty);
}
|