1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
/* $FreeBSD$ */
/* $NetBSD: rf_aselect.c,v 1.3 1999/02/05 00:06:06 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*****************************************************************************
*
* aselect.c -- algorithm selection code
*
*****************************************************************************/
#include <dev/raidframe/rf_archs.h>
#include <dev/raidframe/rf_types.h>
#include <dev/raidframe/rf_raid.h>
#include <dev/raidframe/rf_dag.h>
#include <dev/raidframe/rf_dagutils.h>
#include <dev/raidframe/rf_dagfuncs.h>
#include <dev/raidframe/rf_general.h>
#include <dev/raidframe/rf_desc.h>
#include <dev/raidframe/rf_map.h>
#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL)
/* the function below is not used... so don't define it! */
#else
static void TransferDagMemory(RF_DagHeader_t *, RF_DagHeader_t *);
#endif
static int InitHdrNode(RF_DagHeader_t **, RF_Raid_t *, int);
static void UpdateNodeHdrPtr(RF_DagHeader_t *, RF_DagNode_t *);
int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
/******************************************************************************
*
* Create and Initialiaze a dag header and termination node
*
*****************************************************************************/
static int
InitHdrNode(hdr, raidPtr, memChunkEnable)
RF_DagHeader_t **hdr;
RF_Raid_t *raidPtr;
int memChunkEnable;
{
/* create and initialize dag hdr */
*hdr = rf_AllocDAGHeader();
rf_MakeAllocList((*hdr)->allocList);
if ((*hdr)->allocList == NULL) {
rf_FreeDAGHeader(*hdr);
return (ENOMEM);
}
(*hdr)->status = rf_enable;
(*hdr)->numSuccedents = 0;
(*hdr)->raidPtr = raidPtr;
(*hdr)->next = NULL;
return (0);
}
/******************************************************************************
*
* Transfer allocation list and mem chunks from one dag to another
*
*****************************************************************************/
#if defined(__NetBSD__) || defined(__FreeBSD__) && defined(_KERNEL)
/* the function below is not used... so don't define it! */
#else
static void
TransferDagMemory(daga, dagb)
RF_DagHeader_t *daga;
RF_DagHeader_t *dagb;
{
RF_AccessStripeMapHeader_t *end;
RF_AllocListElem_t *p;
int i, memChunksXfrd = 0, xtraChunksXfrd = 0;
/* transfer allocList from dagb to daga */
for (p = dagb->allocList; p; p = p->next) {
for (i = 0; i < p->numPointers; i++) {
rf_AddToAllocList(daga->allocList, p->pointers[i], p->sizes[i]);
p->pointers[i] = NULL;
p->sizes[i] = 0;
}
p->numPointers = 0;
}
/* transfer chunks from dagb to daga */
while ((memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) && (daga->chunkIndex < RF_MAXCHUNKS)) {
/* stuff chunks into daga's memChunk array */
if (memChunksXfrd < dagb->chunkIndex) {
daga->memChunk[daga->chunkIndex++] = dagb->memChunk[memChunksXfrd];
dagb->memChunk[memChunksXfrd++] = NULL;
} else {
daga->memChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
}
}
/* use escape hatch to hold excess chunks */
while (memChunksXfrd + xtraChunksXfrd < dagb->chunkIndex + dagb->xtraChunkIndex) {
if (memChunksXfrd < dagb->chunkIndex) {
daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->memChunk[memChunksXfrd];
dagb->memChunk[memChunksXfrd++] = NULL;
} else {
daga->xtraMemChunk[daga->xtraChunkIndex++] = dagb->xtraMemChunk[xtraChunksXfrd];
dagb->xtraMemChunk[xtraChunksXfrd++] = NULL;
}
}
RF_ASSERT((memChunksXfrd == dagb->chunkIndex) && (xtraChunksXfrd == dagb->xtraChunkIndex));
RF_ASSERT(daga->chunkIndex <= RF_MAXCHUNKS);
RF_ASSERT(daga->xtraChunkIndex <= daga->xtraChunkCnt);
dagb->chunkIndex = 0;
dagb->xtraChunkIndex = 0;
/* transfer asmList from dagb to daga */
if (dagb->asmList) {
if (daga->asmList) {
end = daga->asmList;
while (end->next)
end = end->next;
end->next = dagb->asmList;
} else
daga->asmList = dagb->asmList;
dagb->asmList = NULL;
}
}
#endif /* __NetBSD__ */
/*****************************************************************************************
*
* Ensure that all node->dagHdr fields in a dag are consistent
*
* IMPORTANT: This routine recursively searches all succedents of the node. If a
* succedent is encountered whose dagHdr ptr does not require adjusting, that node's
* succedents WILL NOT BE EXAMINED.
*
****************************************************************************************/
static void
UpdateNodeHdrPtr(hdr, node)
RF_DagHeader_t *hdr;
RF_DagNode_t *node;
{
int i;
RF_ASSERT(hdr != NULL && node != NULL);
for (i = 0; i < node->numSuccedents; i++)
if (node->succedents[i]->dagHdr != hdr)
UpdateNodeHdrPtr(hdr, node->succedents[i]);
node->dagHdr = hdr;
}
/******************************************************************************
*
* Create a DAG to do a read or write operation.
*
* create an array of dagLists, one list per parity stripe.
* return the lists in the array desc->dagArray.
*
* Normally, each list contains one dag for the entire stripe. In some
* tricky cases, we break this into multiple dags, either one per stripe
* unit or one per block (sector). When this occurs, these dags are returned
* as a linked list (dagList) which is executed sequentially (to preserve
* atomic parity updates in the stripe).
*
* dags which operate on independent parity goups (stripes) are returned in
* independent dagLists (distinct elements in desc->dagArray) and may be
* executed concurrently.
*
* Finally, if the SelectionFunc fails to create a dag for a block, we punt
* and return 1.
*
* The above process is performed in two phases:
* 1) create an array(s) of creation functions (eg stripeFuncs)
* 2) create dags and concatenate/merge to form the final dag.
*
* Because dag's are basic blocks (single entry, single exit, unconditional
* control flow, we can add the following optimizations (future work):
* first-pass optimizer to allow max concurrency (need all data dependencies)
* second-pass optimizer to eliminate common subexpressions (need true
* data dependencies)
* third-pass optimizer to eliminate dead code (need true data dependencies)
*****************************************************************************/
#define MAXNSTRIPES 5
int
rf_SelectAlgorithm(desc, flags)
RF_RaidAccessDesc_t *desc;
RF_RaidAccessFlags_t flags;
{
RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
RF_IoType_t type = desc->type;
RF_Raid_t *raidPtr = desc->raidPtr;
void *bp = desc->bp;
RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
RF_AccessStripeMap_t *asm_p;
RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
int i, j, k;
RF_VoidFuncPtr *stripeFuncs, normalStripeFuncs[MAXNSTRIPES];
RF_AccessStripeMap_t *asm_up, *asm_bp;
RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
RF_AccessStripeMapHeader_t ***asmh_b;
RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
RF_VoidFuncPtr **blockFuncs, bFunc;
int numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
int numStripeUnitsBailed = 0;
int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
RF_StripeNum_t numStripeUnits;
RF_SectorNum_t numBlocks;
RF_RaidAddr_t address;
int length;
RF_PhysDiskAddr_t *physPtr;
caddr_t buffer;
lastdag_h = NULL;
asmh_u = asmh_b = NULL;
stripeUnitFuncs = NULL;
blockFuncs = NULL;
/* get an array of dag-function creation pointers, try to avoid
* calling malloc */
if (asm_h->numStripes <= MAXNSTRIPES)
stripeFuncs = normalStripeFuncs;
else
RF_Calloc(stripeFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
/* walk through the asm list once collecting information */
/* attempt to find a single creation function for each stripe */
desc->numStripes = 0;
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
desc->numStripes++;
(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &stripeFuncs[i]);
/* check to see if we found a creation func for this stripe */
if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
/* could not find creation function for entire stripe
* so, let's see if we can find one for each stripe
* unit in the stripe */
if (numStripesBailed == 0) {
/* one stripe map header for each stripe we
* bail on */
RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
/* create an array of ptrs to arrays of
* stripeFuncs */
RF_Calloc(stripeUnitFuncs, asm_h->numStripes, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
}
/* create an array of creation funcs (called
* stripeFuncs) for this stripe */
numStripeUnits = asm_p->numStripeUnitsAccessed;
RF_Calloc(stripeUnitFuncs[numStripesBailed], numStripeUnits, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
/* lookup array of stripeUnitFuncs for this stripe */
for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
/* remap for series of single stripe-unit
* accesses */
address = physPtr->raidAddress;
length = physPtr->numSector;
buffer = physPtr->bufPtr;
asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
asm_up = asmh_u[numStripesBailed][j]->stripeMap;
/* get the creation func for this stripe unit */
(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
/* check to see if we found a creation func
* for this stripe unit */
if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
/* could not find creation function
* for stripe unit so, let's see if we
* can find one for each block in the
* stripe unit */
if (numStripeUnitsBailed == 0) {
/* one stripe map header for
* each stripe unit we bail on */
RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
/* create an array of ptrs to
* arrays of blockFuncs */
RF_Calloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
}
/* create an array of creation funcs
* (called blockFuncs) for this stripe
* unit */
numBlocks = physPtr->numSector;
numBlockDags += numBlocks;
RF_Calloc(blockFuncs[numStripeUnitsBailed], numBlocks, sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
/* lookup array of blockFuncs for this
* stripe unit */
for (k = 0; k < numBlocks; k++) {
/* remap for series of single
* stripe-unit accesses */
address = physPtr->raidAddress + k;
length = 1;
buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
/* get the creation func for
* this stripe unit */
(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
/* check to see if we found a
* creation func for this
* stripe unit */
if (blockFuncs[numStripeUnitsBailed][k] == NULL)
cantCreateDAGs = RF_TRUE;
}
numStripeUnitsBailed++;
} else {
numUnitDags++;
}
}
RF_ASSERT(j == numStripeUnits);
numStripesBailed++;
}
}
if (cantCreateDAGs) {
/* free memory and punt */
if (asm_h->numStripes > MAXNSTRIPES)
RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
if (numStripesBailed > 0) {
stripeNum = 0;
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
if (stripeFuncs[i] == NULL) {
numStripeUnits = asm_p->numStripeUnitsAccessed;
for (j = 0; j < numStripeUnits; j++)
rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
stripeNum++;
}
RF_ASSERT(stripeNum == numStripesBailed);
RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
}
return (1);
} else {
/* begin dag creation */
stripeNum = 0;
stripeUnitNum = 0;
/* create an array of dagLists and fill them in */
RF_CallocAndAdd(desc->dagArray, desc->numStripes, sizeof(RF_DagList_t), (RF_DagList_t *), desc->cleanupList);
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
/* grab dag header for this stripe */
dag_h = NULL;
desc->dagArray[i].desc = desc;
if (stripeFuncs[i] == (RF_VoidFuncPtr) NULL) {
/* use bailout functions for this stripe */
for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
uFunc = stripeUnitFuncs[stripeNum][j];
if (uFunc == (RF_VoidFuncPtr) NULL) {
/* use bailout functions for
* this stripe unit */
for (k = 0; k < physPtr->numSector; k++) {
/* create a dag for
* this block */
InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
desc->dagArray[i].numDags++;
if (dag_h == NULL) {
dag_h = tempdag_h;
} else {
lastdag_h->next = tempdag_h;
}
lastdag_h = tempdag_h;
bFunc = blockFuncs[stripeUnitNum][k];
RF_ASSERT(bFunc);
asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
(*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
}
stripeUnitNum++;
} else {
/* create a dag for this unit */
InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
desc->dagArray[i].numDags++;
if (dag_h == NULL) {
dag_h = tempdag_h;
} else {
lastdag_h->next = tempdag_h;
}
lastdag_h = tempdag_h;
asm_up = asmh_u[stripeNum][j]->stripeMap;
(*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
}
}
RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
/* merge linked bailout dag to existing dag
* collection */
stripeNum++;
} else {
/* Create a dag for this parity stripe */
InitHdrNode(&tempdag_h, raidPtr, rf_useMemChunks);
desc->dagArray[i].numDags++;
if (dag_h == NULL) {
dag_h = tempdag_h;
} else {
lastdag_h->next = tempdag_h;
}
lastdag_h = tempdag_h;
(stripeFuncs[i]) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
}
desc->dagArray[i].dags = dag_h;
}
RF_ASSERT(i == desc->numStripes);
/* free memory */
if (asm_h->numStripes > MAXNSTRIPES)
RF_Free(stripeFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
stripeNum = 0;
stripeUnitNum = 0;
if (dag_h->asmList) {
endASMList = dag_h->asmList;
while (endASMList->next)
endASMList = endASMList->next;
} else
endASMList = NULL;
/* walk through io, stripe by stripe */
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++)
if (stripeFuncs[i] == NULL) {
numStripeUnits = asm_p->numStripeUnitsAccessed;
/* walk through stripe, stripe unit by
* stripe unit */
for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
if (stripeUnitFuncs[stripeNum][j] == NULL) {
numBlocks = physPtr->numSector;
/* walk through stripe
* unit, block by
* block */
for (k = 0; k < numBlocks; k++)
if (dag_h->asmList == NULL) {
dag_h->asmList = asmh_b[stripeUnitNum][k];
endASMList = dag_h->asmList;
} else {
endASMList->next = asmh_b[stripeUnitNum][k];
endASMList = endASMList->next;
}
RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
stripeUnitNum++;
}
if (dag_h->asmList == NULL) {
dag_h->asmList = asmh_u[stripeNum][j];
endASMList = dag_h->asmList;
} else {
endASMList->next = asmh_u[stripeNum][j];
endASMList = endASMList->next;
}
}
RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
stripeNum++;
}
RF_ASSERT(stripeNum == numStripesBailed);
RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
if (numStripeUnitsBailed > 0) {
RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
}
}
return (0);
}
}
|