summaryrefslogtreecommitdiffstats
path: root/sys/dev/isci/isci_controller.c
blob: b0f42852dda1e6310212d7e8eb0bdcbfe82b9693 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
/*-
 * BSD LICENSE
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <dev/isci/isci.h>

#include <sys/conf.h>
#include <sys/malloc.h>

#include <cam/cam_periph.h>
#include <cam/cam_xpt_periph.h>

#include <dev/isci/scil/sci_memory_descriptor_list.h>
#include <dev/isci/scil/sci_memory_descriptor_list_decorator.h>

#include <dev/isci/scil/scif_controller.h>
#include <dev/isci/scil/scif_library.h>
#include <dev/isci/scil/scif_io_request.h>
#include <dev/isci/scil/scif_task_request.h>
#include <dev/isci/scil/scif_remote_device.h>
#include <dev/isci/scil/scif_domain.h>
#include <dev/isci/scil/scif_user_callback.h>
#include <dev/isci/scil/scic_sgpio.h>

#include <dev/led/led.h>

void isci_action(struct cam_sim *sim, union ccb *ccb);
void isci_poll(struct cam_sim *sim);

#define ccb_sim_ptr sim_priv.entries[0].ptr

/**
 * @brief This user callback will inform the user that the controller has
 *        had a serious unexpected error.  The user should not the error,
 *        disable interrupts, and wait for current ongoing processing to
 *        complete.  Subsequently, the user should reset the controller.
 *
 * @param[in]  controller This parameter specifies the controller that had
 *                        an error.
 *
 * @return none
 */
void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller,
    SCI_CONTROLLER_ERROR error)
{

	isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n",
	    error);
}

/**
 * @brief This user callback will inform the user that the controller has
 *        finished the start process.
 *
 * @param[in]  controller This parameter specifies the controller that was
 *             started.
 * @param[in]  completion_status This parameter specifies the results of
 *             the start operation.  SCI_SUCCESS indicates successful
 *             completion.
 *
 * @return none
 */
void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller,
    SCI_STATUS completion_status)
{
	uint32_t index;
	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
	    sci_object_get_association(controller);

	isci_controller->is_started = TRUE;

	/* Set bits for all domains.  We will clear them one-by-one once
	 *  the domains complete discovery, or return error when calling
	 *  scif_domain_discover.  Once all bits are clear, we will register
	 *  the controller with CAM.
	 */
	isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1;

	for(index = 0; index < SCI_MAX_DOMAINS; index++) {
		SCI_STATUS status;
		SCI_DOMAIN_HANDLE_T domain =
		    isci_controller->domain[index].sci_object;

		status = scif_domain_discover(
			domain,
			scif_domain_get_suggested_discover_timeout(domain),
			DEVICE_TIMEOUT
		);

		if (status != SCI_SUCCESS)
		{
			isci_controller_domain_discovery_complete(
			    isci_controller, &isci_controller->domain[index]);
		}
	}
}

/**
 * @brief This user callback will inform the user that the controller has
 *        finished the stop process. Note, after user calls
 *        scif_controller_stop(), before user receives this controller stop
 *        complete callback, user should not expect any callback from
 *        framework, such like scif_cb_domain_change_notification().
 *
 * @param[in]  controller This parameter specifies the controller that was
 *             stopped.
 * @param[in]  completion_status This parameter specifies the results of
 *             the stop operation.  SCI_SUCCESS indicates successful
 *             completion.
 *
 * @return none
 */
void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller,
    SCI_STATUS completion_status)
{
	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
	    sci_object_get_association(controller);

	isci_controller->is_started = FALSE;
}

static void
isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
	SCI_PHYSICAL_ADDRESS *phys_addr = arg;

	*phys_addr = seg[0].ds_addr;
}

/**
 * @brief This method will be invoked to allocate memory dynamically.
 *
 * @param[in]  controller This parameter represents the controller
 *             object for which to allocate memory.
 * @param[out] mde This parameter represents the memory descriptor to
 *             be filled in by the user that will reference the newly
 *             allocated memory.
 *
 * @return none
 */
void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller,
    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde)
{
	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
	    sci_object_get_association(controller);

	/*
	 * Note this routine is only used for buffers needed to translate
	 * SCSI UNMAP commands to ATA DSM commands for SATA disks.
	 *
	 * We first try to pull a buffer from the controller's pool, and only
	 * call contigmalloc if one isn't there.
	 */
	if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) {
		sci_pool_get(isci_controller->unmap_buffer_pool,
		    mde->virtual_address);
	} else
		mde->virtual_address = contigmalloc(PAGE_SIZE,
		    M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR,
		    mde->constant_memory_alignment, 0);

	if (mde->virtual_address != NULL)
		bus_dmamap_load(isci_controller->buffer_dma_tag,
		    NULL, mde->virtual_address, PAGE_SIZE,
		    isci_single_map, &mde->physical_address,
		    BUS_DMA_NOWAIT);
}

/**
 * @brief This method will be invoked to allocate memory dynamically.
 *
 * @param[in]  controller This parameter represents the controller
 *             object for which to allocate memory.
 * @param[out] mde This parameter represents the memory descriptor to
 *             be filled in by the user that will reference the newly
 *             allocated memory.
 *
 * @return none
 */
void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller,
    SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde)
{
	struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *)
	    sci_object_get_association(controller);

	/*
	 * Put the buffer back into the controller's buffer pool, rather
	 * than invoking configfree.  This helps reduce chance we won't
	 * have buffers available when system is under memory pressure.
	 */ 
	sci_pool_put(isci_controller->unmap_buffer_pool,
	    mde->virtual_address);
}

void isci_controller_construct(struct ISCI_CONTROLLER *controller,
    struct isci_softc *isci)
{
	SCI_CONTROLLER_HANDLE_T scif_controller_handle;

	scif_library_allocate_controller(isci->sci_library_handle,
	    &scif_controller_handle);

	scif_controller_construct(isci->sci_library_handle,
	    scif_controller_handle, NULL);

	controller->isci = isci;
	controller->scif_controller_handle = scif_controller_handle;

	/* This allows us to later use
	 *  sci_object_get_association(scif_controller_handle)
	 * inside of a callback routine to get our struct ISCI_CONTROLLER object
	 */
	sci_object_set_association(scif_controller_handle, (void *)controller);

	controller->is_started = FALSE;
	controller->is_frozen = FALSE;
	controller->release_queued_ccbs = FALSE;
	controller->sim = NULL;
	controller->initial_discovery_mask = 0;

	sci_fast_list_init(&controller->pending_device_reset_list);

	mtx_init(&controller->lock, "isci", NULL, MTX_DEF);

	uint32_t domain_index;

	for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) {
		isci_domain_construct( &controller->domain[domain_index],
		    domain_index, controller);
	}

	controller->timer_memory = malloc(
	    sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI,
	    M_NOWAIT | M_ZERO);

	sci_pool_initialize(controller->timer_pool);

	struct ISCI_TIMER *timer = (struct ISCI_TIMER *)
	    controller->timer_memory;

	for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) {
		sci_pool_put(controller->timer_pool, timer++);
	}

	sci_pool_initialize(controller->unmap_buffer_pool);
}

static void isci_led_fault_func(void *priv, int onoff)
{
	struct ISCI_PHY *phy = priv;

	/* map onoff to the fault LED */
	phy->led_fault = onoff;
	scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 
		phy->led_fault, phy->led_locate, 0);
}

static void isci_led_locate_func(void *priv, int onoff)
{
	struct ISCI_PHY *phy = priv;

	/* map onoff to the locate LED */
	phy->led_locate = onoff;
	scic_sgpio_update_led_state(phy->handle, 1 << phy->index, 
		phy->led_fault, phy->led_locate, 0);
}

SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller)
{
	SCIC_USER_PARAMETERS_T scic_user_parameters;
	SCI_CONTROLLER_HANDLE_T scic_controller_handle;
	char led_name[64];
	unsigned long tunable;
	uint32_t io_shortage;
	uint32_t fail_on_timeout;
	int i;

	scic_controller_handle =
	    scif_controller_get_scic_handle(controller->scif_controller_handle);

	if (controller->isci->oem_parameters_found == TRUE)
	{
		scic_oem_parameters_set(
		    scic_controller_handle,
		    &controller->oem_parameters,
		    (uint8_t)(controller->oem_parameters_version));
	}

	scic_user_parameters_get(scic_controller_handle, &scic_user_parameters);

	if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable))
		scic_user_parameters.sds1.no_outbound_task_timeout =
		    (uint8_t)tunable;

	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable))
		scic_user_parameters.sds1.ssp_max_occupancy_timeout =
		    (uint16_t)tunable;

	if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable))
		scic_user_parameters.sds1.stp_max_occupancy_timeout =
		    (uint16_t)tunable;

	if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable))
		scic_user_parameters.sds1.ssp_inactivity_timeout =
		    (uint16_t)tunable;

	if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable))
		scic_user_parameters.sds1.stp_inactivity_timeout =
		    (uint16_t)tunable;

	if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable))
		for (i = 0; i < SCI_MAX_PHYS; i++)
			scic_user_parameters.sds1.phys[i].max_speed_generation =
			    (uint8_t)tunable;

	scic_user_parameters_set(scic_controller_handle, &scic_user_parameters);

	/* Scheduler bug in SCU requires SCIL to reserve some task contexts as a
	 *  a workaround - one per domain.
	 */
	controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS;

	if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth",
	    &controller->queue_depth)) {
		controller->queue_depth = max(1, min(controller->queue_depth,
		    SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS));
	}

	/* Reserve one request so that we can ensure we have one available TC
	 *  to do internal device resets.
	 */
	controller->sim_queue_depth = controller->queue_depth - 1;

	/* Although we save one TC to do internal device resets, it is possible
	 *  we could end up using several TCs for simultaneous device resets
	 *  while at the same time having CAM fill our controller queue.  To
	 *  simulate this condition, and how our driver handles it, we can set
	 *  this io_shortage parameter, which will tell CAM that we have a
	 *  large queue depth than we really do.
	 */
	io_shortage = 0;
	TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage);
	controller->sim_queue_depth += io_shortage;

	fail_on_timeout = 1;
	TUNABLE_INT_FETCH("hw.isci.fail_on_task_timeout", &fail_on_timeout);
	controller->fail_on_task_timeout = fail_on_timeout;

	/* Attach to CAM using xpt_bus_register now, then immediately freeze
	 *  the simq.  It will get released later when initial domain discovery
	 *  is complete.
	 */
	controller->has_been_scanned = FALSE;
	mtx_lock(&controller->lock);
	isci_controller_attach_to_cam(controller);
	xpt_freeze_simq(controller->sim, 1);
	mtx_unlock(&controller->lock);

	for (i = 0; i < SCI_MAX_PHYS; i++) {
		controller->phys[i].handle = scic_controller_handle;
		controller->phys[i].index = i;

		/* fault */
		controller->phys[i].led_fault = 0;
		sprintf(led_name, "isci.bus%d.port%d.fault", controller->index, i);
		controller->phys[i].cdev_fault = led_create(isci_led_fault_func,
		    &controller->phys[i], led_name);
			
		/* locate */
		controller->phys[i].led_locate = 0;
		sprintf(led_name, "isci.bus%d.port%d.locate", controller->index, i);
		controller->phys[i].cdev_locate = led_create(isci_led_locate_func,
		    &controller->phys[i], led_name);
	}

	return (scif_controller_initialize(controller->scif_controller_handle));
}

int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller)
{
	int error;
	device_t device =  controller->isci->device;
	uint32_t max_segment_size = isci_io_request_get_max_io_size();
	uint32_t status = 0;
	struct ISCI_MEMORY *uncached_controller_memory =
	    &controller->uncached_controller_memory;
	struct ISCI_MEMORY *cached_controller_memory =
	    &controller->cached_controller_memory;
	struct ISCI_MEMORY *request_memory =
	    &controller->request_memory;
	POINTER_UINT virtual_address;
	bus_addr_t physical_address;

	controller->mdl = sci_controller_get_memory_descriptor_list_handle(
	    controller->scif_controller_handle);

	uncached_controller_memory->size = sci_mdl_decorator_get_memory_size(
	    controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS);

	error = isci_allocate_dma_buffer(device, uncached_controller_memory);

	if (error != 0)
	    return (error);

	sci_mdl_decorator_assign_memory( controller->mdl,
	    SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
	    uncached_controller_memory->virtual_address,
	    uncached_controller_memory->physical_address);

	cached_controller_memory->size = sci_mdl_decorator_get_memory_size(
	    controller->mdl,
	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
	);

	error = isci_allocate_dma_buffer(device, cached_controller_memory);

	if (error != 0)
	    return (error);

	sci_mdl_decorator_assign_memory(controller->mdl,
	    SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS,
	    cached_controller_memory->virtual_address,
	    cached_controller_memory->physical_address);

	request_memory->size =
	    controller->queue_depth * isci_io_request_get_object_size();

	error = isci_allocate_dma_buffer(device, request_memory);

	if (error != 0)
	    return (error);

	/* For STP PIO testing, we want to ensure we can force multiple SGLs
	 *  since this has been a problem area in SCIL.  This tunable parameter
	 *  will allow us to force DMA segments to a smaller size, ensuring
	 *  that even if a physically contiguous buffer is attached to this
	 *  I/O, the DMA subsystem will pass us multiple segments in our DMA
	 *  load callback.
	 */
	TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size);

	/* Create DMA tag for our I/O requests.  Then we can create DMA maps based off
	 *  of this tag and store them in each of our ISCI_IO_REQUEST objects.  This
	 *  will enable better performance than creating the DMA maps everytime we get
	 *  an I/O.
	 */
	status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0,
	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
	    isci_io_request_get_max_io_size(),
	    SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL,
	    &controller->buffer_dma_tag);

	sci_pool_initialize(controller->request_pool);

	virtual_address = request_memory->virtual_address;
	physical_address = request_memory->physical_address;

	for (int i = 0; i < controller->queue_depth; i++) {
		struct ISCI_REQUEST *request =
		    (struct ISCI_REQUEST *)virtual_address;

		isci_request_construct(request,
		    controller->scif_controller_handle,
		    controller->buffer_dma_tag, physical_address);

		sci_pool_put(controller->request_pool, request);

		virtual_address += isci_request_get_object_size();
		physical_address += isci_request_get_object_size();
	}

	uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) +
	    scif_remote_device_get_object_size();

	controller->remote_device_memory = (uint8_t *) malloc(
	    remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI,
	    M_NOWAIT | M_ZERO);

	sci_pool_initialize(controller->remote_device_pool);

	uint8_t *remote_device_memory_ptr = controller->remote_device_memory;

	for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
		struct ISCI_REMOTE_DEVICE *remote_device =
		    (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr;

		controller->remote_device[i] = NULL;
		remote_device->index = i;
		remote_device->is_resetting = FALSE;
		remote_device->frozen_lun_mask = 0;
		sci_fast_list_element_init(remote_device,
		    &remote_device->pending_device_reset_element);
		TAILQ_INIT(&remote_device->queued_ccbs);
		remote_device->release_queued_ccb = FALSE;
		remote_device->queued_ccb_in_progress = NULL;

		/*
		 * For the first SCI_MAX_DOMAINS device objects, do not put
		 *  them in the pool, rather assign them to each domain.  This
		 *  ensures that any device attached directly to port "i" will
		 *  always get CAM target id "i".
		 */
		if (i < SCI_MAX_DOMAINS)
			controller->domain[i].da_remote_device = remote_device;
		else
			sci_pool_put(controller->remote_device_pool,
			    remote_device);
		remote_device_memory_ptr += remote_device_size;
	}

	return (0);
}

void isci_controller_start(void *controller_handle)
{
	struct ISCI_CONTROLLER *controller =
	    (struct ISCI_CONTROLLER *)controller_handle;
	SCI_CONTROLLER_HANDLE_T scif_controller_handle =
	    controller->scif_controller_handle;

	scif_controller_start(scif_controller_handle,
	    scif_controller_get_suggested_start_timeout(scif_controller_handle));

	scic_controller_enable_interrupts(
	    scif_controller_get_scic_handle(controller->scif_controller_handle));
}

void isci_controller_domain_discovery_complete(
    struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain)
{
	if (!isci_controller->has_been_scanned)
	{
		/* Controller has not been scanned yet.  We'll clear
		 *  the discovery bit for this domain, then check if all bits
		 *  are now clear.  That would indicate that all domains are
		 *  done with discovery and we can then proceed with initial
		 *  scan.
		 */

		isci_controller->initial_discovery_mask &=
		    ~(1 << isci_domain->index);

		if (isci_controller->initial_discovery_mask == 0) {
			struct isci_softc *driver = isci_controller->isci;
			uint8_t next_index = isci_controller->index + 1;

			isci_controller->has_been_scanned = TRUE;

			/* Unfreeze simq to allow initial scan to proceed. */
			xpt_release_simq(isci_controller->sim, TRUE);

#if __FreeBSD_version < 800000
			/* When driver is loaded after boot, we need to
			 *  explicitly rescan here for versions <8.0, because
			 *  CAM only automatically scans new buses at boot
			 *  time.
			 */
			union ccb *ccb = xpt_alloc_ccb_nowait();

			xpt_create_path(&ccb->ccb_h.path, NULL,
			    cam_sim_path(isci_controller->sim),
			    CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);

			xpt_rescan(ccb);
#endif

			if (next_index < driver->controller_count) {
				/*  There are more controllers that need to
				 *   start.  So start the next one.
				 */
				isci_controller_start(
				    &driver->controllers[next_index]);
			}
			else
			{
				/* All controllers have been started and completed discovery.
				 *  Disestablish the config hook while will signal to the
				 *  kernel during boot that it is safe to try to find and
				 *  mount the root partition.
				 */
				config_intrhook_disestablish(
				    &driver->config_hook);
			}
		}
	}
}

int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller)
{
	struct isci_softc *isci = controller->isci;
	device_t parent = device_get_parent(isci->device);
	int unit = device_get_unit(isci->device);
	struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth);

	if(isci_devq == NULL) {
		isci_log_message(0, "ISCI", "isci_devq is NULL \n");
		return (-1);
	}

	controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci",
	    controller, unit, &controller->lock, controller->sim_queue_depth,
	    controller->sim_queue_depth, isci_devq);

	if(controller->sim == NULL) {
		isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n");
		cam_simq_free(isci_devq);
		return (-1);
	}

	if(xpt_bus_register(controller->sim, parent, controller->index)
	    != CAM_SUCCESS) {
		isci_log_message(0, "ISCI", "xpt_bus_register...fails \n");
		cam_sim_free(controller->sim, TRUE);
		mtx_unlock(&controller->lock);
		return (-1);
	}

	if(xpt_create_path(&controller->path, NULL,
	    cam_sim_path(controller->sim), CAM_TARGET_WILDCARD,
	    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
		isci_log_message(0, "ISCI", "xpt_create_path....fails\n");
		xpt_bus_deregister(cam_sim_path(controller->sim));
		cam_sim_free(controller->sim, TRUE);
		mtx_unlock(&controller->lock);
		return (-1);
	}

	return (0);
}

void isci_poll(struct cam_sim *sim)
{
	struct ISCI_CONTROLLER *controller =
	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);

	isci_interrupt_poll_handler(controller);
}

void isci_action(struct cam_sim *sim, union ccb *ccb)
{
	struct ISCI_CONTROLLER *controller =
	    (struct ISCI_CONTROLLER *)cam_sim_softc(sim);

	switch ( ccb->ccb_h.func_code ) {
	case XPT_PATH_INQ:
		{
			struct ccb_pathinq *cpi = &ccb->cpi;
			int bus = cam_sim_bus(sim);
			ccb->ccb_h.ccb_sim_ptr = sim;
			cpi->version_num = 1;
			cpi->hba_inquiry = PI_TAG_ABLE;
			cpi->target_sprt = 0;
			cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN |
			    PIM_UNMAPPED;
			cpi->hba_eng_cnt = 0;
			cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1;
			cpi->max_lun = ISCI_MAX_LUN;
#if __FreeBSD_version >= 800102
			cpi->maxio = isci_io_request_get_max_io_size();
#endif
			cpi->unit_number = cam_sim_unit(sim);
			cpi->bus_id = bus;
			cpi->initiator_id = SCI_MAX_REMOTE_DEVICES;
			cpi->base_transfer_speed = 300000;
			strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
			strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN);
			strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
			cpi->transport = XPORT_SAS;
			cpi->transport_version = 0;
			cpi->protocol = PROTO_SCSI;
			cpi->protocol_version = SCSI_REV_SPC2;
			cpi->ccb_h.status = CAM_REQ_CMP;
			xpt_done(ccb);
		}
		break;
	case XPT_GET_TRAN_SETTINGS:
		{
			struct ccb_trans_settings *general_settings = &ccb->cts;
			struct ccb_trans_settings_sas *sas_settings =
			    &general_settings->xport_specific.sas;
			struct ccb_trans_settings_scsi *scsi_settings =
			    &general_settings->proto_specific.scsi;
			struct ISCI_REMOTE_DEVICE *remote_device;

			remote_device = controller->remote_device[ccb->ccb_h.target_id];

			if (remote_device == NULL) {
				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
				xpt_done(ccb);
				break;
			}

			general_settings->protocol = PROTO_SCSI;
			general_settings->transport = XPORT_SAS;
			general_settings->protocol_version = SCSI_REV_SPC2;
			general_settings->transport_version = 0;
			scsi_settings->valid = CTS_SCSI_VALID_TQ;
			scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB;
			ccb->ccb_h.status &= ~CAM_STATUS_MASK;
			ccb->ccb_h.status |= CAM_REQ_CMP;

			sas_settings->bitrate =
			    isci_remote_device_get_bitrate(remote_device);

			if (sas_settings->bitrate != 0)
				sas_settings->valid = CTS_SAS_VALID_SPEED;

			xpt_done(ccb);
		}
		break;
	case XPT_SCSI_IO:
		isci_io_request_execute_scsi_io(ccb, controller);
		break;
#if __FreeBSD_version >= 900026
	case XPT_SMP_IO:
		isci_io_request_execute_smp_io(ccb, controller);
		break;
#endif
	case XPT_SET_TRAN_SETTINGS:
		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
		ccb->ccb_h.status |= CAM_REQ_CMP;
		xpt_done(ccb);
		break;
	case XPT_CALC_GEOMETRY:
		cam_calc_geometry(&ccb->ccg, /*extended*/1);
		xpt_done(ccb);
		break;
	case XPT_RESET_DEV:
		{
			struct ISCI_REMOTE_DEVICE *remote_device =
			    controller->remote_device[ccb->ccb_h.target_id];

			if (remote_device != NULL)
				isci_remote_device_reset(remote_device, ccb);
			else {
				ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
				ccb->ccb_h.status &= ~CAM_STATUS_MASK;
				ccb->ccb_h.status |= CAM_DEV_NOT_THERE;
				xpt_done(ccb);
			}
		}
		break;
	case XPT_RESET_BUS:
		ccb->ccb_h.status = CAM_REQ_CMP;
		xpt_done(ccb);
		break;
	default:
		isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n",
		    ccb->ccb_h.func_code);
		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
		ccb->ccb_h.status &= ~CAM_STATUS_MASK;
		ccb->ccb_h.status |= CAM_REQ_INVALID;
		xpt_done(ccb);
		break;
	}
}

/*
 * Unfortunately, SCIL doesn't cleanly handle retry conditions.
 *  CAM_REQUEUE_REQ works only when no one is using the pass(4) interface.  So
 *  when SCIL denotes an I/O needs to be retried (typically because of mixing
 *  tagged/non-tagged ATA commands, or running out of NCQ slots), we queue
 *  these I/O internally.  Once SCIL completes an I/O to this device, or we get
 *  a ready notification, we will retry the first I/O on the queue.
 *  Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within
 *  the context of the completion handler, so we need to retry these I/O after
 *  the completion handler is done executing.
 */
void
isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller)
{
	struct ISCI_REMOTE_DEVICE *dev;
	struct ccb_hdr *ccb_h;
	int dev_idx;

	KASSERT(mtx_owned(&controller->lock), ("controller lock not owned"));

	controller->release_queued_ccbs = FALSE;
	for (dev_idx = 0;
	     dev_idx < SCI_MAX_REMOTE_DEVICES;
	     dev_idx++) {

		dev = controller->remote_device[dev_idx];
		if (dev != NULL &&
		    dev->release_queued_ccb == TRUE &&
		    dev->queued_ccb_in_progress == NULL) {
			dev->release_queued_ccb = FALSE;
			ccb_h = TAILQ_FIRST(&dev->queued_ccbs);

			if (ccb_h == NULL)
				continue;

			isci_log_message(1, "ISCI", "release %p %x\n", ccb_h,
			    ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]);

			dev->queued_ccb_in_progress = (union ccb *)ccb_h;
			isci_io_request_execute_scsi_io(
			    (union ccb *)ccb_h, controller);
		}
	}
}
OpenPOWER on IntegriCloud