1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
|
/******************************************************************************
Copyright (c) 2001-2015, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
/*$FreeBSD$*/
/*
* 82543GC Gigabit Ethernet Controller (Fiber)
* 82543GC Gigabit Ethernet Controller (Copper)
* 82544EI Gigabit Ethernet Controller (Copper)
* 82544EI Gigabit Ethernet Controller (Fiber)
* 82544GC Gigabit Ethernet Controller (Copper)
* 82544GC Gigabit Ethernet Controller (LOM)
*/
#include "e1000_api.h"
static s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
static s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
u16 *data);
static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
u16 data);
static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
static s32 e1000_reset_hw_82543(struct e1000_hw *hw);
static s32 e1000_init_hw_82543(struct e1000_hw *hw);
static s32 e1000_setup_link_82543(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
static s32 e1000_led_on_82543(struct e1000_hw *hw);
static s32 e1000_led_off_82543(struct e1000_hw *hw);
static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
u32 value);
static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
u16 count);
static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
static s32 e1000_read_mac_addr_82543(struct e1000_hw *hw);
/**
* e1000_init_phy_params_82543 - Init PHY func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_init_phy_params_82543");
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
goto out;
} else {
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper;
}
phy->addr = 1;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->reset_delay_us = 10000;
phy->type = e1000_phy_m88;
/* Function Pointers */
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.commit = e1000_phy_sw_reset_generic;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
phy->ops.get_cable_length = e1000_get_cable_length_m88;
phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
phy->ops.read_reg = (hw->mac.type == e1000_82543)
? e1000_read_phy_reg_82543
: e1000_read_phy_reg_m88;
phy->ops.reset = (hw->mac.type == e1000_82543)
? e1000_phy_hw_reset_82543
: e1000_phy_hw_reset_generic;
phy->ops.write_reg = (hw->mac.type == e1000_82543)
? e1000_write_phy_reg_82543
: e1000_write_phy_reg_m88;
phy->ops.get_info = e1000_get_phy_info_m88;
/*
* The external PHY of the 82543 can be in a funky state.
* Resetting helps us read the PHY registers for acquiring
* the PHY ID.
*/
if (!e1000_init_phy_disabled_82543(hw)) {
ret_val = phy->ops.reset(hw);
if (ret_val) {
DEBUGOUT("Resetting PHY during init failed.\n");
goto out;
}
msec_delay(20);
}
ret_val = e1000_get_phy_id(hw);
if (ret_val)
goto out;
/* Verify phy id */
switch (hw->mac.type) {
case e1000_82543:
if (phy->id != M88E1000_E_PHY_ID) {
ret_val = -E1000_ERR_PHY;
goto out;
}
break;
case e1000_82544:
if (phy->id != M88E1000_I_PHY_ID) {
ret_val = -E1000_ERR_PHY;
goto out;
}
break;
default:
ret_val = -E1000_ERR_PHY;
goto out;
break;
}
out:
return ret_val;
}
/**
* e1000_init_nvm_params_82543 - Init NVM func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
DEBUGFUNC("e1000_init_nvm_params_82543");
nvm->type = e1000_nvm_eeprom_microwire;
nvm->word_size = 64;
nvm->delay_usec = 50;
nvm->address_bits = 6;
nvm->opcode_bits = 3;
/* Function Pointers */
nvm->ops.read = e1000_read_nvm_microwire;
nvm->ops.update = e1000_update_nvm_checksum_generic;
nvm->ops.valid_led_default = e1000_valid_led_default_generic;
nvm->ops.validate = e1000_validate_nvm_checksum_generic;
nvm->ops.write = e1000_write_nvm_microwire;
return E1000_SUCCESS;
}
/**
* e1000_init_mac_params_82543 - Init MAC func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
DEBUGFUNC("e1000_init_mac_params_82543");
/* Set media type */
switch (hw->device_id) {
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82544EI_FIBER:
hw->phy.media_type = e1000_media_type_fiber;
break;
default:
hw->phy.media_type = e1000_media_type_copper;
break;
}
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES;
/* Function pointers */
/* bus type/speed/width */
mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
/* function id */
mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
/* reset */
mac->ops.reset_hw = e1000_reset_hw_82543;
/* hw initialization */
mac->ops.init_hw = e1000_init_hw_82543;
/* link setup */
mac->ops.setup_link = e1000_setup_link_82543;
/* physical interface setup */
mac->ops.setup_physical_interface =
(hw->phy.media_type == e1000_media_type_copper)
? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
/* check for link */
mac->ops.check_for_link =
(hw->phy.media_type == e1000_media_type_copper)
? e1000_check_for_copper_link_82543
: e1000_check_for_fiber_link_82543;
/* link info */
mac->ops.get_link_up_info =
(hw->phy.media_type == e1000_media_type_copper)
? e1000_get_speed_and_duplex_copper_generic
: e1000_get_speed_and_duplex_fiber_serdes_generic;
/* multicast address update */
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
/* writing VFTA */
mac->ops.write_vfta = e1000_write_vfta_82543;
/* clearing VFTA */
mac->ops.clear_vfta = e1000_clear_vfta_generic;
/* read mac address */
mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_82543;
mac->ops.led_off = e1000_led_off_82543;
/* clear hardware counters */
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
/* Set tbi compatibility */
if ((hw->mac.type != e1000_82543) ||
(hw->phy.media_type == e1000_media_type_fiber))
e1000_set_tbi_compatibility_82543(hw, FALSE);
return E1000_SUCCESS;
}
/**
* e1000_init_function_pointers_82543 - Init func ptrs.
* @hw: pointer to the HW structure
*
* Called to initialize all function pointers and parameters.
**/
void e1000_init_function_pointers_82543(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_init_function_pointers_82543");
hw->mac.ops.init_params = e1000_init_mac_params_82543;
hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
hw->phy.ops.init_params = e1000_init_phy_params_82543;
}
/**
* e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
* @hw: pointer to the HW structure
*
* Returns the current status of 10-bit Interface (TBI) compatibility
* (enabled/disabled).
**/
static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
{
struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
bool state = FALSE;
DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
if (hw->mac.type != e1000_82543) {
DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
goto out;
}
state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
out:
return state;
}
/**
* e1000_set_tbi_compatibility_82543 - Set TBI compatibility
* @hw: pointer to the HW structure
* @state: enable/disable TBI compatibility
*
* Enables or disabled 10-bit Interface (TBI) compatibility.
**/
void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
{
struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
DEBUGFUNC("e1000_set_tbi_compatibility_82543");
if (hw->mac.type != e1000_82543) {
DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
goto out;
}
if (state)
dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
else
dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
out:
return;
}
/**
* e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
* @hw: pointer to the HW structure
*
* Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
* (enabled/disabled).
**/
bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
{
struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
bool state = FALSE;
DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
if (hw->mac.type != e1000_82543) {
DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
goto out;
}
state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
out:
return state;
}
/**
* e1000_set_tbi_sbp_82543 - Set TBI SBP
* @hw: pointer to the HW structure
* @state: enable/disable TBI store bad packet
*
* Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
**/
static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
{
struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
DEBUGFUNC("e1000_set_tbi_sbp_82543");
if (state && e1000_tbi_compatibility_enabled_82543(hw))
dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
else
dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
return;
}
/**
* e1000_init_phy_disabled_82543 - Returns init PHY status
* @hw: pointer to the HW structure
*
* Returns the current status of whether PHY initialization is disabled.
* True if PHY initialization is disabled else FALSE.
**/
static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
{
struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
bool ret_val;
DEBUGFUNC("e1000_init_phy_disabled_82543");
if (hw->mac.type != e1000_82543) {
ret_val = FALSE;
goto out;
}
ret_val = dev_spec->init_phy_disabled;
out:
return ret_val;
}
/**
* e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
* @hw: pointer to the HW structure
* @stats: Struct containing statistic register values
* @frame_len: The length of the frame in question
* @mac_addr: The Ethernet destination address of the frame in question
* @max_frame_size: The maximum frame size
*
* Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
**/
void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
struct e1000_hw_stats *stats, u32 frame_len,
u8 *mac_addr, u32 max_frame_size)
{
if (!(e1000_tbi_sbp_enabled_82543(hw)))
goto out;
/* First adjust the frame length. */
frame_len--;
/*
* We need to adjust the statistics counters, since the hardware
* counters overcount this packet as a CRC error and undercount
* the packet as a good packet
*/
/* This packet should not be counted as a CRC error. */
stats->crcerrs--;
/* This packet does count as a Good Packet Received. */
stats->gprc++;
/* Adjust the Good Octets received counters */
stats->gorc += frame_len;
/*
* Is this a broadcast or multicast? Check broadcast first,
* since the test for a multicast frame will test positive on
* a broadcast frame.
*/
if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
/* Broadcast packet */
stats->bprc++;
else if (*mac_addr & 0x01)
/* Multicast packet */
stats->mprc++;
/*
* In this case, the hardware has over counted the number of
* oversize frames.
*/
if ((frame_len == max_frame_size) && (stats->roc > 0))
stats->roc--;
/*
* Adjust the bin counters when the extra byte put the frame in the
* wrong bin. Remember that the frame_len was adjusted above.
*/
if (frame_len == 64) {
stats->prc64++;
stats->prc127--;
} else if (frame_len == 127) {
stats->prc127++;
stats->prc255--;
} else if (frame_len == 255) {
stats->prc255++;
stats->prc511--;
} else if (frame_len == 511) {
stats->prc511++;
stats->prc1023--;
} else if (frame_len == 1023) {
stats->prc1023++;
stats->prc1522--;
} else if (frame_len == 1522) {
stats->prc1522++;
}
out:
return;
}
/**
* e1000_read_phy_reg_82543 - Read PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY at offset and stores the information read to data.
**/
static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
{
u32 mdic;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_read_phy_reg_82543");
if (offset > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", offset);
ret_val = -E1000_ERR_PARAM;
goto out;
}
/*
* We must first send a preamble through the MDIO pin to signal the
* beginning of an MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/*
* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The format
* of an MII read instruction consists of a shift out of 14 bits and
* is defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Offset>
* followed by a shift in of 18 bits. This first two bits shifted in
* are TurnAround bits used to avoid contention on the MDIO pin when a
* READ operation is performed. These two bits are thrown away
* followed by a shift in of 16 bits which contains the desired data.
*/
mdic = (offset | (hw->phy.addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
/*
* Now that we've shifted out the read command to the MII, we need to
* "shift in" the 16-bit value (18 total bits) of the requested PHY
* register address.
*/
*data = e1000_shift_in_mdi_bits_82543(hw);
out:
return ret_val;
}
/**
* e1000_write_phy_reg_82543 - Write PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be written
* @data: pointer to the data to be written at offset
*
* Writes data to the PHY at offset.
**/
static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
{
u32 mdic;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_write_phy_reg_82543");
if (offset > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", offset);
ret_val = -E1000_ERR_PARAM;
goto out;
}
/*
* We'll need to use the SW defined pins to shift the write command
* out to the PHY. We first send a preamble to the PHY to signal the
* beginning of the MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/*
* Now combine the remaining required fields that will indicate a
* write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the command. The
* format of a MII write instruction is as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (u32)data;
e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
out:
return ret_val;
}
/**
* e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
* @hw: pointer to the HW structure
* @ctrl: pointer to the control register
*
* Raise the management data input clock by setting the MDC bit in the control
* register.
**/
static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
{
/*
* Raise the clock input to the Management Data Clock (by setting the
* MDC bit), and then delay a sufficient amount of time.
*/
E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
usec_delay(10);
}
/**
* e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
* @hw: pointer to the HW structure
* @ctrl: pointer to the control register
*
* Lower the management data input clock by clearing the MDC bit in the
* control register.
**/
static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
{
/*
* Lower the clock input to the Management Data Clock (by clearing the
* MDC bit), and then delay a sufficient amount of time.
*/
E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
usec_delay(10);
}
/**
* e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
* @hw: pointer to the HW structure
* @data: data to send to the PHY
* @count: number of bits to shift out
*
* We need to shift 'count' bits out to the PHY. So, the value in the
* "data" parameter will be shifted out to the PHY one bit at a time.
* In order to do this, "data" must be broken down into bits.
**/
static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
u16 count)
{
u32 ctrl, mask;
/*
* We need to shift "count" number of bits out to the PHY. So, the
* value in the "data" parameter will be shifted out to the PHY one
* bit at a time. In order to do this, "data" must be broken down
* into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while (mask) {
/*
* A "1" is shifted out to the PHY by setting the MDIO bit to
* "1" and then raising and lowering the Management Data Clock.
* A "0" is shifted out to the PHY by setting the MDIO bit to
* "0" and then raising and lowering the clock.
*/
if (data & mask)
ctrl |= E1000_CTRL_MDIO;
else
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
usec_delay(10);
e1000_raise_mdi_clk_82543(hw, &ctrl);
e1000_lower_mdi_clk_82543(hw, &ctrl);
mask >>= 1;
}
}
/**
* e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
* @hw: pointer to the HW structure
*
* In order to read a register from the PHY, we need to shift 18 bits
* in from the PHY. Bits are "shifted in" by raising the clock input to
* the PHY (setting the MDC bit), and then reading the value of the data out
* MDIO bit.
**/
static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
{
u32 ctrl;
u16 data = 0;
u8 i;
/*
* In order to read a register from the PHY, we need to shift in a
* total of 18 bits from the PHY. The first two bit (turnaround)
* times are used to avoid contention on the MDIO pin when a read
* operation is performed. These two bits are ignored by us and
* thrown away. Bits are "shifted in" by raising the input to the
* Management Data Clock (setting the MDC bit) and then reading the
* value of the MDIO bit.
*/
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/*
* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
* input.
*/
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
/*
* Raise and lower the clock before reading in the data. This accounts
* for the turnaround bits. The first clock occurred when we clocked
* out the last bit of the Register Address.
*/
e1000_raise_mdi_clk_82543(hw, &ctrl);
e1000_lower_mdi_clk_82543(hw, &ctrl);
for (data = 0, i = 0; i < 16; i++) {
data <<= 1;
e1000_raise_mdi_clk_82543(hw, &ctrl);
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO)
data |= 1;
e1000_lower_mdi_clk_82543(hw, &ctrl);
}
e1000_raise_mdi_clk_82543(hw, &ctrl);
e1000_lower_mdi_clk_82543(hw, &ctrl);
return data;
}
/**
* e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
* @hw: pointer to the HW structure
*
* Calls the function to force speed and duplex for the m88 PHY, and
* if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
* then call the function for polarity reversal workaround.
**/
static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
{
s32 ret_val;
DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
ret_val = e1000_phy_force_speed_duplex_m88(hw);
if (ret_val)
goto out;
if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
E1000_ALL_10_SPEED))
ret_val = e1000_polarity_reversal_workaround_82543(hw);
out:
return ret_val;
}
/**
* e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
* @hw: pointer to the HW structure
*
* When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
* inadvertently. To workaround the issue, we disable the transmitter on
* the PHY until we have established the link partner's link parameters.
**/
static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 mii_status_reg;
u16 i;
bool link;
if (!(hw->phy.ops.write_reg))
goto out;
/* Polarity reversal workaround for forced 10F/10H links. */
/* Disable the transmitter on the PHY */
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if (ret_val)
goto out;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
if (ret_val)
goto out;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if (ret_val)
goto out;
/*
* This loop will early-out if the NO link condition has been met.
* In other words, DO NOT use e1000_phy_has_link_generic() here.
*/
for (i = PHY_FORCE_TIME; i > 0; i--) {
/*
* Read the MII Status Register and wait for Link Status bit
* to be clear.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
goto out;
if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
break;
msec_delay_irq(100);
}
/* Recommended delay time after link has been lost */
msec_delay_irq(1000);
/* Now we will re-enable the transmitter on the PHY */
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if (ret_val)
goto out;
msec_delay_irq(50);
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
if (ret_val)
goto out;
msec_delay_irq(50);
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
if (ret_val)
goto out;
msec_delay_irq(50);
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
if (ret_val)
goto out;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if (ret_val)
goto out;
/*
* Read the MII Status Register and wait for Link Status bit
* to be set.
*/
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
if (ret_val)
goto out;
out:
return ret_val;
}
/**
* e1000_phy_hw_reset_82543 - PHY hardware reset
* @hw: pointer to the HW structure
*
* Sets the PHY_RESET_DIR bit in the extended device control register
* to put the PHY into a reset and waits for completion. Once the reset
* has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
* of reset.
**/
static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
{
u32 ctrl_ext;
s32 ret_val;
DEBUGFUNC("e1000_phy_hw_reset_82543");
/*
* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset...
*/
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
msec_delay(10);
/* ...then take it out of reset. */
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
usec_delay(150);
if (!(hw->phy.ops.get_cfg_done))
return E1000_SUCCESS;
ret_val = hw->phy.ops.get_cfg_done(hw);
return ret_val;
}
/**
* e1000_reset_hw_82543 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state.
**/
static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
{
u32 ctrl, icr;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_reset_hw_82543");
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
E1000_WRITE_REG(hw, E1000_RCTL, 0);
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw);
e1000_set_tbi_sbp_82543(hw, FALSE);
/*
* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
msec_delay(10);
ctrl = E1000_READ_REG(hw, E1000_CTRL);
DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
if (hw->mac.type == e1000_82543) {
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
} else {
/*
* The 82544 can't ACK the 64-bit write when issuing the
* reset, so use IO-mapping as a workaround.
*/
E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
}
/*
* After MAC reset, force reload of NVM to restore power-on
* settings to device.
*/
hw->nvm.ops.reload(hw);
msec_delay(2);
/* Masking off and clearing any pending interrupts */
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
icr = E1000_READ_REG(hw, E1000_ICR);
return ret_val;
}
/**
* e1000_init_hw_82543 - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation.
**/
static s32 e1000_init_hw_82543(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
u32 ctrl;
s32 ret_val;
u16 i;
DEBUGFUNC("e1000_init_hw_82543");
/* Disabling VLAN filtering */
E1000_WRITE_REG(hw, E1000_VET, 0);
mac->ops.clear_vfta(hw);
/* Setup the receive address. */
e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++) {
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
E1000_WRITE_FLUSH(hw);
}
/*
* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
* gives equal priority to transmits and receives.
*/
if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
ctrl = E1000_READ_REG(hw, E1000_CTRL);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
}
e1000_pcix_mmrbc_workaround_generic(hw);
/* Setup link and flow control */
ret_val = mac->ops.setup_link(hw);
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_82543(hw);
return ret_val;
}
/**
* e1000_setup_link_82543 - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Read the EEPROM to determine the initial polarity value and write the
* extended device control register with the information before calling
* the generic setup link function, which does the following:
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
static s32 e1000_setup_link_82543(struct e1000_hw *hw)
{
u32 ctrl_ext;
s32 ret_val;
u16 data;
DEBUGFUNC("e1000_setup_link_82543");
/*
* Take the 4 bits from NVM word 0xF that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before phy setup.
*/
if (hw->mac.type == e1000_82543) {
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
NVM_SWDPIO_EXT_SHIFT);
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
}
ret_val = e1000_setup_link_generic(hw);
out:
return ret_val;
}
/**
* e1000_setup_copper_link_82543 - Configure copper link settings
* @hw: pointer to the HW structure
*
* Configures the link for auto-neg or forced speed and duplex. Then we check
* for link, once link is established calls to configure collision distance
* and flow control are called.
**/
static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
bool link;
DEBUGFUNC("e1000_setup_copper_link_82543");
ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
/*
* With 82543, we need to force speed and duplex on the MAC
* equal to what the PHY speed and duplex configuration is.
* In addition, we need to perform a hardware reset on the
* PHY to take it out of reset.
*/
if (hw->mac.type == e1000_82543) {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
ret_val = hw->phy.ops.reset(hw);
if (ret_val)
goto out;
} else {
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
}
/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
ret_val = e1000_copper_link_setup_m88(hw);
if (ret_val)
goto out;
if (hw->mac.autoneg) {
/*
* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
goto out;
} else {
/*
* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
DEBUGOUT("Forcing Speed and Duplex\n");
ret_val = e1000_phy_force_speed_duplex_82543(hw);
if (ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
goto out;
}
}
/*
* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
&link);
if (ret_val)
goto out;
if (link) {
DEBUGOUT("Valid link established!!!\n");
/* Config the MAC and PHY after link is up */
if (hw->mac.type == e1000_82544) {
hw->mac.ops.config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy_82543(hw);
if (ret_val)
goto out;
}
ret_val = e1000_config_fc_after_link_up_generic(hw);
} else {
DEBUGOUT("Unable to establish link!!!\n");
}
out:
return ret_val;
}
/**
* e1000_setup_fiber_link_82543 - Setup link for fiber
* @hw: pointer to the HW structure
*
* Configures collision distance and flow control for fiber links. Upon
* successful setup, poll for link.
**/
static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
DEBUGFUNC("e1000_setup_fiber_link_82543");
ctrl = E1000_READ_REG(hw, E1000_CTRL);
/* Take the link out of reset */
ctrl &= ~E1000_CTRL_LRST;
hw->mac.ops.config_collision_dist(hw);
ret_val = e1000_commit_fc_settings_generic(hw);
if (ret_val)
goto out;
DEBUGOUT("Auto-negotiation enabled\n");
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
msec_delay(1);
/*
* For these adapters, the SW definable pin 1 is cleared when the
* optics detect a signal. If we have a signal, then poll for a
* "Link-Up" indication.
*/
if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
ret_val = e1000_poll_fiber_serdes_link_generic(hw);
else
DEBUGOUT("No signal detected\n");
out:
return ret_val;
}
/**
* e1000_check_for_copper_link_82543 - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks the phy for link, if link exists, do the following:
* - check for downshift
* - do polarity workaround (if necessary)
* - configure collision distance
* - configure flow control after link up
* - configure tbi compatibility
**/
static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 icr, rctl;
s32 ret_val;
u16 speed, duplex;
bool link;
DEBUGFUNC("e1000_check_for_copper_link_82543");
if (!mac->get_link_status) {
ret_val = E1000_SUCCESS;
goto out;
}
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link)
goto out; /* No link detected */
mac->get_link_status = FALSE;
e1000_check_downshift_generic(hw);
/*
* If we are forcing speed/duplex, then we can return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
/*
* If speed and duplex are forced to 10H or 10F, then we will
* implement the polarity reversal workaround. We disable
* interrupts first, and upon returning, place the devices
* interrupt state to its previous value except for the link
* status change interrupt which will happened due to the
* execution of this workaround.
*/
if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
ret_val = e1000_polarity_reversal_workaround_82543(hw);
icr = E1000_READ_REG(hw, E1000_ICR);
E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
}
ret_val = -E1000_ERR_CONFIG;
goto out;
}
/*
* We have a M88E1000 PHY and Auto-Neg is enabled. If we
* have Si on board that is 82544 or newer, Auto
* Speed Detection takes care of MAC speed/duplex
* configuration. So we only need to configure Collision
* Distance in the MAC. Otherwise, we need to force
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
if (mac->type == e1000_82544)
hw->mac.ops.config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy_82543(hw);
if (ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
goto out;
}
}
/*
* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = e1000_config_fc_after_link_up_generic(hw);
if (ret_val)
DEBUGOUT("Error configuring flow control\n");
/*
* At this point we know that we are on copper and we have
* auto-negotiated link. These are conditions for checking the link
* partner capability register. We use the link speed to determine if
* TBI compatibility needs to be turned on or off. If the link is not
* at gigabit speed, then TBI compatibility is not needed. If we are
* at gigabit speed, we turn on TBI compatibility.
*/
if (e1000_tbi_compatibility_enabled_82543(hw)) {
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
if (speed != SPEED_1000) {
/*
* If link speed is not set to gigabit speed,
* we do not need to enable TBI compatibility.
*/
if (e1000_tbi_sbp_enabled_82543(hw)) {
/*
* If we previously were in the mode,
* turn it off.
*/
e1000_set_tbi_sbp_82543(hw, FALSE);
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl &= ~E1000_RCTL_SBP;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
} else {
/*
* If TBI compatibility is was previously off,
* turn it on. For compatibility with a TBI link
* partner, we will store bad packets. Some
* frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
if (!e1000_tbi_sbp_enabled_82543(hw)) {
e1000_set_tbi_sbp_82543(hw, TRUE);
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
}
}
}
out:
return ret_val;
}
/**
* e1000_check_for_fiber_link_82543 - Check for link (Fiber)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw, ctrl, status;
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_check_for_fiber_link_82543");
ctrl = E1000_READ_REG(hw, E1000_CTRL);
status = E1000_READ_REG(hw, E1000_STATUS);
rxcw = E1000_READ_REG(hw, E1000_RXCW);
/*
* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also
* need to give auto-negotiation time to complete, in case the cable
* was just plugged in. The autoneg_failed flag does this.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
(!(status & E1000_STATUS_LU)) &&
(!(rxcw & E1000_RXCW_C))) {
if (!mac->autoneg_failed) {
mac->autoneg_failed = TRUE;
ret_val = 0;
goto out;
}
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up_generic(hw);
if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
goto out;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/*
* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = TRUE;
}
out:
return ret_val;
}
/**
* e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
* @hw: pointer to the HW structure
*
* For the 82543 silicon, we need to set the MAC to match the settings
* of the PHY, even if the PHY is auto-negotiating.
**/
static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val = E1000_SUCCESS;
u16 phy_data;
DEBUGFUNC("e1000_config_mac_to_phy_82543");
if (!(hw->phy.ops.read_reg))
goto out;
/* Set the bits to force speed and duplex */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
/*
* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
goto out;
ctrl &= ~E1000_CTRL_FD;
if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
hw->mac.ops.config_collision_dist(hw);
/*
* Set up speed in the Device Control register depending on
* negotiated values.
*/
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
out:
return ret_val;
}
/**
* e1000_write_vfta_82543 - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: the 32-bit offset in which to write the value to.
* @value: the 32-bit value to write at location offset.
*
* This writes a 32-bit value to a 32-bit offset in the VLAN filter
* table.
**/
static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
{
u32 temp;
DEBUGFUNC("e1000_write_vfta_82543");
if ((hw->mac.type == e1000_82544) && (offset & 1)) {
temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
E1000_WRITE_FLUSH(hw);
} else {
e1000_write_vfta_generic(hw, offset, value);
}
}
/**
* e1000_led_on_82543 - Turn on SW controllable LED
* @hw: pointer to the HW structure
*
* Turns the SW defined LED on.
**/
static s32 e1000_led_on_82543(struct e1000_hw *hw)
{
u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
DEBUGFUNC("e1000_led_on_82543");
if (hw->mac.type == e1000_82544 &&
hw->phy.media_type == e1000_media_type_copper) {
/* Clear SW-definable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else {
/* Fiber 82544 and all 82543 use this method */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
return E1000_SUCCESS;
}
/**
* e1000_led_off_82543 - Turn off SW controllable LED
* @hw: pointer to the HW structure
*
* Turns the SW defined LED off.
**/
static s32 e1000_led_off_82543(struct e1000_hw *hw)
{
u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
DEBUGFUNC("e1000_led_off_82543");
if (hw->mac.type == e1000_82544 &&
hw->phy.media_type == e1000_media_type_copper) {
/* Set SW-definable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else {
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
return E1000_SUCCESS;
}
/**
* e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_clear_hw_cntrs_82543");
e1000_clear_hw_cntrs_base_generic(hw);
E1000_READ_REG(hw, E1000_PRC64);
E1000_READ_REG(hw, E1000_PRC127);
E1000_READ_REG(hw, E1000_PRC255);
E1000_READ_REG(hw, E1000_PRC511);
E1000_READ_REG(hw, E1000_PRC1023);
E1000_READ_REG(hw, E1000_PRC1522);
E1000_READ_REG(hw, E1000_PTC64);
E1000_READ_REG(hw, E1000_PTC127);
E1000_READ_REG(hw, E1000_PTC255);
E1000_READ_REG(hw, E1000_PTC511);
E1000_READ_REG(hw, E1000_PTC1023);
E1000_READ_REG(hw, E1000_PTC1522);
E1000_READ_REG(hw, E1000_ALGNERRC);
E1000_READ_REG(hw, E1000_RXERRC);
E1000_READ_REG(hw, E1000_TNCRS);
E1000_READ_REG(hw, E1000_CEXTERR);
E1000_READ_REG(hw, E1000_TSCTC);
E1000_READ_REG(hw, E1000_TSCTFC);
}
/**
* e1000_read_mac_addr_82543 - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
* Since devices with two ports use the same EEPROM, we increment the
* last bit in the MAC address for the second port.
*
**/
s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 offset, nvm_data, i;
DEBUGFUNC("e1000_read_mac_addr");
for (i = 0; i < ETH_ADDR_LEN; i += 2) {
offset = i >> 1;
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
goto out;
}
hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
}
/* Flip last bit of mac address if we're on second port */
if (hw->bus.func == E1000_FUNC_1)
hw->mac.perm_addr[5] ^= 1;
for (i = 0; i < ETH_ADDR_LEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
out:
return ret_val;
}
|