summaryrefslogtreecommitdiffstats
path: root/sys/dev/cxgb/cxgb_sge.c
blob: dc2aee8e832c600d7b9efd7a410957fa04437b1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
/**************************************************************************

Copyright (c) 2007-2009, Chelsio Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

 2. Neither the name of the Chelsio Corporation nor the names of its
    contributors may be used to endorse or promote products derived from
    this software without specific prior written permission.
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

***************************************************************************/

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus_dma.h>
#include <sys/rman.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>

#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/systm.h>
#include <sys/syslog.h>

#include <net/bpf.h>	

#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

#include <vm/vm.h>
#include <vm/pmap.h>

#include <cxgb_include.h>
#include <sys/mvec.h>

int	txq_fills = 0;
int	multiq_tx_enable = 1;

extern struct sysctl_oid_list sysctl__hw_cxgb_children;
int cxgb_txq_buf_ring_size = TX_ETH_Q_SIZE;
TUNABLE_INT("hw.cxgb.txq_mr_size", &cxgb_txq_buf_ring_size);
SYSCTL_UINT(_hw_cxgb, OID_AUTO, txq_mr_size, CTLFLAG_RDTUN, &cxgb_txq_buf_ring_size, 0,
    "size of per-queue mbuf ring");

static int cxgb_tx_coalesce_force = 0;
TUNABLE_INT("hw.cxgb.tx_coalesce_force", &cxgb_tx_coalesce_force);
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_coalesce_force, CTLFLAG_RW,
    &cxgb_tx_coalesce_force, 0,
    "coalesce small packets into a single work request regardless of ring state");

#define	COALESCE_START_DEFAULT		TX_ETH_Q_SIZE>>1
#define	COALESCE_START_MAX		(TX_ETH_Q_SIZE-(TX_ETH_Q_SIZE>>3))
#define	COALESCE_STOP_DEFAULT		TX_ETH_Q_SIZE>>2
#define	COALESCE_STOP_MIN		TX_ETH_Q_SIZE>>5
#define	TX_RECLAIM_DEFAULT		TX_ETH_Q_SIZE>>5
#define	TX_RECLAIM_MAX			TX_ETH_Q_SIZE>>2
#define	TX_RECLAIM_MIN			TX_ETH_Q_SIZE>>6


static int cxgb_tx_coalesce_enable_start = COALESCE_START_DEFAULT;
TUNABLE_INT("hw.cxgb.tx_coalesce_enable_start",
    &cxgb_tx_coalesce_enable_start);
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_coalesce_enable_start, CTLFLAG_RW,
    &cxgb_tx_coalesce_enable_start, 0,
    "coalesce enable threshold");
static int cxgb_tx_coalesce_enable_stop = COALESCE_STOP_DEFAULT;
TUNABLE_INT("hw.cxgb.tx_coalesce_enable_stop", &cxgb_tx_coalesce_enable_stop);
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_coalesce_enable_stop, CTLFLAG_RW,
    &cxgb_tx_coalesce_enable_stop, 0,
    "coalesce disable threshold");
static int cxgb_tx_reclaim_threshold = TX_RECLAIM_DEFAULT;
TUNABLE_INT("hw.cxgb.tx_reclaim_threshold", &cxgb_tx_reclaim_threshold);
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_reclaim_threshold, CTLFLAG_RW,
    &cxgb_tx_reclaim_threshold, 0,
    "tx cleaning minimum threshold");

/*
 * XXX don't re-enable this until TOE stops assuming
 * we have an m_ext
 */
static int recycle_enable = 0;
int cxgb_ext_freed = 0;
int cxgb_ext_inited = 0;
int fl_q_size = 0;
int jumbo_q_size = 0;

extern int cxgb_use_16k_clusters;
extern int nmbjumbo4;
extern int nmbjumbo9;
extern int nmbjumbo16;

#define USE_GTS 0

#define SGE_RX_SM_BUF_SIZE	1536
#define SGE_RX_DROP_THRES	16
#define SGE_RX_COPY_THRES	128

/*
 * Period of the Tx buffer reclaim timer.  This timer does not need to run
 * frequently as Tx buffers are usually reclaimed by new Tx packets.
 */
#define TX_RECLAIM_PERIOD       (hz >> 1)

/* 
 * Values for sge_txq.flags
 */
enum {
	TXQ_RUNNING	= 1 << 0,  /* fetch engine is running */
	TXQ_LAST_PKT_DB = 1 << 1,  /* last packet rang the doorbell */
};

struct tx_desc {
	uint64_t	flit[TX_DESC_FLITS];
} __packed;

struct rx_desc {
	uint32_t	addr_lo;
	uint32_t	len_gen;
	uint32_t	gen2;
	uint32_t	addr_hi;
} __packed;

struct rsp_desc {               /* response queue descriptor */
	struct rss_header	rss_hdr;
	uint32_t		flags;
	uint32_t		len_cq;
	uint8_t			imm_data[47];
	uint8_t			intr_gen;
} __packed;

#define RX_SW_DESC_MAP_CREATED	(1 << 0)
#define TX_SW_DESC_MAP_CREATED	(1 << 1)
#define RX_SW_DESC_INUSE        (1 << 3)
#define TX_SW_DESC_MAPPED       (1 << 4)

#define RSPQ_NSOP_NEOP           G_RSPD_SOP_EOP(0)
#define RSPQ_EOP                 G_RSPD_SOP_EOP(F_RSPD_EOP)
#define RSPQ_SOP                 G_RSPD_SOP_EOP(F_RSPD_SOP)
#define RSPQ_SOP_EOP             G_RSPD_SOP_EOP(F_RSPD_SOP|F_RSPD_EOP)

struct tx_sw_desc {                /* SW state per Tx descriptor */
	struct mbuf	*m;
	bus_dmamap_t	map;
	int		flags;
};

struct rx_sw_desc {                /* SW state per Rx descriptor */
	caddr_t		rxsd_cl;
	struct mbuf	*m;
	bus_dmamap_t	map;
	int		flags;
};

struct txq_state {
	unsigned int	compl;
	unsigned int	gen;
	unsigned int	pidx;
};

struct refill_fl_cb_arg {
	int               error;
	bus_dma_segment_t seg;
	int               nseg;
};


/*
 * Maps a number of flits to the number of Tx descriptors that can hold them.
 * The formula is
 *
 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
 *
 * HW allows up to 4 descriptors to be combined into a WR.
 */
static uint8_t flit_desc_map[] = {
	0,
#if SGE_NUM_GENBITS == 1
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
#elif SGE_NUM_GENBITS == 2
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
#else
# error "SGE_NUM_GENBITS must be 1 or 2"
#endif
};

#define	TXQ_LOCK_ASSERT(qs)	mtx_assert(&(qs)->lock, MA_OWNED)
#define	TXQ_TRYLOCK(qs)		mtx_trylock(&(qs)->lock)	
#define	TXQ_LOCK(qs)		mtx_lock(&(qs)->lock)	
#define	TXQ_UNLOCK(qs)		mtx_unlock(&(qs)->lock)	
#define	TXQ_RING_EMPTY(qs)	drbr_empty((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
#define	TXQ_RING_FLUSH(qs)	drbr_flush((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
#define	TXQ_RING_DEQUEUE_COND(qs, func, arg)				\
	drbr_dequeue_cond((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr, func, arg)
#define	TXQ_RING_DEQUEUE(qs) \
	drbr_dequeue((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)

int cxgb_debug = 0;

static void sge_timer_cb(void *arg);
static void sge_timer_reclaim(void *arg, int ncount);
static void sge_txq_reclaim_handler(void *arg, int ncount);
static void cxgb_start_locked(struct sge_qset *qs);

/*
 * XXX need to cope with bursty scheduling by looking at a wider
 * window than we are now for determining the need for coalescing
 *
 */
static __inline uint64_t
check_pkt_coalesce(struct sge_qset *qs) 
{ 
        struct adapter *sc; 
        struct sge_txq *txq; 
	uint8_t *fill;

	if (__predict_false(cxgb_tx_coalesce_force))
		return (1);
	txq = &qs->txq[TXQ_ETH]; 
        sc = qs->port->adapter; 
	fill = &sc->tunq_fill[qs->idx];

	if (cxgb_tx_coalesce_enable_start > COALESCE_START_MAX)
		cxgb_tx_coalesce_enable_start = COALESCE_START_MAX;
	if (cxgb_tx_coalesce_enable_stop < COALESCE_STOP_MIN)
		cxgb_tx_coalesce_enable_start = COALESCE_STOP_MIN;
	/*
	 * if the hardware transmit queue is more than 1/8 full
	 * we mark it as coalescing - we drop back from coalescing
	 * when we go below 1/32 full and there are no packets enqueued, 
	 * this provides us with some degree of hysteresis
	 */
        if (*fill != 0 && (txq->in_use <= cxgb_tx_coalesce_enable_stop) &&
	    TXQ_RING_EMPTY(qs) && (qs->coalescing == 0))
                *fill = 0; 
        else if (*fill == 0 && (txq->in_use >= cxgb_tx_coalesce_enable_start))
                *fill = 1; 

	return (sc->tunq_coalesce);
} 

#ifdef __LP64__
static void
set_wr_hdr(struct work_request_hdr *wrp, uint32_t wr_hi, uint32_t wr_lo)
{
	uint64_t wr_hilo;
#if _BYTE_ORDER == _LITTLE_ENDIAN
	wr_hilo = wr_hi;
	wr_hilo |= (((uint64_t)wr_lo)<<32);
#else
	wr_hilo = wr_lo;
	wr_hilo |= (((uint64_t)wr_hi)<<32);
#endif	
	wrp->wrh_hilo = wr_hilo;
}
#else
static void
set_wr_hdr(struct work_request_hdr *wrp, uint32_t wr_hi, uint32_t wr_lo)
{

	wrp->wrh_hi = wr_hi;
	wmb();
	wrp->wrh_lo = wr_lo;
}
#endif

struct coalesce_info {
	int count;
	int nbytes;
};

static int
coalesce_check(struct mbuf *m, void *arg)
{
	struct coalesce_info *ci = arg;
	int *count = &ci->count;
	int *nbytes = &ci->nbytes;

	if ((*nbytes == 0) || ((*nbytes + m->m_len <= 10500) &&
		(*count < 7) && (m->m_next == NULL))) {
		*count += 1;
		*nbytes += m->m_len;
		return (1);
	}
	return (0);
}

static struct mbuf *
cxgb_dequeue(struct sge_qset *qs)
{
	struct mbuf *m, *m_head, *m_tail;
	struct coalesce_info ci;

	
	if (check_pkt_coalesce(qs) == 0) 
		return TXQ_RING_DEQUEUE(qs);

	m_head = m_tail = NULL;
	ci.count = ci.nbytes = 0;
	do {
		m = TXQ_RING_DEQUEUE_COND(qs, coalesce_check, &ci);
		if (m_head == NULL) {
			m_tail = m_head = m;
		} else if (m != NULL) {
			m_tail->m_nextpkt = m;
			m_tail = m;
		}
	} while (m != NULL);
	if (ci.count > 7)
		panic("trying to coalesce %d packets in to one WR", ci.count);
	return (m_head);
}
	
/**
 *	reclaim_completed_tx - reclaims completed Tx descriptors
 *	@adapter: the adapter
 *	@q: the Tx queue to reclaim completed descriptors from
 *
 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
 *	and frees the associated buffers if possible.  Called with the Tx
 *	queue's lock held.
 */
static __inline int
reclaim_completed_tx(struct sge_qset *qs, int reclaim_min, int queue)
{
	struct sge_txq *q = &qs->txq[queue];
	int reclaim = desc_reclaimable(q);

	if ((cxgb_tx_reclaim_threshold > TX_RECLAIM_MAX) ||
	    (cxgb_tx_reclaim_threshold < TX_RECLAIM_MIN))
		cxgb_tx_reclaim_threshold = TX_RECLAIM_DEFAULT;

	if (reclaim < reclaim_min)
		return (0);

	mtx_assert(&qs->lock, MA_OWNED);
	if (reclaim > 0) {
		t3_free_tx_desc(qs, reclaim, queue);
		q->cleaned += reclaim;
		q->in_use -= reclaim;
	}
	if (isset(&qs->txq_stopped, TXQ_ETH))
                clrbit(&qs->txq_stopped, TXQ_ETH);

	return (reclaim);
}

/**
 *	should_restart_tx - are there enough resources to restart a Tx queue?
 *	@q: the Tx queue
 *
 *	Checks if there are enough descriptors to restart a suspended Tx queue.
 */
static __inline int
should_restart_tx(const struct sge_txq *q)
{
	unsigned int r = q->processed - q->cleaned;

	return q->in_use - r < (q->size >> 1);
}

/**
 *	t3_sge_init - initialize SGE
 *	@adap: the adapter
 *	@p: the SGE parameters
 *
 *	Performs SGE initialization needed every time after a chip reset.
 *	We do not initialize any of the queue sets here, instead the driver
 *	top-level must request those individually.  We also do not enable DMA
 *	here, that should be done after the queues have been set up.
 */
void
t3_sge_init(adapter_t *adap, struct sge_params *p)
{
	u_int ctrl, ups;

	ups = 0; /* = ffs(pci_resource_len(adap->pdev, 2) >> 12); */

	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
	       F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
	       V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
	       V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
#if SGE_NUM_GENBITS == 1
	ctrl |= F_EGRGENCTRL;
#endif
	if (adap->params.rev > 0) {
		if (!(adap->flags & (USING_MSIX | USING_MSI)))
			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
	}
	t3_write_reg(adap, A_SG_CONTROL, ctrl);
	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
		     V_LORCQDRBTHRSH(512));
	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
		     adap->params.rev < T3_REV_C ? 1000 : 500);
	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
}


/**
 *	sgl_len - calculates the size of an SGL of the given capacity
 *	@n: the number of SGL entries
 *
 *	Calculates the number of flits needed for a scatter/gather list that
 *	can hold the given number of entries.
 */
static __inline unsigned int
sgl_len(unsigned int n)
{
	return ((3 * n) / 2 + (n & 1));
}

/**
 *	get_imm_packet - return the next ingress packet buffer from a response
 *	@resp: the response descriptor containing the packet data
 *
 *	Return a packet containing the immediate data of the given response.
 */
static int
get_imm_packet(adapter_t *sc, const struct rsp_desc *resp, struct mbuf *m)
{

	m->m_len = m->m_pkthdr.len = IMMED_PKT_SIZE;
	m->m_ext.ext_buf = NULL;
	m->m_ext.ext_type = 0;
	memcpy(mtod(m, uint8_t *), resp->imm_data, IMMED_PKT_SIZE); 
	return (0);	
}

static __inline u_int
flits_to_desc(u_int n)
{
	return (flit_desc_map[n]);
}

#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
		    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
		    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
		    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
		    F_HIRCQPARITYERROR)
#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
		      F_RSPQDISABLED)

/**
 *	t3_sge_err_intr_handler - SGE async event interrupt handler
 *	@adapter: the adapter
 *
 *	Interrupt handler for SGE asynchronous (non-data) events.
 */
void
t3_sge_err_intr_handler(adapter_t *adapter)
{
	unsigned int v, status;

	status = t3_read_reg(adapter, A_SG_INT_CAUSE);
	if (status & SGE_PARERR)
		CH_ALERT(adapter, "SGE parity error (0x%x)\n",
			 status & SGE_PARERR);
	if (status & SGE_FRAMINGERR)
		CH_ALERT(adapter, "SGE framing error (0x%x)\n",
			 status & SGE_FRAMINGERR);
	if (status & F_RSPQCREDITOVERFOW)
		CH_ALERT(adapter, "SGE response queue credit overflow\n");

	if (status & F_RSPQDISABLED) {
		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);

		CH_ALERT(adapter,
			 "packet delivered to disabled response queue (0x%x)\n",
			 (v >> S_RSPQ0DISABLED) & 0xff);
	}

	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
	if (status & SGE_FATALERR)
		t3_fatal_err(adapter);
}

void
t3_sge_prep(adapter_t *adap, struct sge_params *p)
{
	int i, nqsets;

	nqsets = min(SGE_QSETS, mp_ncpus*4);

	fl_q_size = min(nmbclusters/(3*nqsets), FL_Q_SIZE);

	while (!powerof2(fl_q_size))
		fl_q_size--;
#if __FreeBSD_version >= 700111
	if (cxgb_use_16k_clusters) 
		jumbo_q_size = min(nmbjumbo16/(3*nqsets), JUMBO_Q_SIZE);
	else
		jumbo_q_size = min(nmbjumbo9/(3*nqsets), JUMBO_Q_SIZE);
#else
	jumbo_q_size = min(nmbjumbo4/(3*nqsets), JUMBO_Q_SIZE);
#endif
	while (!powerof2(jumbo_q_size))
		jumbo_q_size--;		
	
	/* XXX Does ETHER_ALIGN need to be accounted for here? */
	p->max_pkt_size = adap->sge.qs[0].fl[1].buf_size - sizeof(struct cpl_rx_data);

	for (i = 0; i < SGE_QSETS; ++i) {
		struct qset_params *q = p->qset + i;

		if (adap->params.nports > 2) {
			q->coalesce_usecs = 50;
		} else {
#ifdef INVARIANTS			
			q->coalesce_usecs = 10;
#else
			q->coalesce_usecs = 5;
#endif			
		}
		q->polling = 0;
		q->rspq_size = RSPQ_Q_SIZE;
		q->fl_size = fl_q_size;
		q->jumbo_size = jumbo_q_size;
		q->txq_size[TXQ_ETH] = TX_ETH_Q_SIZE;
		q->txq_size[TXQ_OFLD] = 1024;
		q->txq_size[TXQ_CTRL] = 256;
		q->cong_thres = 0;
	}
}

int
t3_sge_alloc(adapter_t *sc)
{

	/* The parent tag. */
	if (bus_dma_tag_create( NULL,			/* parent */
				1, 0,			/* algnmnt, boundary */
				BUS_SPACE_MAXADDR,	/* lowaddr */
				BUS_SPACE_MAXADDR,	/* highaddr */
				NULL, NULL,		/* filter, filterarg */
				BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
				BUS_SPACE_UNRESTRICTED, /* nsegments */
				BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
				0,			/* flags */
				NULL, NULL,		/* lock, lockarg */
				&sc->parent_dmat)) {
		device_printf(sc->dev, "Cannot allocate parent DMA tag\n");
		return (ENOMEM);
	}

	/*
	 * DMA tag for normal sized RX frames
	 */
	if (bus_dma_tag_create(sc->parent_dmat, MCLBYTES, 0, BUS_SPACE_MAXADDR,
		BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
		MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_dmat)) {
		device_printf(sc->dev, "Cannot allocate RX DMA tag\n");
		return (ENOMEM);
	}

	/* 
	 * DMA tag for jumbo sized RX frames.
	 */
	if (bus_dma_tag_create(sc->parent_dmat, MJUM16BYTES, 0, BUS_SPACE_MAXADDR,
		BUS_SPACE_MAXADDR, NULL, NULL, MJUM16BYTES, 1, MJUM16BYTES,
		BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_jumbo_dmat)) {
		device_printf(sc->dev, "Cannot allocate RX jumbo DMA tag\n");
		return (ENOMEM);
	}

	/* 
	 * DMA tag for TX frames.
	 */
	if (bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR,
		BUS_SPACE_MAXADDR, NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
		TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
		NULL, NULL, &sc->tx_dmat)) {
		device_printf(sc->dev, "Cannot allocate TX DMA tag\n");
		return (ENOMEM);
	}

	return (0);
}

int
t3_sge_free(struct adapter * sc)
{

	if (sc->tx_dmat != NULL)
		bus_dma_tag_destroy(sc->tx_dmat);

	if (sc->rx_jumbo_dmat != NULL)
		bus_dma_tag_destroy(sc->rx_jumbo_dmat);

	if (sc->rx_dmat != NULL)
		bus_dma_tag_destroy(sc->rx_dmat);

	if (sc->parent_dmat != NULL)
		bus_dma_tag_destroy(sc->parent_dmat);

	return (0);
}

void
t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
{

	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);
	qs->rspq.polling = 0 /* p->polling */;
}

#if !defined(__i386__) && !defined(__amd64__)
static void
refill_fl_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
	struct refill_fl_cb_arg *cb_arg = arg;
	
	cb_arg->error = error;
	cb_arg->seg = segs[0];
	cb_arg->nseg = nseg;

}
#endif
/**
 *	refill_fl - refill an SGE free-buffer list
 *	@sc: the controller softc
 *	@q: the free-list to refill
 *	@n: the number of new buffers to allocate
 *
 *	(Re)populate an SGE free-buffer list with up to @n new packet buffers.
 *	The caller must assure that @n does not exceed the queue's capacity.
 */
static void
refill_fl(adapter_t *sc, struct sge_fl *q, int n)
{
	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
	struct rx_desc *d = &q->desc[q->pidx];
	struct refill_fl_cb_arg cb_arg;
	struct mbuf *m;
	caddr_t cl;
	int err, count = 0;
	
	cb_arg.error = 0;
	while (n--) {
		/*
		 * We only allocate a cluster, mbuf allocation happens after rx
		 */
		if (q->zone == zone_pack) {
			if ((m = m_getcl(M_NOWAIT, MT_NOINIT, M_PKTHDR)) == NULL)
				break;
			cl = m->m_ext.ext_buf;			
		} else {
			if ((cl = m_cljget(NULL, M_NOWAIT, q->buf_size)) == NULL)
				break;
			if ((m = m_gethdr(M_NOWAIT, MT_NOINIT)) == NULL) {
				uma_zfree(q->zone, cl);
				break;
			}
		}
		if ((sd->flags & RX_SW_DESC_MAP_CREATED) == 0) {
			if ((err = bus_dmamap_create(q->entry_tag, 0, &sd->map))) {
				log(LOG_WARNING, "bus_dmamap_create failed %d\n", err);
				uma_zfree(q->zone, cl);
				goto done;
			}
			sd->flags |= RX_SW_DESC_MAP_CREATED;
		}
#if !defined(__i386__) && !defined(__amd64__)
		err = bus_dmamap_load(q->entry_tag, sd->map,
		    cl, q->buf_size, refill_fl_cb, &cb_arg, 0);
		
		if (err != 0 || cb_arg.error) {
			if (q->zone == zone_pack)
				uma_zfree(q->zone, cl);
			m_free(m);
			goto done;
		}
#else
		cb_arg.seg.ds_addr = pmap_kextract((vm_offset_t)cl);
#endif		
		sd->flags |= RX_SW_DESC_INUSE;
		sd->rxsd_cl = cl;
		sd->m = m;
		d->addr_lo = htobe32(cb_arg.seg.ds_addr & 0xffffffff);
		d->addr_hi = htobe32(((uint64_t)cb_arg.seg.ds_addr >>32) & 0xffffffff);
		d->len_gen = htobe32(V_FLD_GEN1(q->gen));
		d->gen2 = htobe32(V_FLD_GEN2(q->gen));

		d++;
		sd++;

		if (++q->pidx == q->size) {
			q->pidx = 0;
			q->gen ^= 1;
			sd = q->sdesc;
			d = q->desc;
		}
		q->credits++;
		count++;
	}

done:
	if (count)
		t3_write_reg(sc, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
}


/**
 *	free_rx_bufs - free the Rx buffers on an SGE free list
 *	@sc: the controle softc
 *	@q: the SGE free list to clean up
 *
 *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
 *	this queue should be stopped before calling this function.
 */
static void
free_rx_bufs(adapter_t *sc, struct sge_fl *q)
{
	u_int cidx = q->cidx;

	while (q->credits--) {
		struct rx_sw_desc *d = &q->sdesc[cidx];

		if (d->flags & RX_SW_DESC_INUSE) {
			bus_dmamap_unload(q->entry_tag, d->map);
			bus_dmamap_destroy(q->entry_tag, d->map);
			if (q->zone == zone_pack) {
				m_init(d->m, zone_pack, MCLBYTES,
				    M_NOWAIT, MT_DATA, M_EXT);
				uma_zfree(zone_pack, d->m);
			} else {
				m_init(d->m, zone_mbuf, MLEN,
				    M_NOWAIT, MT_DATA, 0);
				uma_zfree(zone_mbuf, d->m);
				uma_zfree(q->zone, d->rxsd_cl);
			}			
		}
		
		d->rxsd_cl = NULL;
		d->m = NULL;
		if (++cidx == q->size)
			cidx = 0;
	}
}

static __inline void
__refill_fl(adapter_t *adap, struct sge_fl *fl)
{
	refill_fl(adap, fl, min(16U, fl->size - fl->credits));
}

static __inline void
__refill_fl_lt(adapter_t *adap, struct sge_fl *fl, int max)
{
	if ((fl->size - fl->credits) < max)
		refill_fl(adap, fl, min(max, fl->size - fl->credits));
}

/**
 *	recycle_rx_buf - recycle a receive buffer
 *	@adapter: the adapter
 *	@q: the SGE free list
 *	@idx: index of buffer to recycle
 *
 *	Recycles the specified buffer on the given free list by adding it at
 *	the next available slot on the list.
 */
static void
recycle_rx_buf(adapter_t *adap, struct sge_fl *q, unsigned int idx)
{
	struct rx_desc *from = &q->desc[idx];
	struct rx_desc *to   = &q->desc[q->pidx];

	q->sdesc[q->pidx] = q->sdesc[idx];
	to->addr_lo = from->addr_lo;        // already big endian
	to->addr_hi = from->addr_hi;        // likewise
	wmb();	/* necessary ? */
	to->len_gen = htobe32(V_FLD_GEN1(q->gen));
	to->gen2 = htobe32(V_FLD_GEN2(q->gen));
	q->credits++;

	if (++q->pidx == q->size) {
		q->pidx = 0;
		q->gen ^= 1;
	}
	t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
}

static void
alloc_ring_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
	uint32_t *addr;

	addr = arg;
	*addr = segs[0].ds_addr;
}

static int
alloc_ring(adapter_t *sc, size_t nelem, size_t elem_size, size_t sw_size,
    bus_addr_t *phys, void *desc, void *sdesc, bus_dma_tag_t *tag,
    bus_dmamap_t *map, bus_dma_tag_t parent_entry_tag, bus_dma_tag_t *entry_tag)
{
	size_t len = nelem * elem_size;
	void *s = NULL;
	void *p = NULL;
	int err;

	if ((err = bus_dma_tag_create(sc->parent_dmat, PAGE_SIZE, 0,
				      BUS_SPACE_MAXADDR_32BIT,
				      BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
				      len, 0, NULL, NULL, tag)) != 0) {
		device_printf(sc->dev, "Cannot allocate descriptor tag\n");
		return (ENOMEM);
	}

	if ((err = bus_dmamem_alloc(*tag, (void **)&p, BUS_DMA_NOWAIT,
				    map)) != 0) {
		device_printf(sc->dev, "Cannot allocate descriptor memory\n");
		return (ENOMEM);
	}

	bus_dmamap_load(*tag, *map, p, len, alloc_ring_cb, phys, 0);
	bzero(p, len);
	*(void **)desc = p;

	if (sw_size) {
		len = nelem * sw_size;
		s = malloc(len, M_DEVBUF, M_WAITOK|M_ZERO);
		*(void **)sdesc = s;
	}
	if (parent_entry_tag == NULL)
		return (0);
	    
	if ((err = bus_dma_tag_create(parent_entry_tag, 1, 0,
				      BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
		                      NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
				      TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
		                      NULL, NULL, entry_tag)) != 0) {
		device_printf(sc->dev, "Cannot allocate descriptor entry tag\n");
		return (ENOMEM);
	}
	return (0);
}

static void
sge_slow_intr_handler(void *arg, int ncount)
{
	adapter_t *sc = arg;

	t3_slow_intr_handler(sc);
}

/**
 *	sge_timer_cb - perform periodic maintenance of an SGE qset
 *	@data: the SGE queue set to maintain
 *
 *	Runs periodically from a timer to perform maintenance of an SGE queue
 *	set.  It performs two tasks:
 *
 *	a) Cleans up any completed Tx descriptors that may still be pending.
 *	Normal descriptor cleanup happens when new packets are added to a Tx
 *	queue so this timer is relatively infrequent and does any cleanup only
 *	if the Tx queue has not seen any new packets in a while.  We make a
 *	best effort attempt to reclaim descriptors, in that we don't wait
 *	around if we cannot get a queue's lock (which most likely is because
 *	someone else is queueing new packets and so will also handle the clean
 *	up).  Since control queues use immediate data exclusively we don't
 *	bother cleaning them up here.
 *
 *	b) Replenishes Rx queues that have run out due to memory shortage.
 *	Normally new Rx buffers are added when existing ones are consumed but
 *	when out of memory a queue can become empty.  We try to add only a few
 *	buffers here, the queue will be replenished fully as these new buffers
 *	are used up if memory shortage has subsided.
 *	
 *	c) Return coalesced response queue credits in case a response queue is
 *	starved.
 *
 *	d) Ring doorbells for T304 tunnel queues since we have seen doorbell 
 *	fifo overflows and the FW doesn't implement any recovery scheme yet.
 */
static void
sge_timer_cb(void *arg)
{
	adapter_t *sc = arg;
	if ((sc->flags & USING_MSIX) == 0) {
		
		struct port_info *pi;
		struct sge_qset *qs;
		struct sge_txq  *txq;
		int i, j;
		int reclaim_ofl, refill_rx;

		if (sc->open_device_map == 0) 
			return;

		for (i = 0; i < sc->params.nports; i++) {
			pi = &sc->port[i];
			for (j = 0; j < pi->nqsets; j++) {
				qs = &sc->sge.qs[pi->first_qset + j];
				txq = &qs->txq[0];
				reclaim_ofl = txq[TXQ_OFLD].processed - txq[TXQ_OFLD].cleaned;
				refill_rx = ((qs->fl[0].credits < qs->fl[0].size) || 
				    (qs->fl[1].credits < qs->fl[1].size));
				if (reclaim_ofl || refill_rx) {
					taskqueue_enqueue(sc->tq, &pi->timer_reclaim_task);
					break;
				}
			}
		}
	}
	
	if (sc->params.nports > 2) {
		int i;

		for_each_port(sc, i) {
			struct port_info *pi = &sc->port[i];

			t3_write_reg(sc, A_SG_KDOORBELL, 
				     F_SELEGRCNTX | 
				     (FW_TUNNEL_SGEEC_START + pi->first_qset));
		}
	}	
	if (((sc->flags & USING_MSIX) == 0 || sc->params.nports > 2) &&
	    sc->open_device_map != 0)
		callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
}

/*
 * This is meant to be a catch-all function to keep sge state private
 * to sge.c
 *
 */
int
t3_sge_init_adapter(adapter_t *sc)
{
	callout_init(&sc->sge_timer_ch, CALLOUT_MPSAFE);
	callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
	TASK_INIT(&sc->slow_intr_task, 0, sge_slow_intr_handler, sc);
	return (0);
}

int
t3_sge_reset_adapter(adapter_t *sc)
{
	callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
	return (0);
}

int
t3_sge_init_port(struct port_info *pi)
{
	TASK_INIT(&pi->timer_reclaim_task, 0, sge_timer_reclaim, pi);
	return (0);
}

/**
 *	refill_rspq - replenish an SGE response queue
 *	@adapter: the adapter
 *	@q: the response queue to replenish
 *	@credits: how many new responses to make available
 *
 *	Replenishes a response queue by making the supplied number of responses
 *	available to HW.
 */
static __inline void
refill_rspq(adapter_t *sc, const struct sge_rspq *q, u_int credits)
{

	/* mbufs are allocated on demand when a rspq entry is processed. */
	t3_write_reg(sc, A_SG_RSPQ_CREDIT_RETURN,
		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
}

static void
sge_txq_reclaim_handler(void *arg, int ncount)
{
	struct sge_qset *qs = arg;
	int i;

	for (i = 0; i < 3; i++)
		reclaim_completed_tx(qs, 16, i);
}

static void
sge_timer_reclaim(void *arg, int ncount)
{
	struct port_info *pi = arg;
	int i, nqsets = pi->nqsets;
	adapter_t *sc = pi->adapter;
	struct sge_qset *qs;
	struct mtx *lock;
	
	KASSERT((sc->flags & USING_MSIX) == 0,
	    ("can't call timer reclaim for msi-x"));

	for (i = 0; i < nqsets; i++) {
		qs = &sc->sge.qs[pi->first_qset + i];

		reclaim_completed_tx(qs, 16, TXQ_OFLD);
		lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
			    &sc->sge.qs[0].rspq.lock;

		if (mtx_trylock(lock)) {
			/* XXX currently assume that we are *NOT* polling */
			uint32_t status = t3_read_reg(sc, A_SG_RSPQ_FL_STATUS);

			if (qs->fl[0].credits < qs->fl[0].size - 16)
				__refill_fl(sc, &qs->fl[0]);
			if (qs->fl[1].credits < qs->fl[1].size - 16)
				__refill_fl(sc, &qs->fl[1]);
			
			if (status & (1 << qs->rspq.cntxt_id)) {
				if (qs->rspq.credits) {
					refill_rspq(sc, &qs->rspq, 1);
					qs->rspq.credits--;
					t3_write_reg(sc, A_SG_RSPQ_FL_STATUS, 
					    1 << qs->rspq.cntxt_id);
				}
			}
			mtx_unlock(lock);
		}
	}
}

/**
 *	init_qset_cntxt - initialize an SGE queue set context info
 *	@qs: the queue set
 *	@id: the queue set id
 *
 *	Initializes the TIDs and context ids for the queues of a queue set.
 */
static void
init_qset_cntxt(struct sge_qset *qs, u_int id)
{

	qs->rspq.cntxt_id = id;
	qs->fl[0].cntxt_id = 2 * id;
	qs->fl[1].cntxt_id = 2 * id + 1;
	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;

	mbufq_init(&qs->txq[TXQ_ETH].sendq);
	mbufq_init(&qs->txq[TXQ_OFLD].sendq);
	mbufq_init(&qs->txq[TXQ_CTRL].sendq);
}


static void
txq_prod(struct sge_txq *txq, unsigned int ndesc, struct txq_state *txqs)
{
	txq->in_use += ndesc;
	/*
	 * XXX we don't handle stopping of queue
	 * presumably start handles this when we bump against the end
	 */
	txqs->gen = txq->gen;
	txq->unacked += ndesc;
	txqs->compl = (txq->unacked & 32) << (S_WR_COMPL - 5);
	txq->unacked &= 31;
	txqs->pidx = txq->pidx;
	txq->pidx += ndesc;
#ifdef INVARIANTS
	if (((txqs->pidx > txq->cidx) &&
		(txq->pidx < txqs->pidx) &&
		(txq->pidx >= txq->cidx)) ||
	    ((txqs->pidx < txq->cidx) &&
		(txq->pidx >= txq-> cidx)) ||
	    ((txqs->pidx < txq->cidx) &&
		(txq->cidx < txqs->pidx)))
		panic("txqs->pidx=%d txq->pidx=%d txq->cidx=%d",
		    txqs->pidx, txq->pidx, txq->cidx);
#endif
	if (txq->pidx >= txq->size) {
		txq->pidx -= txq->size;
		txq->gen ^= 1;
	}

}

/**
 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
 *	@m: the packet mbufs
 *      @nsegs: the number of segments 
 *
 * 	Returns the number of Tx descriptors needed for the given Ethernet
 * 	packet.  Ethernet packets require addition of WR and CPL headers.
 */
static __inline unsigned int
calc_tx_descs(const struct mbuf *m, int nsegs)
{
	unsigned int flits;

	if (m->m_pkthdr.len <= PIO_LEN)
		return 1;

	flits = sgl_len(nsegs) + 2;
#ifdef TSO_SUPPORTED
	if (m->m_pkthdr.csum_flags & CSUM_TSO)
		flits++;
#endif	
	return flits_to_desc(flits);
}

static unsigned int
busdma_map_mbufs(struct mbuf **m, struct sge_txq *txq,
    struct tx_sw_desc *txsd, bus_dma_segment_t *segs, int *nsegs)
{
	struct mbuf *m0;
	int err, pktlen, pass = 0;
	bus_dma_tag_t tag = txq->entry_tag;

retry:
	err = 0;
	m0 = *m;
	pktlen = m0->m_pkthdr.len;
#if defined(__i386__) || defined(__amd64__)
	if (busdma_map_sg_collapse(tag, txsd->map, m, segs, nsegs) == 0) {
		goto done;
	} else
#endif
		err = bus_dmamap_load_mbuf_sg(tag, txsd->map, m0, segs, nsegs, 0);

	if (err == 0) {
		goto done;
	}
	if (err == EFBIG && pass == 0) {
		pass = 1;
		/* Too many segments, try to defrag */
		m0 = m_defrag(m0, M_DONTWAIT);
		if (m0 == NULL) {
			m_freem(*m);
			*m = NULL;
			return (ENOBUFS);
		}
		*m = m0;
		goto retry;
	} else if (err == ENOMEM) {
		return (err);
	} if (err) {
		if (cxgb_debug)
			printf("map failure err=%d pktlen=%d\n", err, pktlen);
		m_freem(m0);
		*m = NULL;
		return (err);
	}
done:
#if !defined(__i386__) && !defined(__amd64__)
	bus_dmamap_sync(tag, txsd->map, BUS_DMASYNC_PREWRITE);
#endif	
	txsd->flags |= TX_SW_DESC_MAPPED;

	return (0);
}

/**
 *	make_sgl - populate a scatter/gather list for a packet
 *	@sgp: the SGL to populate
 *	@segs: the packet dma segments
 *	@nsegs: the number of segments
 *
 *	Generates a scatter/gather list for the buffers that make up a packet
 *	and returns the SGL size in 8-byte words.  The caller must size the SGL
 *	appropriately.
 */
static __inline void
make_sgl(struct sg_ent *sgp, bus_dma_segment_t *segs, int nsegs)
{
	int i, idx;
	
	for (idx = 0, i = 0; i < nsegs; i++) {
		/*
		 * firmware doesn't like empty segments
		 */
		if (segs[i].ds_len == 0)
			continue;
		if (i && idx == 0) 
			++sgp;
		
		sgp->len[idx] = htobe32(segs[i].ds_len);
		sgp->addr[idx] = htobe64(segs[i].ds_addr);
		idx ^= 1;
	}
	
	if (idx) {
		sgp->len[idx] = 0;
		sgp->addr[idx] = 0;
	}
}
	
/**
 *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
 *	@adap: the adapter
 *	@q: the Tx queue
 *
 *	Ring the doorbell if a Tx queue is asleep.  There is a natural race,
 *	where the HW is going to sleep just after we checked, however,
 *	then the interrupt handler will detect the outstanding TX packet
 *	and ring the doorbell for us.
 *
 *	When GTS is disabled we unconditionally ring the doorbell.
 */
static __inline void
check_ring_tx_db(adapter_t *adap, struct sge_txq *q)
{
#if USE_GTS
	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
		set_bit(TXQ_LAST_PKT_DB, &q->flags);
#ifdef T3_TRACE
		T3_TRACE1(adap->tb[q->cntxt_id & 7], "doorbell Tx, cntxt %d",
			  q->cntxt_id);
#endif
		t3_write_reg(adap, A_SG_KDOORBELL,
			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
	}
#else
	wmb();            /* write descriptors before telling HW */
	t3_write_reg(adap, A_SG_KDOORBELL,
		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
#endif
}

static __inline void
wr_gen2(struct tx_desc *d, unsigned int gen)
{
#if SGE_NUM_GENBITS == 2
	d->flit[TX_DESC_FLITS - 1] = htobe64(gen);
#endif
}

/**
 *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
 *	@ndesc: number of Tx descriptors spanned by the SGL
 *	@txd: first Tx descriptor to be written
 *	@txqs: txq state (generation and producer index)
 *	@txq: the SGE Tx queue
 *	@sgl: the SGL
 *	@flits: number of flits to the start of the SGL in the first descriptor
 *	@sgl_flits: the SGL size in flits
 *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
 *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
 *
 *	Write a work request header and an associated SGL.  If the SGL is
 *	small enough to fit into one Tx descriptor it has already been written
 *	and we just need to write the WR header.  Otherwise we distribute the
 *	SGL across the number of descriptors it spans.
 */
static void
write_wr_hdr_sgl(unsigned int ndesc, struct tx_desc *txd, struct txq_state *txqs,
    const struct sge_txq *txq, const struct sg_ent *sgl, unsigned int flits,
    unsigned int sgl_flits, unsigned int wr_hi, unsigned int wr_lo)
{

	struct work_request_hdr *wrp = (struct work_request_hdr *)txd;
	struct tx_sw_desc *txsd = &txq->sdesc[txqs->pidx];
	
	if (__predict_true(ndesc == 1)) {
		set_wr_hdr(wrp, htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
			V_WR_SGLSFLT(flits)) | wr_hi,
		    htonl(V_WR_LEN(flits + sgl_flits) |
			V_WR_GEN(txqs->gen)) | wr_lo);
		/* XXX gen? */
		wr_gen2(txd, txqs->gen);
		
	} else {
		unsigned int ogen = txqs->gen;
		const uint64_t *fp = (const uint64_t *)sgl;
		struct work_request_hdr *wp = wrp;
		
		wrp->wrh_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
		    V_WR_SGLSFLT(flits)) | wr_hi;
		
		while (sgl_flits) {
			unsigned int avail = WR_FLITS - flits;

			if (avail > sgl_flits)
				avail = sgl_flits;
			memcpy(&txd->flit[flits], fp, avail * sizeof(*fp));
			sgl_flits -= avail;
			ndesc--;
			if (!sgl_flits)
				break;
			
			fp += avail;
			txd++;
			txsd++;
			if (++txqs->pidx == txq->size) {
				txqs->pidx = 0;
				txqs->gen ^= 1;
				txd = txq->desc;
				txsd = txq->sdesc;
			}

			/*
			 * when the head of the mbuf chain
			 * is freed all clusters will be freed
			 * with it
			 */
			wrp = (struct work_request_hdr *)txd;
			wrp->wrh_hi = htonl(V_WR_DATATYPE(1) |
			    V_WR_SGLSFLT(1)) | wr_hi;
			wrp->wrh_lo = htonl(V_WR_LEN(min(WR_FLITS,
				    sgl_flits + 1)) |
			    V_WR_GEN(txqs->gen)) | wr_lo;
			wr_gen2(txd, txqs->gen);
			flits = 1;
		}
		wrp->wrh_hi |= htonl(F_WR_EOP);
		wmb();
		wp->wrh_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
		wr_gen2((struct tx_desc *)wp, ogen);
	}
}

/* sizeof(*eh) + sizeof(*vhdr) + sizeof(*ip) + sizeof(*tcp) */
#define TCPPKTHDRSIZE (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 20 + 20)

#ifdef VLAN_SUPPORTED
#define GET_VTAG(cntrl, m) \
do { \
	if ((m)->m_flags & M_VLANTAG)					            \
		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN((m)->m_pkthdr.ether_vtag); \
} while (0)

#else
#define GET_VTAG(cntrl, m)
#endif

static int
t3_encap(struct sge_qset *qs, struct mbuf **m)
{
	adapter_t *sc;
	struct mbuf *m0;
	struct sge_txq *txq;
	struct txq_state txqs;
	struct port_info *pi;
	unsigned int ndesc, flits, cntrl, mlen;
	int err, nsegs, tso_info = 0;

	struct work_request_hdr *wrp;
	struct tx_sw_desc *txsd;
	struct sg_ent *sgp, *sgl;
	uint32_t wr_hi, wr_lo, sgl_flits; 
	bus_dma_segment_t segs[TX_MAX_SEGS];

	struct tx_desc *txd;
		
	pi = qs->port;
	sc = pi->adapter;
	txq = &qs->txq[TXQ_ETH];
	txd = &txq->desc[txq->pidx];
	txsd = &txq->sdesc[txq->pidx];
	sgl = txq->txq_sgl;

	prefetch(txd);
	m0 = *m;
	
	DPRINTF("t3_encap port_id=%d qsidx=%d ", pi->port_id, pi->first_qset);
	DPRINTF("mlen=%d txpkt_intf=%d tx_chan=%d\n", m[0]->m_pkthdr.len, pi->txpkt_intf, pi->tx_chan);
	
	mtx_assert(&qs->lock, MA_OWNED);
	cntrl = V_TXPKT_INTF(pi->txpkt_intf);
	KASSERT(m0->m_flags & M_PKTHDR, ("not packet header\n"));
	
#ifdef VLAN_SUPPORTED
	if  (m0->m_nextpkt == NULL && m0->m_next != NULL &&
	    m0->m_pkthdr.csum_flags & (CSUM_TSO))
		tso_info = V_LSO_MSS(m0->m_pkthdr.tso_segsz);
#endif
	if (m0->m_nextpkt != NULL) {
		busdma_map_sg_vec(txq->entry_tag, txsd->map, m0, segs, &nsegs);
		ndesc = 1;
		mlen = 0;
	} else {
		if ((err = busdma_map_sg_collapse(txq->entry_tag, txsd->map,
		    &m0, segs, &nsegs))) {
			if (cxgb_debug)
				printf("failed ... err=%d\n", err);
			return (err);
		}
		mlen = m0->m_pkthdr.len;
		ndesc = calc_tx_descs(m0, nsegs);
	}
	txq_prod(txq, ndesc, &txqs);

	KASSERT(m0->m_pkthdr.len, ("empty packet nsegs=%d", nsegs));
	txsd->m = m0;

	if (m0->m_nextpkt != NULL) {
		struct cpl_tx_pkt_batch *cpl_batch = (struct cpl_tx_pkt_batch *)txd;
		int i, fidx;

		if (nsegs > 7)
			panic("trying to coalesce %d packets in to one WR", nsegs);
		txq->txq_coalesced += nsegs;
		wrp = (struct work_request_hdr *)txd;
		flits = nsegs*2 + 1;

		for (fidx = 1, i = 0; i < nsegs; i++, fidx += 2) {
			struct cpl_tx_pkt_batch_entry *cbe;
			uint64_t flit;
			uint32_t *hflit = (uint32_t *)&flit;
			int cflags = m0->m_pkthdr.csum_flags;

			cntrl = V_TXPKT_INTF(pi->txpkt_intf);
			GET_VTAG(cntrl, m0);
			cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
			if (__predict_false(!(cflags & CSUM_IP)))
				cntrl |= F_TXPKT_IPCSUM_DIS;
			if (__predict_false(!(cflags & (CSUM_TCP | CSUM_UDP))))
				cntrl |= F_TXPKT_L4CSUM_DIS;

			hflit[0] = htonl(cntrl);
			hflit[1] = htonl(segs[i].ds_len | 0x80000000);
			flit |= htobe64(1 << 24);
			cbe = &cpl_batch->pkt_entry[i];
			cbe->cntrl = hflit[0];
			cbe->len = hflit[1];
			cbe->addr = htobe64(segs[i].ds_addr);
		}

		wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
		    V_WR_SGLSFLT(flits)) |
		    htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
		wr_lo = htonl(V_WR_LEN(flits) |
		    V_WR_GEN(txqs.gen)) | htonl(V_WR_TID(txq->token));
		set_wr_hdr(wrp, wr_hi, wr_lo);
		wmb();
		wr_gen2(txd, txqs.gen);
		check_ring_tx_db(sc, txq);
		return (0);		
	} else if (tso_info) {
		int min_size = TCPPKTHDRSIZE, eth_type, tagged;
		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)txd;
		struct ip *ip;
		struct tcphdr *tcp;
		char *pkthdr;

		txd->flit[2] = 0;
		GET_VTAG(cntrl, m0);
		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
		hdr->cntrl = htonl(cntrl);
		hdr->len = htonl(mlen | 0x80000000);

		DPRINTF("tso buf len=%d\n", mlen);

		tagged = m0->m_flags & M_VLANTAG;
		if (!tagged)
			min_size -= ETHER_VLAN_ENCAP_LEN;

		if (__predict_false(mlen < min_size)) {
			printf("mbuf=%p,len=%d,tso_segsz=%d,csum_flags=%#x,flags=%#x",
			    m0, mlen, m0->m_pkthdr.tso_segsz,
			    m0->m_pkthdr.csum_flags, m0->m_flags);
			panic("tx tso packet too small");
		}

		/* Make sure that ether, ip, tcp headers are all in m0 */
		if (__predict_false(m0->m_len < min_size)) {
			m0 = m_pullup(m0, min_size);
			if (__predict_false(m0 == NULL)) {
				/* XXX panic probably an overreaction */
				panic("couldn't fit header into mbuf");
			}
		}
		pkthdr = m0->m_data;

		if (tagged) {
			eth_type = CPL_ETH_II_VLAN;
			ip = (struct ip *)(pkthdr + ETHER_HDR_LEN +
			    ETHER_VLAN_ENCAP_LEN);
		} else {
			eth_type = CPL_ETH_II;
			ip = (struct ip *)(pkthdr + ETHER_HDR_LEN);
		}
		tcp = (struct tcphdr *)((uint8_t *)ip +
		    sizeof(*ip)); 

		tso_info |= V_LSO_ETH_TYPE(eth_type) |
			    V_LSO_IPHDR_WORDS(ip->ip_hl) |
			    V_LSO_TCPHDR_WORDS(tcp->th_off);
		hdr->lso_info = htonl(tso_info);

		if (__predict_false(mlen <= PIO_LEN)) {
			/* pkt not undersized but fits in PIO_LEN
			 * Indicates a TSO bug at the higher levels.
			 *
			 */
			DPRINTF("**5592 Fix** mbuf=%p,len=%d,tso_segsz=%d,csum_flags=%#x,flags=%#x",
			    m0, mlen, m0->m_pkthdr.tso_segsz, m0->m_pkthdr.csum_flags, m0->m_flags);
			txsd->m = NULL;
			m_copydata(m0, 0, mlen, (caddr_t)&txd->flit[3]);
			flits = (mlen + 7) / 8 + 3;
			wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) |
					  V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
					  F_WR_SOP | F_WR_EOP | txqs.compl);
			wr_lo = htonl(V_WR_LEN(flits) |
			    V_WR_GEN(txqs.gen) | V_WR_TID(txq->token));
			set_wr_hdr(&hdr->wr, wr_hi, wr_lo);
			wmb();
			wr_gen2(txd, txqs.gen);
			check_ring_tx_db(sc, txq);
			return (0);
		}
		flits = 3;	
	} else {
		struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)txd;
		
		GET_VTAG(cntrl, m0);
		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
		if (__predict_false(!(m0->m_pkthdr.csum_flags & CSUM_IP)))
			cntrl |= F_TXPKT_IPCSUM_DIS;
		if (__predict_false(!(m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))))
			cntrl |= F_TXPKT_L4CSUM_DIS;
		cpl->cntrl = htonl(cntrl);
		cpl->len = htonl(mlen | 0x80000000);

		if (mlen <= PIO_LEN) {
			txsd->m = NULL;
			m_copydata(m0, 0, mlen, (caddr_t)&txd->flit[2]);
			flits = (mlen + 7) / 8 + 2;
			
			wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) |
			    V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
					  F_WR_SOP | F_WR_EOP | txqs.compl);
			wr_lo = htonl(V_WR_LEN(flits) |
			    V_WR_GEN(txqs.gen) | V_WR_TID(txq->token));
			set_wr_hdr(&cpl->wr, wr_hi, wr_lo);
			wmb();
			wr_gen2(txd, txqs.gen);
			check_ring_tx_db(sc, txq);
			return (0);
		}
		flits = 2;
	}
	wrp = (struct work_request_hdr *)txd;
	sgp = (ndesc == 1) ? (struct sg_ent *)&txd->flit[flits] : sgl;
	make_sgl(sgp, segs, nsegs);

	sgl_flits = sgl_len(nsegs);

	KASSERT(ndesc <= 4, ("ndesc too large %d", ndesc));
	wr_hi = htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
	wr_lo = htonl(V_WR_TID(txq->token));
	write_wr_hdr_sgl(ndesc, txd, &txqs, txq, sgl, flits,
	    sgl_flits, wr_hi, wr_lo);
	check_ring_tx_db(pi->adapter, txq);

	return (0);
}

void
cxgb_tx_watchdog(void *arg)
{
	struct sge_qset *qs = arg;
	struct sge_txq *txq = &qs->txq[TXQ_ETH];

        if (qs->coalescing != 0 &&
	    (txq->in_use <= cxgb_tx_coalesce_enable_stop) &&
	    TXQ_RING_EMPTY(qs))
                qs->coalescing = 0; 
        else if (qs->coalescing == 0 &&
	    (txq->in_use >= cxgb_tx_coalesce_enable_start))
                qs->coalescing = 1;
	if (TXQ_TRYLOCK(qs)) {
		qs->qs_flags |= QS_FLUSHING;
		cxgb_start_locked(qs);
		qs->qs_flags &= ~QS_FLUSHING;
		TXQ_UNLOCK(qs);
	}
	if (qs->port->ifp->if_drv_flags & IFF_DRV_RUNNING)
		callout_reset_on(&txq->txq_watchdog, hz/4, cxgb_tx_watchdog,
		    qs, txq->txq_watchdog.c_cpu);
}

static void
cxgb_tx_timeout(void *arg)
{
	struct sge_qset *qs = arg;
	struct sge_txq *txq = &qs->txq[TXQ_ETH];

	if (qs->coalescing == 0 && (txq->in_use >= (txq->size>>3)))
                qs->coalescing = 1;	
	if (TXQ_TRYLOCK(qs)) {
		qs->qs_flags |= QS_TIMEOUT;
		cxgb_start_locked(qs);
		qs->qs_flags &= ~QS_TIMEOUT;
		TXQ_UNLOCK(qs);
	}
}

static void
cxgb_start_locked(struct sge_qset *qs)
{
	struct mbuf *m_head = NULL;
	struct sge_txq *txq = &qs->txq[TXQ_ETH];
	int avail, txmax;
	int in_use_init = txq->in_use;
	struct port_info *pi = qs->port;
	struct ifnet *ifp = pi->ifp;
	avail = txq->size - txq->in_use - 4;
	txmax = min(TX_START_MAX_DESC, avail);

	if (qs->qs_flags & (QS_FLUSHING|QS_TIMEOUT))
		reclaim_completed_tx(qs, 0, TXQ_ETH);

	if (!pi->link_config.link_ok) {
		TXQ_RING_FLUSH(qs);
		return;
	}
	TXQ_LOCK_ASSERT(qs);
	while ((txq->in_use - in_use_init < txmax) &&
	    !TXQ_RING_EMPTY(qs) &&
	    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
	    pi->link_config.link_ok) {
		reclaim_completed_tx(qs, cxgb_tx_reclaim_threshold, TXQ_ETH);

		if ((m_head = cxgb_dequeue(qs)) == NULL)
			break;
		/*
		 *  Encapsulation can modify our pointer, and or make it
		 *  NULL on failure.  In that event, we can't requeue.
		 */
		if (t3_encap(qs, &m_head) || m_head == NULL)
			break;
		
		/* Send a copy of the frame to the BPF listener */
		ETHER_BPF_MTAP(ifp, m_head);

		/*
		 * We sent via PIO, no longer need a copy
		 */
		if (m_head->m_nextpkt == NULL &&
		    m_head->m_pkthdr.len <= PIO_LEN)
			m_freem(m_head);

		m_head = NULL;
	}
	if (!TXQ_RING_EMPTY(qs) && callout_pending(&txq->txq_timer) == 0 &&
	    pi->link_config.link_ok)
		callout_reset_on(&txq->txq_timer, 1, cxgb_tx_timeout,
		    qs, txq->txq_timer.c_cpu);
	if (m_head != NULL)
		m_freem(m_head);
}

static int
cxgb_transmit_locked(struct ifnet *ifp, struct sge_qset *qs, struct mbuf *m)
{
	struct port_info *pi = qs->port;
	struct sge_txq *txq = &qs->txq[TXQ_ETH];
	struct buf_ring *br = txq->txq_mr;
	int error, avail;

	avail = txq->size - txq->in_use;
	TXQ_LOCK_ASSERT(qs);

	/*
	 * We can only do a direct transmit if the following are true:
	 * - we aren't coalescing (ring < 3/4 full)
	 * - the link is up -- checked in caller
	 * - there are no packets enqueued already
	 * - there is space in hardware transmit queue 
	 */
	if (check_pkt_coalesce(qs) == 0 &&
	    TXQ_RING_EMPTY(qs) && avail > 4) {
		if (t3_encap(qs, &m)) {
			if (m != NULL &&
			    (error = drbr_enqueue(ifp, br, m)) != 0) 
				return (error);
		} else {
			/*
			 * We've bypassed the buf ring so we need to update
			 * the stats directly
			 */
			txq->txq_direct_packets++;
			txq->txq_direct_bytes += m->m_pkthdr.len;
			/*
			** Send a copy of the frame to the BPF
			** listener and set the watchdog on.
			*/
			ETHER_BPF_MTAP(ifp, m);
			/*
			 * We sent via PIO, no longer need a copy
			 */
			if (m->m_pkthdr.len <= PIO_LEN)
				m_freem(m);

		}
	} else if ((error = drbr_enqueue(ifp, br, m)) != 0)
		return (error);

	reclaim_completed_tx(qs, cxgb_tx_reclaim_threshold, TXQ_ETH);
	if (!TXQ_RING_EMPTY(qs) && pi->link_config.link_ok &&
	    (!check_pkt_coalesce(qs) || (drbr_inuse(ifp, br) >= 7)))
		cxgb_start_locked(qs);
	else if (!TXQ_RING_EMPTY(qs) && !callout_pending(&txq->txq_timer))
		callout_reset_on(&txq->txq_timer, 1, cxgb_tx_timeout,
		    qs, txq->txq_timer.c_cpu);
	return (0);
}

int
cxgb_transmit(struct ifnet *ifp, struct mbuf *m)
{
	struct sge_qset *qs;
	struct port_info *pi = ifp->if_softc;
	int error, qidx = pi->first_qset;

	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0
	    ||(!pi->link_config.link_ok)) {
		m_freem(m);
		return (0);
	}
	
	if (m->m_flags & M_FLOWID)
		qidx = (m->m_pkthdr.flowid % pi->nqsets) + pi->first_qset;

	qs = &pi->adapter->sge.qs[qidx];
	
	if (TXQ_TRYLOCK(qs)) {
		/* XXX running */
		error = cxgb_transmit_locked(ifp, qs, m);
		TXQ_UNLOCK(qs);
	} else
		error = drbr_enqueue(ifp, qs->txq[TXQ_ETH].txq_mr, m);
	return (error);
}
void
cxgb_start(struct ifnet *ifp)
{
	struct port_info *pi = ifp->if_softc;
	struct sge_qset *qs = &pi->adapter->sge.qs[pi->first_qset];
	
	if (!pi->link_config.link_ok)
		return;

	TXQ_LOCK(qs);
	cxgb_start_locked(qs);
	TXQ_UNLOCK(qs);
}

void
cxgb_qflush(struct ifnet *ifp)
{
	/*
	 * flush any enqueued mbufs in the buf_rings
	 * and in the transmit queues
	 * no-op for now
	 */
	return;
}

/**
 *	write_imm - write a packet into a Tx descriptor as immediate data
 *	@d: the Tx descriptor to write
 *	@m: the packet
 *	@len: the length of packet data to write as immediate data
 *	@gen: the generation bit value to write
 *
 *	Writes a packet as immediate data into a Tx descriptor.  The packet
 *	contains a work request at its beginning.  We must write the packet
 *	carefully so the SGE doesn't read accidentally before it's written in
 *	its entirety.
 */
static __inline void
write_imm(struct tx_desc *d, struct mbuf *m,
	  unsigned int len, unsigned int gen)
{
	struct work_request_hdr *from = mtod(m, struct work_request_hdr *);
	struct work_request_hdr *to = (struct work_request_hdr *)d;
	uint32_t wr_hi, wr_lo;

	if (len > WR_LEN)
		panic("len too big %d\n", len);
	if (len < sizeof(*from))
		panic("len too small %d", len);
	
	memcpy(&to[1], &from[1], len - sizeof(*from));
	wr_hi = from->wrh_hi | htonl(F_WR_SOP | F_WR_EOP |
					V_WR_BCNTLFLT(len & 7));
	wr_lo = from->wrh_lo | htonl(V_WR_GEN(gen) |
					V_WR_LEN((len + 7) / 8));
	set_wr_hdr(to, wr_hi, wr_lo);
	wmb();
	wr_gen2(d, gen);

	/*
	 * This check is a hack we should really fix the logic so
	 * that this can't happen
	 */
	if (m->m_type != MT_DONTFREE)
		m_freem(m);
	
}

/**
 *	check_desc_avail - check descriptor availability on a send queue
 *	@adap: the adapter
 *	@q: the TX queue
 *	@m: the packet needing the descriptors
 *	@ndesc: the number of Tx descriptors needed
 *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
 *
 *	Checks if the requested number of Tx descriptors is available on an
 *	SGE send queue.  If the queue is already suspended or not enough
 *	descriptors are available the packet is queued for later transmission.
 *	Must be called with the Tx queue locked.
 *
 *	Returns 0 if enough descriptors are available, 1 if there aren't
 *	enough descriptors and the packet has been queued, and 2 if the caller
 *	needs to retry because there weren't enough descriptors at the
 *	beginning of the call but some freed up in the mean time.
 */
static __inline int
check_desc_avail(adapter_t *adap, struct sge_txq *q,
		 struct mbuf *m, unsigned int ndesc,
		 unsigned int qid)
{
	/* 
	 * XXX We currently only use this for checking the control queue
	 * the control queue is only used for binding qsets which happens
	 * at init time so we are guaranteed enough descriptors
	 */
	if (__predict_false(!mbufq_empty(&q->sendq))) {
addq_exit:	mbufq_tail(&q->sendq, m);
		return 1;
	}
	if (__predict_false(q->size - q->in_use < ndesc)) {

		struct sge_qset *qs = txq_to_qset(q, qid);

		setbit(&qs->txq_stopped, qid);
		if (should_restart_tx(q) &&
		    test_and_clear_bit(qid, &qs->txq_stopped))
			return 2;

		q->stops++;
		goto addq_exit;
	}
	return 0;
}


/**
 *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
 *	@q: the SGE control Tx queue
 *
 *	This is a variant of reclaim_completed_tx() that is used for Tx queues
 *	that send only immediate data (presently just the control queues) and
 *	thus do not have any mbufs
 */
static __inline void
reclaim_completed_tx_imm(struct sge_txq *q)
{
	unsigned int reclaim = q->processed - q->cleaned;

	q->in_use -= reclaim;
	q->cleaned += reclaim;
}

static __inline int
immediate(const struct mbuf *m)
{
	return m->m_len <= WR_LEN  && m->m_pkthdr.len <= WR_LEN ;
}

/**
 *	ctrl_xmit - send a packet through an SGE control Tx queue
 *	@adap: the adapter
 *	@q: the control queue
 *	@m: the packet
 *
 *	Send a packet through an SGE control Tx queue.  Packets sent through
 *	a control queue must fit entirely as immediate data in a single Tx
 *	descriptor and have no page fragments.
 */
static int
ctrl_xmit(adapter_t *adap, struct sge_qset *qs, struct mbuf *m)
{
	int ret;
	struct work_request_hdr *wrp = mtod(m, struct work_request_hdr *);
	struct sge_txq *q = &qs->txq[TXQ_CTRL];
	
	if (__predict_false(!immediate(m))) {
		m_freem(m);
		return 0;
	}
	
	wrp->wrh_hi |= htonl(F_WR_SOP | F_WR_EOP);
	wrp->wrh_lo = htonl(V_WR_TID(q->token));

	TXQ_LOCK(qs);
again:	reclaim_completed_tx_imm(q);

	ret = check_desc_avail(adap, q, m, 1, TXQ_CTRL);
	if (__predict_false(ret)) {
		if (ret == 1) {
			TXQ_UNLOCK(qs);
			return (ENOSPC);
		}
		goto again;
	}
	write_imm(&q->desc[q->pidx], m, m->m_len, q->gen);
	
	q->in_use++;
	if (++q->pidx >= q->size) {
		q->pidx = 0;
		q->gen ^= 1;
	}
	TXQ_UNLOCK(qs);
	wmb();
	t3_write_reg(adap, A_SG_KDOORBELL,
		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
	return (0);
}


/**
 *	restart_ctrlq - restart a suspended control queue
 *	@qs: the queue set cotaining the control queue
 *
 *	Resumes transmission on a suspended Tx control queue.
 */
static void
restart_ctrlq(void *data, int npending)
{
	struct mbuf *m;
	struct sge_qset *qs = (struct sge_qset *)data;
	struct sge_txq *q = &qs->txq[TXQ_CTRL];
	adapter_t *adap = qs->port->adapter;

	TXQ_LOCK(qs);
again:	reclaim_completed_tx_imm(q);

	while (q->in_use < q->size &&
	       (m = mbufq_dequeue(&q->sendq)) != NULL) {

		write_imm(&q->desc[q->pidx], m, m->m_len, q->gen);

		if (++q->pidx >= q->size) {
			q->pidx = 0;
			q->gen ^= 1;
		}
		q->in_use++;
	}
	if (!mbufq_empty(&q->sendq)) {
		setbit(&qs->txq_stopped, TXQ_CTRL);

		if (should_restart_tx(q) &&
		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
			goto again;
		q->stops++;
	}
	TXQ_UNLOCK(qs);
	t3_write_reg(adap, A_SG_KDOORBELL,
		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
}


/*
 * Send a management message through control queue 0
 */
int
t3_mgmt_tx(struct adapter *adap, struct mbuf *m)
{
	return ctrl_xmit(adap, &adap->sge.qs[0], m);
}

/**
 *	free_qset - free the resources of an SGE queue set
 *	@sc: the controller owning the queue set
 *	@q: the queue set
 *
 *	Release the HW and SW resources associated with an SGE queue set, such
 *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
 *	queue set must be quiesced prior to calling this.
 */
static void
t3_free_qset(adapter_t *sc, struct sge_qset *q)
{
	int i;
	
	reclaim_completed_tx(q, 0, TXQ_ETH);
	for (i = 0; i < SGE_TXQ_PER_SET; i++) {
		if (q->txq[i].txq_mr != NULL) 
			buf_ring_free(q->txq[i].txq_mr, M_DEVBUF);
		if (q->txq[i].txq_ifq != NULL) {
			ifq_delete(q->txq[i].txq_ifq);
			free(q->txq[i].txq_ifq, M_DEVBUF);
		}
	}
	
	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
		if (q->fl[i].desc) {
			mtx_lock_spin(&sc->sge.reg_lock);
			t3_sge_disable_fl(sc, q->fl[i].cntxt_id);
			mtx_unlock_spin(&sc->sge.reg_lock);
			bus_dmamap_unload(q->fl[i].desc_tag, q->fl[i].desc_map);
			bus_dmamem_free(q->fl[i].desc_tag, q->fl[i].desc,
					q->fl[i].desc_map);
			bus_dma_tag_destroy(q->fl[i].desc_tag);
			bus_dma_tag_destroy(q->fl[i].entry_tag);
		}
		if (q->fl[i].sdesc) {
			free_rx_bufs(sc, &q->fl[i]);
			free(q->fl[i].sdesc, M_DEVBUF);
		}
	}

	mtx_unlock(&q->lock);
	MTX_DESTROY(&q->lock);
	for (i = 0; i < SGE_TXQ_PER_SET; i++) {
		if (q->txq[i].desc) {
			mtx_lock_spin(&sc->sge.reg_lock);
			t3_sge_enable_ecntxt(sc, q->txq[i].cntxt_id, 0);
			mtx_unlock_spin(&sc->sge.reg_lock);
			bus_dmamap_unload(q->txq[i].desc_tag,
					q->txq[i].desc_map);
			bus_dmamem_free(q->txq[i].desc_tag, q->txq[i].desc,
					q->txq[i].desc_map);
			bus_dma_tag_destroy(q->txq[i].desc_tag);
			bus_dma_tag_destroy(q->txq[i].entry_tag);
		}
		if (q->txq[i].sdesc) {
			free(q->txq[i].sdesc, M_DEVBUF);
		}
	}

	if (q->rspq.desc) {
		mtx_lock_spin(&sc->sge.reg_lock);
		t3_sge_disable_rspcntxt(sc, q->rspq.cntxt_id);
		mtx_unlock_spin(&sc->sge.reg_lock);
		
		bus_dmamap_unload(q->rspq.desc_tag, q->rspq.desc_map);
		bus_dmamem_free(q->rspq.desc_tag, q->rspq.desc,
			        q->rspq.desc_map);
		bus_dma_tag_destroy(q->rspq.desc_tag);
		MTX_DESTROY(&q->rspq.lock);
	}

#ifdef LRO_SUPPORTED
	tcp_lro_free(&q->lro.ctrl);
#endif

	bzero(q, sizeof(*q));
}

/**
 *	t3_free_sge_resources - free SGE resources
 *	@sc: the adapter softc
 *
 *	Frees resources used by the SGE queue sets.
 */
void
t3_free_sge_resources(adapter_t *sc)
{
	int i, nqsets;
	
	for (nqsets = i = 0; i < (sc)->params.nports; i++) 
		nqsets += sc->port[i].nqsets;

	for (i = 0; i < nqsets; ++i) {
		TXQ_LOCK(&sc->sge.qs[i]);
		t3_free_qset(sc, &sc->sge.qs[i]);
	}
	
}

/**
 *	t3_sge_start - enable SGE
 *	@sc: the controller softc
 *
 *	Enables the SGE for DMAs.  This is the last step in starting packet
 *	transfers.
 */
void
t3_sge_start(adapter_t *sc)
{
	t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
}

/**
 *	t3_sge_stop - disable SGE operation
 *	@sc: the adapter
 *
 *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
 *	from error interrupts) or from normal process context.  In the latter
 *	case it also disables any pending queue restart tasklets.  Note that
 *	if it is called in interrupt context it cannot disable the restart
 *	tasklets as it cannot wait, however the tasklets will have no effect
 *	since the doorbells are disabled and the driver will call this again
 *	later from process context, at which time the tasklets will be stopped
 *	if they are still running.
 */
void
t3_sge_stop(adapter_t *sc)
{
	int i, nqsets;
	
	t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, 0);

	if (sc->tq == NULL)
		return;
	
	for (nqsets = i = 0; i < (sc)->params.nports; i++) 
		nqsets += sc->port[i].nqsets;
#ifdef notyet
	/*
	 * 
	 * XXX
	 */
	for (i = 0; i < nqsets; ++i) {
		struct sge_qset *qs = &sc->sge.qs[i];
		
		taskqueue_drain(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
		taskqueue_drain(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
	}
#endif
}

/**
 *	t3_free_tx_desc - reclaims Tx descriptors and their buffers
 *	@adapter: the adapter
 *	@q: the Tx queue to reclaim descriptors from
 *	@reclaimable: the number of descriptors to reclaim
 *      @m_vec_size: maximum number of buffers to reclaim
 *      @desc_reclaimed: returns the number of descriptors reclaimed
 *
 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 *	Tx buffers.  Called with the Tx queue lock held.
 *
 *      Returns number of buffers of reclaimed   
 */
void
t3_free_tx_desc(struct sge_qset *qs, int reclaimable, int queue)
{
	struct tx_sw_desc *txsd;
	unsigned int cidx, mask;
	struct sge_txq *q = &qs->txq[queue];

#ifdef T3_TRACE
	T3_TRACE2(sc->tb[q->cntxt_id & 7],
		  "reclaiming %u Tx descriptors at cidx %u", reclaimable, cidx);
#endif
	cidx = q->cidx;
	mask = q->size - 1;
	txsd = &q->sdesc[cidx];

	mtx_assert(&qs->lock, MA_OWNED);
	while (reclaimable--) {
		prefetch(q->sdesc[(cidx + 1) & mask].m);
		prefetch(q->sdesc[(cidx + 2) & mask].m);

		if (txsd->m != NULL) {
			if (txsd->flags & TX_SW_DESC_MAPPED) {
				bus_dmamap_unload(q->entry_tag, txsd->map);
				txsd->flags &= ~TX_SW_DESC_MAPPED;
			}
			m_freem_list(txsd->m);
			txsd->m = NULL;
		} else
			q->txq_skipped++;
		
		++txsd;
		if (++cidx == q->size) {
			cidx = 0;
			txsd = q->sdesc;
		}
	}
	q->cidx = cidx;

}

/**
 *	is_new_response - check if a response is newly written
 *	@r: the response descriptor
 *	@q: the response queue
 *
 *	Returns true if a response descriptor contains a yet unprocessed
 *	response.
 */
static __inline int
is_new_response(const struct rsp_desc *r,
    const struct sge_rspq *q)
{
	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
}

#define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))

/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
#define NOMEM_INTR_DELAY 2500

/**
 *	write_ofld_wr - write an offload work request
 *	@adap: the adapter
 *	@m: the packet to send
 *	@q: the Tx queue
 *	@pidx: index of the first Tx descriptor to write
 *	@gen: the generation value to use
 *	@ndesc: number of descriptors the packet will occupy
 *
 *	Write an offload work request to send the supplied packet.  The packet
 *	data already carry the work request with most fields populated.
 */
static void
write_ofld_wr(adapter_t *adap, struct mbuf *m,
    struct sge_txq *q, unsigned int pidx,
    unsigned int gen, unsigned int ndesc,
    bus_dma_segment_t *segs, unsigned int nsegs)
{
	unsigned int sgl_flits, flits;
	struct work_request_hdr *from;
	struct sg_ent *sgp, sgl[TX_MAX_SEGS / 2 + 1];
	struct tx_desc *d = &q->desc[pidx];
	struct txq_state txqs;
	
	if (immediate(m) && nsegs == 0) {
		write_imm(d, m, m->m_len, gen);
		return;
	}

	/* Only TX_DATA builds SGLs */
	from = mtod(m, struct work_request_hdr *);
	memcpy(&d->flit[1], &from[1], m->m_len - sizeof(*from));

	flits = m->m_len / 8;
	sgp = (ndesc == 1) ? (struct sg_ent *)&d->flit[flits] : sgl;

	make_sgl(sgp, segs, nsegs);
	sgl_flits = sgl_len(nsegs);

	txqs.gen = gen;
	txqs.pidx = pidx;
	txqs.compl = 0;

	write_wr_hdr_sgl(ndesc, d, &txqs, q, sgl, flits, sgl_flits,
	    from->wrh_hi, from->wrh_lo);
}

/**
 *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
 *	@m: the packet
 *
 * 	Returns the number of Tx descriptors needed for the given offload
 * 	packet.  These packets are already fully constructed.
 */
static __inline unsigned int
calc_tx_descs_ofld(struct mbuf *m, unsigned int nsegs)
{
	unsigned int flits, cnt = 0;
	int ndescs;

	if (m->m_len <= WR_LEN && nsegs == 0)
		return (1);                 /* packet fits as immediate data */

	/*
	 * This needs to be re-visited for TOE
	 */

	cnt = nsegs;
		
	/* headers */
	flits = m->m_len / 8;

	ndescs = flits_to_desc(flits + sgl_len(cnt));

	return (ndescs);
}

/**
 *	ofld_xmit - send a packet through an offload queue
 *	@adap: the adapter
 *	@q: the Tx offload queue
 *	@m: the packet
 *
 *	Send an offload packet through an SGE offload queue.
 */
static int
ofld_xmit(adapter_t *adap, struct sge_qset *qs, struct mbuf *m)
{
	int ret, nsegs;
	unsigned int ndesc;
	unsigned int pidx, gen;
	struct sge_txq *q = &qs->txq[TXQ_OFLD];
	bus_dma_segment_t segs[TX_MAX_SEGS], *vsegs;
	struct tx_sw_desc *stx;

	nsegs = m_get_sgllen(m);
	vsegs = m_get_sgl(m);
	ndesc = calc_tx_descs_ofld(m, nsegs);
	busdma_map_sgl(vsegs, segs, nsegs);

	stx = &q->sdesc[q->pidx];
	
	TXQ_LOCK(qs);
again:	reclaim_completed_tx(qs, 16, TXQ_OFLD);
	ret = check_desc_avail(adap, q, m, ndesc, TXQ_OFLD);
	if (__predict_false(ret)) {
		if (ret == 1) {
			printf("no ofld desc avail\n");
			
			m_set_priority(m, ndesc);     /* save for restart */
			TXQ_UNLOCK(qs);
			return (EINTR);
		}
		goto again;
	}

	gen = q->gen;
	q->in_use += ndesc;
	pidx = q->pidx;
	q->pidx += ndesc;
	if (q->pidx >= q->size) {
		q->pidx -= q->size;
		q->gen ^= 1;
	}
#ifdef T3_TRACE
	T3_TRACE5(adap->tb[q->cntxt_id & 7],
		  "ofld_xmit: ndesc %u, pidx %u, len %u, main %u, frags %u",
		  ndesc, pidx, skb->len, skb->len - skb->data_len,
		  skb_shinfo(skb)->nr_frags);
#endif
	TXQ_UNLOCK(qs);

	write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs);
	check_ring_tx_db(adap, q);
	return (0);
}

/**
 *	restart_offloadq - restart a suspended offload queue
 *	@qs: the queue set cotaining the offload queue
 *
 *	Resumes transmission on a suspended Tx offload queue.
 */
static void
restart_offloadq(void *data, int npending)
{
	struct mbuf *m;
	struct sge_qset *qs = data;
	struct sge_txq *q = &qs->txq[TXQ_OFLD];
	adapter_t *adap = qs->port->adapter;
	bus_dma_segment_t segs[TX_MAX_SEGS];
	struct tx_sw_desc *stx = &q->sdesc[q->pidx];
	int nsegs, cleaned;
		
	TXQ_LOCK(qs);
again:	cleaned = reclaim_completed_tx(qs, 16, TXQ_OFLD);

	while ((m = mbufq_peek(&q->sendq)) != NULL) {
		unsigned int gen, pidx;
		unsigned int ndesc = m_get_priority(m);

		if (__predict_false(q->size - q->in_use < ndesc)) {
			setbit(&qs->txq_stopped, TXQ_OFLD);
			if (should_restart_tx(q) &&
			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
				goto again;
			q->stops++;
			break;
		}

		gen = q->gen;
		q->in_use += ndesc;
		pidx = q->pidx;
		q->pidx += ndesc;
		if (q->pidx >= q->size) {
			q->pidx -= q->size;
			q->gen ^= 1;
		}
		
		(void)mbufq_dequeue(&q->sendq);
		busdma_map_mbufs(&m, q, stx, segs, &nsegs);
		TXQ_UNLOCK(qs);
		write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs);
		TXQ_LOCK(qs);
	}
#if USE_GTS
	set_bit(TXQ_RUNNING, &q->flags);
	set_bit(TXQ_LAST_PKT_DB, &q->flags);
#endif
	TXQ_UNLOCK(qs);
	wmb();
	t3_write_reg(adap, A_SG_KDOORBELL,
		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
}

/**
 *	queue_set - return the queue set a packet should use
 *	@m: the packet
 *
 *	Maps a packet to the SGE queue set it should use.  The desired queue
 *	set is carried in bits 1-3 in the packet's priority.
 */
static __inline int
queue_set(const struct mbuf *m)
{
	return m_get_priority(m) >> 1;
}

/**
 *	is_ctrl_pkt - return whether an offload packet is a control packet
 *	@m: the packet
 *
 *	Determines whether an offload packet should use an OFLD or a CTRL
 *	Tx queue.  This is indicated by bit 0 in the packet's priority.
 */
static __inline int
is_ctrl_pkt(const struct mbuf *m)
{
	return m_get_priority(m) & 1;
}

/**
 *	t3_offload_tx - send an offload packet
 *	@tdev: the offload device to send to
 *	@m: the packet
 *
 *	Sends an offload packet.  We use the packet priority to select the
 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
 *	should be sent as regular or control, bits 1-3 select the queue set.
 */
int
t3_offload_tx(struct t3cdev *tdev, struct mbuf *m)
{
	adapter_t *adap = tdev2adap(tdev);
	struct sge_qset *qs = &adap->sge.qs[queue_set(m)];

	if (__predict_false(is_ctrl_pkt(m))) 
		return ctrl_xmit(adap, qs, m);

	return ofld_xmit(adap, qs, m);
}

/**
 *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
 *	@tdev: the offload device that will be receiving the packets
 *	@q: the SGE response queue that assembled the bundle
 *	@m: the partial bundle
 *	@n: the number of packets in the bundle
 *
 *	Delivers a (partial) bundle of Rx offload packets to an offload device.
 */
static __inline void
deliver_partial_bundle(struct t3cdev *tdev,
			struct sge_rspq *q,
			struct mbuf *mbufs[], int n)
{
	if (n) {
		q->offload_bundles++;
		cxgb_ofld_recv(tdev, mbufs, n);
	}
}

static __inline int
rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
    struct mbuf *m, struct mbuf *rx_gather[],
    unsigned int gather_idx)
{
	
	rq->offload_pkts++;
	m->m_pkthdr.header = mtod(m, void *);
	rx_gather[gather_idx++] = m;
	if (gather_idx == RX_BUNDLE_SIZE) {
		cxgb_ofld_recv(tdev, rx_gather, RX_BUNDLE_SIZE);
		gather_idx = 0;
		rq->offload_bundles++;
	}
	return (gather_idx);
}

static void
restart_tx(struct sge_qset *qs)
{
	struct adapter *sc = qs->port->adapter;
	
	
	if (isset(&qs->txq_stopped, TXQ_OFLD) &&
	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
		qs->txq[TXQ_OFLD].restarts++;
		DPRINTF("restarting TXQ_OFLD\n");
		taskqueue_enqueue(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
	}
	DPRINTF("stopped=0x%x restart=%d processed=%d cleaned=%d in_use=%d\n",
	    qs->txq_stopped, should_restart_tx(&qs->txq[TXQ_CTRL]),
	    qs->txq[TXQ_CTRL].processed, qs->txq[TXQ_CTRL].cleaned,
	    qs->txq[TXQ_CTRL].in_use);
	
	if (isset(&qs->txq_stopped, TXQ_CTRL) &&
	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
		qs->txq[TXQ_CTRL].restarts++;
		DPRINTF("restarting TXQ_CTRL\n");
		taskqueue_enqueue(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
	}
}

/**
 *	t3_sge_alloc_qset - initialize an SGE queue set
 *	@sc: the controller softc
 *	@id: the queue set id
 *	@nports: how many Ethernet ports will be using this queue set
 *	@irq_vec_idx: the IRQ vector index for response queue interrupts
 *	@p: configuration parameters for this queue set
 *	@ntxq: number of Tx queues for the queue set
 *	@pi: port info for queue set
 *
 *	Allocate resources and initialize an SGE queue set.  A queue set
 *	comprises a response queue, two Rx free-buffer queues, and up to 3
 *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
 *	queue, offload queue, and control queue.
 */
int
t3_sge_alloc_qset(adapter_t *sc, u_int id, int nports, int irq_vec_idx,
		  const struct qset_params *p, int ntxq, struct port_info *pi)
{
	struct sge_qset *q = &sc->sge.qs[id];
	int i, ret = 0;

	MTX_INIT(&q->lock, q->namebuf, NULL, MTX_DEF);
	q->port = pi;

	for (i = 0; i < SGE_TXQ_PER_SET; i++) {
		
		if ((q->txq[i].txq_mr = buf_ring_alloc(cxgb_txq_buf_ring_size,
			    M_DEVBUF, M_WAITOK, &q->lock)) == NULL) {
			device_printf(sc->dev, "failed to allocate mbuf ring\n");
			goto err;
		}
		if ((q->txq[i].txq_ifq =
			malloc(sizeof(struct ifaltq), M_DEVBUF, M_NOWAIT|M_ZERO))
		    == NULL) {
			device_printf(sc->dev, "failed to allocate ifq\n");
			goto err;
		}
		ifq_init(q->txq[i].txq_ifq, pi->ifp);	
		callout_init(&q->txq[i].txq_timer, 1);
		callout_init(&q->txq[i].txq_watchdog, 1);
		q->txq[i].txq_timer.c_cpu = id % mp_ncpus;
		q->txq[i].txq_watchdog.c_cpu = id % mp_ncpus;
	}
	init_qset_cntxt(q, id);
	q->idx = id;
	if ((ret = alloc_ring(sc, p->fl_size, sizeof(struct rx_desc),
		    sizeof(struct rx_sw_desc), &q->fl[0].phys_addr,
		    &q->fl[0].desc, &q->fl[0].sdesc,
		    &q->fl[0].desc_tag, &q->fl[0].desc_map,
		    sc->rx_dmat, &q->fl[0].entry_tag)) != 0) {
		printf("error %d from alloc ring fl0\n", ret);
		goto err;
	}

	if ((ret = alloc_ring(sc, p->jumbo_size, sizeof(struct rx_desc),
		    sizeof(struct rx_sw_desc), &q->fl[1].phys_addr,
		    &q->fl[1].desc, &q->fl[1].sdesc,
		    &q->fl[1].desc_tag, &q->fl[1].desc_map,
		    sc->rx_jumbo_dmat, &q->fl[1].entry_tag)) != 0) {
		printf("error %d from alloc ring fl1\n", ret);
		goto err;
	}

	if ((ret = alloc_ring(sc, p->rspq_size, sizeof(struct rsp_desc), 0,
		    &q->rspq.phys_addr, &q->rspq.desc, NULL,
		    &q->rspq.desc_tag, &q->rspq.desc_map,
		    NULL, NULL)) != 0) {
		printf("error %d from alloc ring rspq\n", ret);
		goto err;
	}

	for (i = 0; i < ntxq; ++i) {
		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);

		if ((ret = alloc_ring(sc, p->txq_size[i],
			    sizeof(struct tx_desc), sz,
			    &q->txq[i].phys_addr, &q->txq[i].desc,
			    &q->txq[i].sdesc, &q->txq[i].desc_tag,
			    &q->txq[i].desc_map,
			    sc->tx_dmat, &q->txq[i].entry_tag)) != 0) {
			printf("error %d from alloc ring tx %i\n", ret, i);
			goto err;
		}
		mbufq_init(&q->txq[i].sendq);
		q->txq[i].gen = 1;
		q->txq[i].size = p->txq_size[i];
	}
	
	TASK_INIT(&q->txq[TXQ_OFLD].qresume_task, 0, restart_offloadq, q);
	TASK_INIT(&q->txq[TXQ_CTRL].qresume_task, 0, restart_ctrlq, q);
	TASK_INIT(&q->txq[TXQ_ETH].qreclaim_task, 0, sge_txq_reclaim_handler, q);
	TASK_INIT(&q->txq[TXQ_OFLD].qreclaim_task, 0, sge_txq_reclaim_handler, q);

	q->fl[0].gen = q->fl[1].gen = 1;
	q->fl[0].size = p->fl_size;
	q->fl[1].size = p->jumbo_size;

	q->rspq.gen = 1;
	q->rspq.cidx = 0;
	q->rspq.size = p->rspq_size;

	q->txq[TXQ_ETH].stop_thres = nports *
	    flits_to_desc(sgl_len(TX_MAX_SEGS + 1) + 3);

	q->fl[0].buf_size = MCLBYTES;
	q->fl[0].zone = zone_pack;
	q->fl[0].type = EXT_PACKET;
#if __FreeBSD_version > 800000
	if (cxgb_use_16k_clusters) {		
		q->fl[1].buf_size = MJUM16BYTES;
		q->fl[1].zone = zone_jumbo16;
		q->fl[1].type = EXT_JUMBO16;
	} else {
		q->fl[1].buf_size = MJUM9BYTES;
		q->fl[1].zone = zone_jumbo9;
		q->fl[1].type = EXT_JUMBO9;		
	}
#else
	q->fl[1].buf_size = MJUMPAGESIZE;
	q->fl[1].zone = zone_jumbop;
	q->fl[1].type = EXT_JUMBOP;
#endif

#ifdef LRO_SUPPORTED
	/* Allocate and setup the lro_ctrl structure */
	q->lro.enabled = !!(pi->ifp->if_capenable & IFCAP_LRO);
	ret = tcp_lro_init(&q->lro.ctrl);
	if (ret) {
		printf("error %d from tcp_lro_init\n", ret);
		goto err;
	}
	q->lro.ctrl.ifp = pi->ifp;
#endif

	mtx_lock_spin(&sc->sge.reg_lock);
	ret = -t3_sge_init_rspcntxt(sc, q->rspq.cntxt_id, irq_vec_idx,
				   q->rspq.phys_addr, q->rspq.size,
				   q->fl[0].buf_size, 1, 0);
	if (ret) {
		printf("error %d from t3_sge_init_rspcntxt\n", ret);
		goto err_unlock;
	}

	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
		ret = -t3_sge_init_flcntxt(sc, q->fl[i].cntxt_id, 0,
					  q->fl[i].phys_addr, q->fl[i].size,
					  q->fl[i].buf_size, p->cong_thres, 1,
					  0);
		if (ret) {
			printf("error %d from t3_sge_init_flcntxt for index i=%d\n", ret, i);
			goto err_unlock;
		}
	}

	ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
				 1, 0);
	if (ret) {
		printf("error %d from t3_sge_init_ecntxt\n", ret);
		goto err_unlock;
	}

	if (ntxq > 1) {
		ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_OFLD].cntxt_id,
					 USE_GTS, SGE_CNTXT_OFLD, id,
					 q->txq[TXQ_OFLD].phys_addr,
					 q->txq[TXQ_OFLD].size, 0, 1, 0);
		if (ret) {
			printf("error %d from t3_sge_init_ecntxt\n", ret);
			goto err_unlock;
		}
	}

	if (ntxq > 2) {
		ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_CTRL].cntxt_id, 0,
					 SGE_CNTXT_CTRL, id,
					 q->txq[TXQ_CTRL].phys_addr,
					 q->txq[TXQ_CTRL].size,
					 q->txq[TXQ_CTRL].token, 1, 0);
		if (ret) {
			printf("error %d from t3_sge_init_ecntxt\n", ret);
			goto err_unlock;
		}
	}
	
	snprintf(q->rspq.lockbuf, RSPQ_NAME_LEN, "t3 rspq lock %d:%d",
	    device_get_unit(sc->dev), irq_vec_idx);
	MTX_INIT(&q->rspq.lock, q->rspq.lockbuf, NULL, MTX_DEF);
	
	mtx_unlock_spin(&sc->sge.reg_lock);
	t3_update_qset_coalesce(q, p);
	q->port = pi;
	
	refill_fl(sc, &q->fl[0], q->fl[0].size);
	refill_fl(sc, &q->fl[1], q->fl[1].size);
	refill_rspq(sc, &q->rspq, q->rspq.size - 1);

	t3_write_reg(sc, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
		     V_NEWTIMER(q->rspq.holdoff_tmr));

	return (0);

err_unlock:
	mtx_unlock_spin(&sc->sge.reg_lock);
err:	
	TXQ_LOCK(q);
	t3_free_qset(sc, q);

	return (ret);
}

/*
 * Remove CPL_RX_PKT headers from the mbuf and reduce it to a regular mbuf with
 * ethernet data.  Hardware assistance with various checksums and any vlan tag
 * will also be taken into account here.
 */
void
t3_rx_eth(struct adapter *adap, struct sge_rspq *rq, struct mbuf *m, int ethpad)
{
	struct cpl_rx_pkt *cpl = (struct cpl_rx_pkt *)(mtod(m, uint8_t *) + ethpad);
	struct port_info *pi = &adap->port[adap->rxpkt_map[cpl->iff]];
	struct ifnet *ifp = pi->ifp;
	
	DPRINTF("rx_eth m=%p m->m_data=%p p->iff=%d\n", m, mtod(m, uint8_t *), cpl->iff);

	if ((ifp->if_capenable & IFCAP_RXCSUM) && !cpl->fragment &&
	    cpl->csum_valid && cpl->csum == 0xffff) {
		m->m_pkthdr.csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID);
		rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
		m->m_pkthdr.csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID|CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
		m->m_pkthdr.csum_data = 0xffff;
	}
	/* 
	 * XXX need to add VLAN support for 6.x
	 */
#ifdef VLAN_SUPPORTED
	if (__predict_false(cpl->vlan_valid)) {
		m->m_pkthdr.ether_vtag = ntohs(cpl->vlan);
		m->m_flags |= M_VLANTAG;
	} 
#endif
	
	m->m_pkthdr.rcvif = ifp;
	m->m_pkthdr.header = mtod(m, uint8_t *) + sizeof(*cpl) + ethpad;
	/*
	 * adjust after conversion to mbuf chain
	 */
	m->m_pkthdr.len -= (sizeof(*cpl) + ethpad);
	m->m_len -= (sizeof(*cpl) + ethpad);
	m->m_data += (sizeof(*cpl) + ethpad);
}

/**
 *	get_packet - return the next ingress packet buffer from a free list
 *	@adap: the adapter that received the packet
 *	@drop_thres: # of remaining buffers before we start dropping packets
 *	@qs: the qset that the SGE free list holding the packet belongs to
 *      @mh: the mbuf header, contains a pointer to the head and tail of the mbuf chain
 *      @r: response descriptor 
 *
 *	Get the next packet from a free list and complete setup of the
 *	sk_buff.  If the packet is small we make a copy and recycle the
 *	original buffer, otherwise we use the original buffer itself.  If a
 *	positive drop threshold is supplied packets are dropped and their
 *	buffers recycled if (a) the number of remaining buffers is under the
 *	threshold and the packet is too big to copy, or (b) the packet should
 *	be copied but there is no memory for the copy.
 */
static int
get_packet(adapter_t *adap, unsigned int drop_thres, struct sge_qset *qs,
    struct t3_mbuf_hdr *mh, struct rsp_desc *r)
{

	unsigned int len_cq =  ntohl(r->len_cq);
	struct sge_fl *fl = (len_cq & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
	int mask, cidx = fl->cidx;
	struct rx_sw_desc *sd = &fl->sdesc[cidx];
	uint32_t len = G_RSPD_LEN(len_cq);
	uint32_t flags = M_EXT;
	uint8_t sopeop = G_RSPD_SOP_EOP(ntohl(r->flags));
	caddr_t cl;
	struct mbuf *m;
	int ret = 0;

	mask = fl->size - 1;
	prefetch(fl->sdesc[(cidx + 1) & mask].m);
	prefetch(fl->sdesc[(cidx + 2) & mask].m);
	prefetch(fl->sdesc[(cidx + 1) & mask].rxsd_cl);
	prefetch(fl->sdesc[(cidx + 2) & mask].rxsd_cl);	

	fl->credits--;
	bus_dmamap_sync(fl->entry_tag, sd->map, BUS_DMASYNC_POSTREAD);
	
	if (recycle_enable && len <= SGE_RX_COPY_THRES &&
	    sopeop == RSPQ_SOP_EOP) {
		if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
			goto skip_recycle;
		cl = mtod(m, void *);
		memcpy(cl, sd->rxsd_cl, len);
		recycle_rx_buf(adap, fl, fl->cidx);
		m->m_pkthdr.len = m->m_len = len;
		m->m_flags = 0;
		mh->mh_head = mh->mh_tail = m;
		ret = 1;
		goto done;
	} else {
	skip_recycle:
		bus_dmamap_unload(fl->entry_tag, sd->map);
		cl = sd->rxsd_cl;
		m = sd->m;

		if ((sopeop == RSPQ_SOP_EOP) ||
		    (sopeop == RSPQ_SOP))
			flags |= M_PKTHDR;
		m_init(m, fl->zone, fl->buf_size, M_NOWAIT, MT_DATA, flags);
		if (fl->zone == zone_pack) {
			/*
			 * restore clobbered data pointer
			 */
			m->m_data = m->m_ext.ext_buf;
		} else {
			m_cljset(m, cl, fl->type);
		}
		m->m_len = len;
	}		
	switch(sopeop) {
	case RSPQ_SOP_EOP:
		ret = 1;
		/* FALLTHROUGH */
	case RSPQ_SOP:
		mh->mh_head = mh->mh_tail = m;
		m->m_pkthdr.len = len;
		break;
	case RSPQ_EOP:
		ret = 1;
		/* FALLTHROUGH */
	case RSPQ_NSOP_NEOP:
		if (mh->mh_tail == NULL) {
			log(LOG_ERR, "discarding intermediate descriptor entry\n");
			m_freem(m);
			break;
		}
		mh->mh_tail->m_next = m;
		mh->mh_tail = m;
		mh->mh_head->m_pkthdr.len += len;
		break;
	}
	if (cxgb_debug)
		printf("len=%d pktlen=%d\n", m->m_len, m->m_pkthdr.len);
done:
	if (++fl->cidx == fl->size)
		fl->cidx = 0;

	return (ret);
}

/**
 *	handle_rsp_cntrl_info - handles control information in a response
 *	@qs: the queue set corresponding to the response
 *	@flags: the response control flags
 *
 *	Handles the control information of an SGE response, such as GTS
 *	indications and completion credits for the queue set's Tx queues.
 *	HW coalesces credits, we don't do any extra SW coalescing.
 */
static __inline void
handle_rsp_cntrl_info(struct sge_qset *qs, uint32_t flags)
{
	unsigned int credits;

#if USE_GTS
	if (flags & F_RSPD_TXQ0_GTS)
		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
#endif
	credits = G_RSPD_TXQ0_CR(flags);
	if (credits) 
		qs->txq[TXQ_ETH].processed += credits;

	credits = G_RSPD_TXQ2_CR(flags);
	if (credits)
		qs->txq[TXQ_CTRL].processed += credits;

# if USE_GTS
	if (flags & F_RSPD_TXQ1_GTS)
		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
# endif
	credits = G_RSPD_TXQ1_CR(flags);
	if (credits)
		qs->txq[TXQ_OFLD].processed += credits;

}

static void
check_ring_db(adapter_t *adap, struct sge_qset *qs,
    unsigned int sleeping)
{
	;
}

/**
 *	process_responses - process responses from an SGE response queue
 *	@adap: the adapter
 *	@qs: the queue set to which the response queue belongs
 *	@budget: how many responses can be processed in this round
 *
 *	Process responses from an SGE response queue up to the supplied budget.
 *	Responses include received packets as well as credits and other events
 *	for the queues that belong to the response queue's queue set.
 *	A negative budget is effectively unlimited.
 *
 *	Additionally choose the interrupt holdoff time for the next interrupt
 *	on this queue.  If the system is under memory shortage use a fairly
 *	long delay to help recovery.
 */
static int
process_responses(adapter_t *adap, struct sge_qset *qs, int budget)
{
	struct sge_rspq *rspq = &qs->rspq;
	struct rsp_desc *r = &rspq->desc[rspq->cidx];
	int budget_left = budget;
	unsigned int sleeping = 0;
#ifdef LRO_SUPPORTED
	int lro_enabled = qs->lro.enabled;
	int skip_lro;
	struct lro_ctrl *lro_ctrl = &qs->lro.ctrl;
#endif
	struct mbuf *offload_mbufs[RX_BUNDLE_SIZE];
	int ngathered = 0;
#ifdef DEBUG	
	static int last_holdoff = 0;
	if (cxgb_debug && rspq->holdoff_tmr != last_holdoff) {
		printf("next_holdoff=%d\n", rspq->holdoff_tmr);
		last_holdoff = rspq->holdoff_tmr;
	}
#endif
	rspq->next_holdoff = rspq->holdoff_tmr;

	while (__predict_true(budget_left && is_new_response(r, rspq))) {
		int eth, eop = 0, ethpad = 0;
		uint32_t flags = ntohl(r->flags);
		uint32_t rss_csum = *(const uint32_t *)r;
		uint32_t rss_hash = be32toh(r->rss_hdr.rss_hash_val);
		
		eth = (r->rss_hdr.opcode == CPL_RX_PKT);
		
		if (__predict_false(flags & F_RSPD_ASYNC_NOTIF)) {
			struct mbuf *m;

			if (cxgb_debug)
				printf("async notification\n");

			if (rspq->rspq_mh.mh_head == NULL) {
				rspq->rspq_mh.mh_head = m_gethdr(M_DONTWAIT, MT_DATA);
				m = rspq->rspq_mh.mh_head;
			} else {
				m = m_gethdr(M_DONTWAIT, MT_DATA);
			}
			if (m == NULL)
				goto no_mem;

                        memcpy(mtod(m, char *), r, AN_PKT_SIZE);
			m->m_len = m->m_pkthdr.len = AN_PKT_SIZE;
                        *mtod(m, char *) = CPL_ASYNC_NOTIF;
			rss_csum = htonl(CPL_ASYNC_NOTIF << 24);
			eop = 1;
                        rspq->async_notif++;
			goto skip;
		} else if  (flags & F_RSPD_IMM_DATA_VALID) {
			struct mbuf *m = NULL;

			DPRINTF("IMM DATA VALID opcode=0x%x rspq->cidx=%d\n",
			    r->rss_hdr.opcode, rspq->cidx);
			if (rspq->rspq_mh.mh_head == NULL)
				rspq->rspq_mh.mh_head = m_gethdr(M_DONTWAIT, MT_DATA);
                        else 
				m = m_gethdr(M_DONTWAIT, MT_DATA);

			if (rspq->rspq_mh.mh_head == NULL &&  m == NULL) {	
		no_mem:
				rspq->next_holdoff = NOMEM_INTR_DELAY;
				budget_left--;
				break;
			}
			get_imm_packet(adap, r, rspq->rspq_mh.mh_head);
			eop = 1;
			rspq->imm_data++;
		} else if (r->len_cq) {
			int drop_thresh = eth ? SGE_RX_DROP_THRES : 0;
			
			eop = get_packet(adap, drop_thresh, qs, &rspq->rspq_mh, r);
			if (eop) {
				rspq->rspq_mh.mh_head->m_flags |= M_FLOWID;
				rspq->rspq_mh.mh_head->m_pkthdr.flowid = rss_hash;
			}
			
			ethpad = 2;
		} else {
			rspq->pure_rsps++;
		}
	skip:
		if (flags & RSPD_CTRL_MASK) {
			sleeping |= flags & RSPD_GTS_MASK;
			handle_rsp_cntrl_info(qs, flags);
		}

		r++;
		if (__predict_false(++rspq->cidx == rspq->size)) {
			rspq->cidx = 0;
			rspq->gen ^= 1;
			r = rspq->desc;
		}

		if (++rspq->credits >= (rspq->size / 4)) {
			refill_rspq(adap, rspq, rspq->credits);
			rspq->credits = 0;
		}
		if (!eth && eop) {
			rspq->rspq_mh.mh_head->m_pkthdr.csum_data = rss_csum;
			/*
			 * XXX size mismatch
			 */
			m_set_priority(rspq->rspq_mh.mh_head, rss_hash);

			
			ngathered = rx_offload(&adap->tdev, rspq,
			    rspq->rspq_mh.mh_head, offload_mbufs, ngathered);
			rspq->rspq_mh.mh_head = NULL;
			DPRINTF("received offload packet\n");
			
		} else if (eth && eop) {
			struct mbuf *m = rspq->rspq_mh.mh_head;

			t3_rx_eth(adap, rspq, m, ethpad);

#ifdef LRO_SUPPORTED
			/*
			 * The T304 sends incoming packets on any qset.  If LRO
			 * is also enabled, we could end up sending packet up
			 * lro_ctrl->ifp's input.  That is incorrect.
			 *
			 * The mbuf's rcvif was derived from the cpl header and
			 * is accurate.  Skip LRO and just use that.
			 */
			skip_lro = __predict_false(qs->port->ifp != m->m_pkthdr.rcvif);

			if (lro_enabled && lro_ctrl->lro_cnt && !skip_lro &&
			    (tcp_lro_rx(lro_ctrl, m, 0) == 0)) {
				/* successfully queue'd for LRO */
			} else
#endif
			{
				/*
				 * LRO not enabled, packet unsuitable for LRO,
				 * or unable to queue.  Pass it up right now in
				 * either case.
				 */
				struct ifnet *ifp = m->m_pkthdr.rcvif;
				(*ifp->if_input)(ifp, m);
			}
			rspq->rspq_mh.mh_head = NULL;

		}
		__refill_fl_lt(adap, &qs->fl[0], 32);
		__refill_fl_lt(adap, &qs->fl[1], 32);
		--budget_left;
	}

	deliver_partial_bundle(&adap->tdev, rspq, offload_mbufs, ngathered);

#ifdef LRO_SUPPORTED
	/* Flush LRO */
	while (!SLIST_EMPTY(&lro_ctrl->lro_active)) {
		struct lro_entry *queued = SLIST_FIRST(&lro_ctrl->lro_active);
		SLIST_REMOVE_HEAD(&lro_ctrl->lro_active, next);
		tcp_lro_flush(lro_ctrl, queued);
	}
#endif

	if (sleeping)
		check_ring_db(adap, qs, sleeping);

	mb();  /* commit Tx queue processed updates */
	if (__predict_false(qs->txq_stopped > 1))
		restart_tx(qs);

	__refill_fl_lt(adap, &qs->fl[0], 512);
	__refill_fl_lt(adap, &qs->fl[1], 512);
	budget -= budget_left;
	return (budget);
}

/*
 * A helper function that processes responses and issues GTS.
 */
static __inline int
process_responses_gts(adapter_t *adap, struct sge_rspq *rq)
{
	int work;
	static int last_holdoff = 0;
	
	work = process_responses(adap, rspq_to_qset(rq), -1);

	if (cxgb_debug && (rq->next_holdoff != last_holdoff)) {
		printf("next_holdoff=%d\n", rq->next_holdoff);
		last_holdoff = rq->next_holdoff;
	}
	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
	    V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
	
	return (work);
}


/*
 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
 * Handles data events from SGE response queues as well as error and other
 * async events as they all use the same interrupt pin.  We use one SGE
 * response queue per port in this mode and protect all response queues with
 * queue 0's lock.
 */
void
t3b_intr(void *data)
{
	uint32_t i, map;
	adapter_t *adap = data;
	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
	
	t3_write_reg(adap, A_PL_CLI, 0);
	map = t3_read_reg(adap, A_SG_DATA_INTR);

	if (!map) 
		return;

	if (__predict_false(map & F_ERRINTR))
		taskqueue_enqueue(adap->tq, &adap->slow_intr_task);

	mtx_lock(&q0->lock);
	for_each_port(adap, i)
	    if (map & (1 << i))
			process_responses_gts(adap, &adap->sge.qs[i].rspq);
	mtx_unlock(&q0->lock);
}

/*
 * The MSI interrupt handler.  This needs to handle data events from SGE
 * response queues as well as error and other async events as they all use
 * the same MSI vector.  We use one SGE response queue per port in this mode
 * and protect all response queues with queue 0's lock.
 */
void
t3_intr_msi(void *data)
{
	adapter_t *adap = data;
	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
	int i, new_packets = 0;

	mtx_lock(&q0->lock);

	for_each_port(adap, i)
	    if (process_responses_gts(adap, &adap->sge.qs[i].rspq)) 
		    new_packets = 1;
	mtx_unlock(&q0->lock);
	if (new_packets == 0)
		taskqueue_enqueue(adap->tq, &adap->slow_intr_task);
}

void
t3_intr_msix(void *data)
{
	struct sge_qset *qs = data;
	adapter_t *adap = qs->port->adapter;
	struct sge_rspq *rspq = &qs->rspq;

	if (process_responses_gts(adap, rspq) == 0)
		rspq->unhandled_irqs++;
}

#define QDUMP_SBUF_SIZE		32 * 400
static int
t3_dump_rspq(SYSCTL_HANDLER_ARGS)
{
	struct sge_rspq *rspq;
	struct sge_qset *qs;
	int i, err, dump_end, idx;
	static int multiplier = 1;
	struct sbuf *sb;
	struct rsp_desc *rspd;
	uint32_t data[4];
	
	rspq = arg1;
	qs = rspq_to_qset(rspq);
	if (rspq->rspq_dump_count == 0) 
		return (0);
	if (rspq->rspq_dump_count > RSPQ_Q_SIZE) {
		log(LOG_WARNING,
		    "dump count is too large %d\n", rspq->rspq_dump_count);
		rspq->rspq_dump_count = 0;
		return (EINVAL);
	}
	if (rspq->rspq_dump_start > (RSPQ_Q_SIZE-1)) {
		log(LOG_WARNING,
		    "dump start of %d is greater than queue size\n",
		    rspq->rspq_dump_start);
		rspq->rspq_dump_start = 0;
		return (EINVAL);
	}
	err = t3_sge_read_rspq(qs->port->adapter, rspq->cntxt_id, data);
	if (err)
		return (err);
retry_sbufops:
	sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);

	sbuf_printf(sb, " \n index=%u size=%u MSI-X/RspQ=%u intr enable=%u intr armed=%u\n",
	    (data[0] & 0xffff), data[0] >> 16, ((data[2] >> 20) & 0x3f),
	    ((data[2] >> 26) & 1), ((data[2] >> 27) & 1));
	sbuf_printf(sb, " generation=%u CQ mode=%u FL threshold=%u\n",
	    ((data[2] >> 28) & 1), ((data[2] >> 31) & 1), data[3]);
	
	sbuf_printf(sb, " start=%d -> end=%d\n", rspq->rspq_dump_start,
	    (rspq->rspq_dump_start + rspq->rspq_dump_count) & (RSPQ_Q_SIZE-1));
	
	dump_end = rspq->rspq_dump_start + rspq->rspq_dump_count;
	for (i = rspq->rspq_dump_start; i < dump_end; i++) {
		idx = i & (RSPQ_Q_SIZE-1);
		
		rspd = &rspq->desc[idx];
		sbuf_printf(sb, "\tidx=%04d opcode=%02x cpu_idx=%x hash_type=%x cq_idx=%x\n",
		    idx, rspd->rss_hdr.opcode, rspd->rss_hdr.cpu_idx,
		    rspd->rss_hdr.hash_type, be16toh(rspd->rss_hdr.cq_idx));
		sbuf_printf(sb, "\trss_hash_val=%x flags=%08x len_cq=%x intr_gen=%x\n",
		    rspd->rss_hdr.rss_hash_val, be32toh(rspd->flags),
		    be32toh(rspd->len_cq), rspd->intr_gen);
	}
	if (sbuf_overflowed(sb)) {
		sbuf_delete(sb);
		multiplier++;
		goto retry_sbufops;
	}
	sbuf_finish(sb);
	err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
	sbuf_delete(sb);
	return (err);
}	

static int
t3_dump_txq_eth(SYSCTL_HANDLER_ARGS)
{
	struct sge_txq *txq;
	struct sge_qset *qs;
	int i, j, err, dump_end;
	static int multiplier = 1;
	struct sbuf *sb;
	struct tx_desc *txd;
	uint32_t *WR, wr_hi, wr_lo, gen;
	uint32_t data[4];
	
	txq = arg1;
	qs = txq_to_qset(txq, TXQ_ETH);
	if (txq->txq_dump_count == 0) {
		return (0);
	}
	if (txq->txq_dump_count > TX_ETH_Q_SIZE) {
		log(LOG_WARNING,
		    "dump count is too large %d\n", txq->txq_dump_count);
		txq->txq_dump_count = 1;
		return (EINVAL);
	}
	if (txq->txq_dump_start > (TX_ETH_Q_SIZE-1)) {
		log(LOG_WARNING,
		    "dump start of %d is greater than queue size\n",
		    txq->txq_dump_start);
		txq->txq_dump_start = 0;
		return (EINVAL);
	}
	err = t3_sge_read_ecntxt(qs->port->adapter, qs->rspq.cntxt_id, data);
	if (err)
		return (err);
	
	    
retry_sbufops:
	sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);

	sbuf_printf(sb, " \n credits=%u GTS=%u index=%u size=%u rspq#=%u cmdq#=%u\n",
	    (data[0] & 0x7fff), ((data[0] >> 15) & 1), (data[0] >> 16), 
	    (data[1] & 0xffff), ((data[3] >> 4) & 7), ((data[3] >> 7) & 1));
	sbuf_printf(sb, " TUN=%u TOE=%u generation%u uP token=%u valid=%u\n",
	    ((data[3] >> 8) & 1), ((data[3] >> 9) & 1), ((data[3] >> 10) & 1),
	    ((data[3] >> 11) & 0xfffff), ((data[3] >> 31) & 1));
	sbuf_printf(sb, " qid=%d start=%d -> end=%d\n", qs->idx,
	    txq->txq_dump_start,
	    (txq->txq_dump_start + txq->txq_dump_count) & (TX_ETH_Q_SIZE-1));

	dump_end = txq->txq_dump_start + txq->txq_dump_count;
	for (i = txq->txq_dump_start; i < dump_end; i++) {
		txd = &txq->desc[i & (TX_ETH_Q_SIZE-1)];
		WR = (uint32_t *)txd->flit;
		wr_hi = ntohl(WR[0]);
		wr_lo = ntohl(WR[1]);		
		gen = G_WR_GEN(wr_lo);
		
		sbuf_printf(sb," wr_hi %08x wr_lo %08x gen %d\n",
		    wr_hi, wr_lo, gen);
		for (j = 2; j < 30; j += 4) 
			sbuf_printf(sb, "\t%08x %08x %08x %08x \n",
			    WR[j], WR[j + 1], WR[j + 2], WR[j + 3]);

	}
	if (sbuf_overflowed(sb)) {
		sbuf_delete(sb);
		multiplier++;
		goto retry_sbufops;
	}
	sbuf_finish(sb);
	err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
	sbuf_delete(sb);
	return (err);
}

static int
t3_dump_txq_ctrl(SYSCTL_HANDLER_ARGS)
{
	struct sge_txq *txq;
	struct sge_qset *qs;
	int i, j, err, dump_end;
	static int multiplier = 1;
	struct sbuf *sb;
	struct tx_desc *txd;
	uint32_t *WR, wr_hi, wr_lo, gen;
	
	txq = arg1;
	qs = txq_to_qset(txq, TXQ_CTRL);
	if (txq->txq_dump_count == 0) {
		return (0);
	}
	if (txq->txq_dump_count > 256) {
		log(LOG_WARNING,
		    "dump count is too large %d\n", txq->txq_dump_count);
		txq->txq_dump_count = 1;
		return (EINVAL);
	}
	if (txq->txq_dump_start > 255) {
		log(LOG_WARNING,
		    "dump start of %d is greater than queue size\n",
		    txq->txq_dump_start);
		txq->txq_dump_start = 0;
		return (EINVAL);
	}

retry_sbufops:
	sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);
	sbuf_printf(sb, " qid=%d start=%d -> end=%d\n", qs->idx,
	    txq->txq_dump_start,
	    (txq->txq_dump_start + txq->txq_dump_count) & 255);

	dump_end = txq->txq_dump_start + txq->txq_dump_count;
	for (i = txq->txq_dump_start; i < dump_end; i++) {
		txd = &txq->desc[i & (255)];
		WR = (uint32_t *)txd->flit;
		wr_hi = ntohl(WR[0]);
		wr_lo = ntohl(WR[1]);		
		gen = G_WR_GEN(wr_lo);
		
		sbuf_printf(sb," wr_hi %08x wr_lo %08x gen %d\n",
		    wr_hi, wr_lo, gen);
		for (j = 2; j < 30; j += 4) 
			sbuf_printf(sb, "\t%08x %08x %08x %08x \n",
			    WR[j], WR[j + 1], WR[j + 2], WR[j + 3]);

	}
	if (sbuf_overflowed(sb)) {
		sbuf_delete(sb);
		multiplier++;
		goto retry_sbufops;
	}
	sbuf_finish(sb);
	err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
	sbuf_delete(sb);
	return (err);
}

static int
t3_set_coalesce_usecs(SYSCTL_HANDLER_ARGS)
{
	adapter_t *sc = arg1;
	struct qset_params *qsp = &sc->params.sge.qset[0]; 
	int coalesce_usecs;	
	struct sge_qset *qs;
	int i, j, err, nqsets = 0;
	struct mtx *lock;

	if ((sc->flags & FULL_INIT_DONE) == 0)
		return (ENXIO);
		
	coalesce_usecs = qsp->coalesce_usecs;
        err = sysctl_handle_int(oidp, &coalesce_usecs, arg2, req);

	if (err != 0) {
		return (err);
	}
	if (coalesce_usecs == qsp->coalesce_usecs)
		return (0);

	for (i = 0; i < sc->params.nports; i++) 
		for (j = 0; j < sc->port[i].nqsets; j++)
			nqsets++;

	coalesce_usecs = max(1, coalesce_usecs);

	for (i = 0; i < nqsets; i++) {
		qs = &sc->sge.qs[i];
		qsp = &sc->params.sge.qset[i];
		qsp->coalesce_usecs = coalesce_usecs;
		
		lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
			    &sc->sge.qs[0].rspq.lock;

		mtx_lock(lock);
		t3_update_qset_coalesce(qs, qsp);
		t3_write_reg(sc, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
		    V_NEWTIMER(qs->rspq.holdoff_tmr));
		mtx_unlock(lock);
	}

	return (0);
}


void
t3_add_attach_sysctls(adapter_t *sc)
{
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid_list *children;

	ctx = device_get_sysctl_ctx(sc->dev);
	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));

	/* random information */
	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, 
	    "firmware_version",
	    CTLFLAG_RD, &sc->fw_version,
	    0, "firmware version");
	SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
	    "hw_revision",
	    CTLFLAG_RD, &sc->params.rev,
	    0, "chip model");
	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, 
	    "port_types",
	    CTLFLAG_RD, &sc->port_types,
	    0, "type of ports");
	SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
	    "enable_debug",
	    CTLFLAG_RW, &cxgb_debug,
	    0, "enable verbose debugging output");
	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "tunq_coalesce",
	    CTLFLAG_RD, &sc->tunq_coalesce,
	    "#tunneled packets freed");
	SYSCTL_ADD_INT(ctx, children, OID_AUTO, 
	    "txq_overrun",
	    CTLFLAG_RD, &txq_fills,
	    0, "#times txq overrun");
}


static const char *rspq_name = "rspq";
static const char *txq_names[] =
{
	"txq_eth",
	"txq_ofld",
	"txq_ctrl"	
};

static int
sysctl_handle_macstat(SYSCTL_HANDLER_ARGS)
{
	struct port_info *p = arg1;
	uint64_t *parg;

	if (!p)
		return (EINVAL);

	parg = (uint64_t *) ((uint8_t *)&p->mac.stats + arg2);
	PORT_LOCK(p);
	t3_mac_update_stats(&p->mac);
	PORT_UNLOCK(p);

	return (sysctl_handle_quad(oidp, parg, 0, req));
}

void
t3_add_configured_sysctls(adapter_t *sc)
{
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid_list *children;
	int i, j;
	
	ctx = device_get_sysctl_ctx(sc->dev);
	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 
	    "intr_coal",
	    CTLTYPE_INT|CTLFLAG_RW, sc,
	    0, t3_set_coalesce_usecs,
	    "I", "interrupt coalescing timer (us)");

	for (i = 0; i < sc->params.nports; i++) {
		struct port_info *pi = &sc->port[i];
		struct sysctl_oid *poid;
		struct sysctl_oid_list *poidlist;
		struct mac_stats *mstats = &pi->mac.stats;
		
		snprintf(pi->namebuf, PORT_NAME_LEN, "port%d", i);
		poid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, 
		    pi->namebuf, CTLFLAG_RD, NULL, "port statistics");
		poidlist = SYSCTL_CHILDREN(poid);
		SYSCTL_ADD_INT(ctx, poidlist, OID_AUTO, 
		    "nqsets", CTLFLAG_RD, &pi->nqsets,
		    0, "#queue sets");

		for (j = 0; j < pi->nqsets; j++) {
			struct sge_qset *qs = &sc->sge.qs[pi->first_qset + j];
			struct sysctl_oid *qspoid, *rspqpoid, *txqpoid,
					  *ctrlqpoid, *lropoid;
			struct sysctl_oid_list *qspoidlist, *rspqpoidlist,
					       *txqpoidlist, *ctrlqpoidlist,
					       *lropoidlist;
			struct sge_txq *txq = &qs->txq[TXQ_ETH];
			
			snprintf(qs->namebuf, QS_NAME_LEN, "qs%d", j);
			
			qspoid = SYSCTL_ADD_NODE(ctx, poidlist, OID_AUTO, 
			    qs->namebuf, CTLFLAG_RD, NULL, "qset statistics");
			qspoidlist = SYSCTL_CHILDREN(qspoid);

			SYSCTL_ADD_UINT(ctx, qspoidlist, OID_AUTO, "fl0_empty",
					CTLFLAG_RD, &qs->fl[0].empty, 0,
					"freelist #0 empty");
			SYSCTL_ADD_UINT(ctx, qspoidlist, OID_AUTO, "fl1_empty",
					CTLFLAG_RD, &qs->fl[1].empty, 0,
					"freelist #1 empty");

			rspqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO, 
			    rspq_name, CTLFLAG_RD, NULL, "rspq statistics");
			rspqpoidlist = SYSCTL_CHILDREN(rspqpoid);

			txqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO, 
			    txq_names[0], CTLFLAG_RD, NULL, "txq statistics");
			txqpoidlist = SYSCTL_CHILDREN(txqpoid);

			ctrlqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO, 
			    txq_names[2], CTLFLAG_RD, NULL, "ctrlq statistics");
			ctrlqpoidlist = SYSCTL_CHILDREN(ctrlqpoid);

			lropoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO, 
			    "lro_stats", CTLFLAG_RD, NULL, "LRO statistics");
			lropoidlist = SYSCTL_CHILDREN(lropoid);

			SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "size",
			    CTLFLAG_RD, &qs->rspq.size,
			    0, "#entries in response queue");
			SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "cidx",
			    CTLFLAG_RD, &qs->rspq.cidx,
			    0, "consumer index");
			SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "credits",
			    CTLFLAG_RD, &qs->rspq.credits,
			    0, "#credits");
			SYSCTL_ADD_XLONG(ctx, rspqpoidlist, OID_AUTO, "phys_addr",
			    CTLFLAG_RD, &qs->rspq.phys_addr,
			    "physical_address_of the queue");
			SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_start",
			    CTLFLAG_RW, &qs->rspq.rspq_dump_start,
			    0, "start rspq dump entry");
			SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_count",
			    CTLFLAG_RW, &qs->rspq.rspq_dump_count,
			    0, "#rspq entries to dump");
			SYSCTL_ADD_PROC(ctx, rspqpoidlist, OID_AUTO, "qdump",
			    CTLTYPE_STRING | CTLFLAG_RD, &qs->rspq,
			    0, t3_dump_rspq, "A", "dump of the response queue");


			SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "dropped",
			    CTLFLAG_RD, &qs->txq[TXQ_ETH].txq_drops,
			    0, "#tunneled packets dropped");
			SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "sendqlen",
			    CTLFLAG_RD, &qs->txq[TXQ_ETH].sendq.qlen,
			    0, "#tunneled packets waiting to be sent");
#if 0			
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_pidx",
			    CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_prod,
			    0, "#tunneled packets queue producer index");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_cidx",
			    CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_cons,
			    0, "#tunneled packets queue consumer index");
#endif			
			SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "processed",
			    CTLFLAG_RD, &qs->txq[TXQ_ETH].processed,
			    0, "#tunneled packets processed by the card");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "cleaned",
			    CTLFLAG_RD, &txq->cleaned,
			    0, "#tunneled packets cleaned");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "in_use",
			    CTLFLAG_RD, &txq->in_use,
			    0, "#tunneled packet slots in use");
			SYSCTL_ADD_ULONG(ctx, txqpoidlist, OID_AUTO, "frees",
			    CTLFLAG_RD, &txq->txq_frees,
			    "#tunneled packets freed");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "skipped",
			    CTLFLAG_RD, &txq->txq_skipped,
			    0, "#tunneled packet descriptors skipped");
			SYSCTL_ADD_QUAD(ctx, txqpoidlist, OID_AUTO, "coalesced",
			    CTLFLAG_RD, &txq->txq_coalesced,
			    "#tunneled packets coalesced");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "enqueued",
			    CTLFLAG_RD, &txq->txq_enqueued,
			    0, "#tunneled packets enqueued to hardware");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "stopped_flags",
			    CTLFLAG_RD, &qs->txq_stopped,
			    0, "tx queues stopped");
			SYSCTL_ADD_XLONG(ctx, txqpoidlist, OID_AUTO, "phys_addr",
			    CTLFLAG_RD, &txq->phys_addr,
			    "physical_address_of the queue");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "qgen",
			    CTLFLAG_RW, &qs->txq[TXQ_ETH].gen,
			    0, "txq generation");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_cidx",
			    CTLFLAG_RD, &txq->cidx,
			    0, "hardware queue cidx");			
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_pidx",
			    CTLFLAG_RD, &txq->pidx,
			    0, "hardware queue pidx");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_start",
			    CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_start,
			    0, "txq start idx for dump");
			SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_count",
			    CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_count,
			    0, "txq #entries to dump");			
			SYSCTL_ADD_PROC(ctx, txqpoidlist, OID_AUTO, "qdump",
			    CTLTYPE_STRING | CTLFLAG_RD, &qs->txq[TXQ_ETH],
			    0, t3_dump_txq_eth, "A", "dump of the transmit queue");

			SYSCTL_ADD_UINT(ctx, ctrlqpoidlist, OID_AUTO, "dump_start",
			    CTLFLAG_RW, &qs->txq[TXQ_CTRL].txq_dump_start,
			    0, "ctrlq start idx for dump");
			SYSCTL_ADD_UINT(ctx, ctrlqpoidlist, OID_AUTO, "dump_count",
			    CTLFLAG_RW, &qs->txq[TXQ_CTRL].txq_dump_count,
			    0, "ctrl #entries to dump");			
			SYSCTL_ADD_PROC(ctx, ctrlqpoidlist, OID_AUTO, "qdump",
			    CTLTYPE_STRING | CTLFLAG_RD, &qs->txq[TXQ_CTRL],
			    0, t3_dump_txq_ctrl, "A", "dump of the transmit queue");

#ifdef LRO_SUPPORTED
			SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_queued",
			    CTLFLAG_RD, &qs->lro.ctrl.lro_queued, 0, NULL);
			SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_flushed",
			    CTLFLAG_RD, &qs->lro.ctrl.lro_flushed, 0, NULL);
			SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_bad_csum",
			    CTLFLAG_RD, &qs->lro.ctrl.lro_bad_csum, 0, NULL);
			SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_cnt",
			    CTLFLAG_RD, &qs->lro.ctrl.lro_cnt, 0, NULL);
#endif
		}

		/* Now add a node for mac stats. */
		poid = SYSCTL_ADD_NODE(ctx, poidlist, OID_AUTO, "mac_stats",
		    CTLFLAG_RD, NULL, "MAC statistics");
		poidlist = SYSCTL_CHILDREN(poid);

		/*
		 * We (ab)use the length argument (arg2) to pass on the offset
		 * of the data that we are interested in.  This is only required
		 * for the quad counters that are updated from the hardware (we
		 * make sure that we return the latest value).
		 * sysctl_handle_macstat first updates *all* the counters from
		 * the hardware, and then returns the latest value of the
		 * requested counter.  Best would be to update only the
		 * requested counter from hardware, but t3_mac_update_stats()
		 * hides all the register details and we don't want to dive into
		 * all that here.
		 */
#define CXGB_SYSCTL_ADD_QUAD(a)	SYSCTL_ADD_OID(ctx, poidlist, OID_AUTO, #a, \
    (CTLTYPE_QUAD | CTLFLAG_RD), pi, offsetof(struct mac_stats, a), \
    sysctl_handle_macstat, "QU", 0)
		CXGB_SYSCTL_ADD_QUAD(tx_octets);
		CXGB_SYSCTL_ADD_QUAD(tx_octets_bad);
		CXGB_SYSCTL_ADD_QUAD(tx_frames);
		CXGB_SYSCTL_ADD_QUAD(tx_mcast_frames);
		CXGB_SYSCTL_ADD_QUAD(tx_bcast_frames);
		CXGB_SYSCTL_ADD_QUAD(tx_pause);
		CXGB_SYSCTL_ADD_QUAD(tx_deferred);
		CXGB_SYSCTL_ADD_QUAD(tx_late_collisions);
		CXGB_SYSCTL_ADD_QUAD(tx_total_collisions);
		CXGB_SYSCTL_ADD_QUAD(tx_excess_collisions);
		CXGB_SYSCTL_ADD_QUAD(tx_underrun);
		CXGB_SYSCTL_ADD_QUAD(tx_len_errs);
		CXGB_SYSCTL_ADD_QUAD(tx_mac_internal_errs);
		CXGB_SYSCTL_ADD_QUAD(tx_excess_deferral);
		CXGB_SYSCTL_ADD_QUAD(tx_fcs_errs);
		CXGB_SYSCTL_ADD_QUAD(tx_frames_64);
		CXGB_SYSCTL_ADD_QUAD(tx_frames_65_127);
		CXGB_SYSCTL_ADD_QUAD(tx_frames_128_255);
		CXGB_SYSCTL_ADD_QUAD(tx_frames_256_511);
		CXGB_SYSCTL_ADD_QUAD(tx_frames_512_1023);
		CXGB_SYSCTL_ADD_QUAD(tx_frames_1024_1518);
		CXGB_SYSCTL_ADD_QUAD(tx_frames_1519_max);
		CXGB_SYSCTL_ADD_QUAD(rx_octets);
		CXGB_SYSCTL_ADD_QUAD(rx_octets_bad);
		CXGB_SYSCTL_ADD_QUAD(rx_frames);
		CXGB_SYSCTL_ADD_QUAD(rx_mcast_frames);
		CXGB_SYSCTL_ADD_QUAD(rx_bcast_frames);
		CXGB_SYSCTL_ADD_QUAD(rx_pause);
		CXGB_SYSCTL_ADD_QUAD(rx_fcs_errs);
		CXGB_SYSCTL_ADD_QUAD(rx_align_errs);
		CXGB_SYSCTL_ADD_QUAD(rx_symbol_errs);
		CXGB_SYSCTL_ADD_QUAD(rx_data_errs);
		CXGB_SYSCTL_ADD_QUAD(rx_sequence_errs);
		CXGB_SYSCTL_ADD_QUAD(rx_runt);
		CXGB_SYSCTL_ADD_QUAD(rx_jabber);
		CXGB_SYSCTL_ADD_QUAD(rx_short);
		CXGB_SYSCTL_ADD_QUAD(rx_too_long);
		CXGB_SYSCTL_ADD_QUAD(rx_mac_internal_errs);
		CXGB_SYSCTL_ADD_QUAD(rx_cong_drops);
		CXGB_SYSCTL_ADD_QUAD(rx_frames_64);
		CXGB_SYSCTL_ADD_QUAD(rx_frames_65_127);
		CXGB_SYSCTL_ADD_QUAD(rx_frames_128_255);
		CXGB_SYSCTL_ADD_QUAD(rx_frames_256_511);
		CXGB_SYSCTL_ADD_QUAD(rx_frames_512_1023);
		CXGB_SYSCTL_ADD_QUAD(rx_frames_1024_1518);
		CXGB_SYSCTL_ADD_QUAD(rx_frames_1519_max);
#undef CXGB_SYSCTL_ADD_QUAD

#define CXGB_SYSCTL_ADD_ULONG(a) SYSCTL_ADD_ULONG(ctx, poidlist, OID_AUTO, #a, \
    CTLFLAG_RD, &mstats->a, 0)
		CXGB_SYSCTL_ADD_ULONG(tx_fifo_parity_err);
		CXGB_SYSCTL_ADD_ULONG(rx_fifo_parity_err);
		CXGB_SYSCTL_ADD_ULONG(tx_fifo_urun);
		CXGB_SYSCTL_ADD_ULONG(rx_fifo_ovfl);
		CXGB_SYSCTL_ADD_ULONG(serdes_signal_loss);
		CXGB_SYSCTL_ADD_ULONG(xaui_pcs_ctc_err);
		CXGB_SYSCTL_ADD_ULONG(xaui_pcs_align_change);
		CXGB_SYSCTL_ADD_ULONG(num_toggled);
		CXGB_SYSCTL_ADD_ULONG(num_resets);
		CXGB_SYSCTL_ADD_ULONG(link_faults);
#undef CXGB_SYSCTL_ADD_ULONG
	}
}
	
/**
 *	t3_get_desc - dump an SGE descriptor for debugging purposes
 *	@qs: the queue set
 *	@qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
 *	@idx: the descriptor index in the queue
 *	@data: where to dump the descriptor contents
 *
 *	Dumps the contents of a HW descriptor of an SGE queue.  Returns the
 *	size of the descriptor.
 */
int
t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
		unsigned char *data)
{
	if (qnum >= 6)
		return (EINVAL);

	if (qnum < 3) {
		if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
			return -EINVAL;
		memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
		return sizeof(struct tx_desc);
	}

	if (qnum == 3) {
		if (!qs->rspq.desc || idx >= qs->rspq.size)
			return (EINVAL);
		memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
		return sizeof(struct rsp_desc);
	}

	qnum -= 4;
	if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
		return (EINVAL);
	memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
	return sizeof(struct rx_desc);
}
OpenPOWER on IntegriCloud