summaryrefslogtreecommitdiffstats
path: root/sys/dev/ath/ath_hal/ah.c
blob: 4eb7fb65ae24419cfcd4e01c27dfbf4b409fb158 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
/*
 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
 * Copyright (c) 2002-2008 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD$
 */
#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom.h"			/* for 5ghz fast clock flag */

#include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
#include "ar9003/ar9300_devid.h"

/* linker set of registered chips */
OS_SET_DECLARE(ah_chips, struct ath_hal_chip);

/*
 * Check the set of registered chips to see if any recognize
 * the device as one they can support.
 */
const char*
ath_hal_probe(uint16_t vendorid, uint16_t devid)
{
	struct ath_hal_chip * const *pchip;

	OS_SET_FOREACH(pchip, ah_chips) {
		const char *name = (*pchip)->probe(vendorid, devid);
		if (name != AH_NULL)
			return name;
	}
	return AH_NULL;
}

/*
 * Attach detects device chip revisions, initializes the hwLayer
 * function list, reads EEPROM information,
 * selects reset vectors, and performs a short self test.
 * Any failures will return an error that should cause a hardware
 * disable.
 */
struct ath_hal*
ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_OPS_CONFIG *ah_config,
	HAL_STATUS *error)
{
	struct ath_hal_chip * const *pchip;

	OS_SET_FOREACH(pchip, ah_chips) {
		struct ath_hal_chip *chip = *pchip;
		struct ath_hal *ah;

		/* XXX don't have vendorid, assume atheros one works */
		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
			continue;
		ah = chip->attach(devid, sc, st, sh, eepromdata, ah_config,
		    error);
		if (ah != AH_NULL) {
			/* copy back private state to public area */
			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
			return ah;
		}
	}
	return AH_NULL;
}

const char *
ath_hal_mac_name(struct ath_hal *ah)
{
	switch (ah->ah_macVersion) {
	case AR_SREV_VERSION_CRETE:
	case AR_SREV_VERSION_MAUI_1:
		return "5210";
	case AR_SREV_VERSION_MAUI_2:
	case AR_SREV_VERSION_OAHU:
		return "5211";
	case AR_SREV_VERSION_VENICE:
		return "5212";
	case AR_SREV_VERSION_GRIFFIN:
		return "2413";
	case AR_SREV_VERSION_CONDOR:
		return "5424";
	case AR_SREV_VERSION_EAGLE:
		return "5413";
	case AR_SREV_VERSION_COBRA:
		return "2415";
	case AR_SREV_2425:	/* Swan */
		return "2425";
	case AR_SREV_2417:	/* Nala */
		return "2417";
	case AR_XSREV_VERSION_OWL_PCI:
		return "5416";
	case AR_XSREV_VERSION_OWL_PCIE:
		return "5418";
	case AR_XSREV_VERSION_HOWL:
		return "9130";
	case AR_XSREV_VERSION_SOWL:
		return "9160";
	case AR_XSREV_VERSION_MERLIN:
		if (AH_PRIVATE(ah)->ah_ispcie)
			return "9280";
		return "9220";
	case AR_XSREV_VERSION_KITE:
		return "9285";
	case AR_XSREV_VERSION_KIWI:
		if (AH_PRIVATE(ah)->ah_ispcie)
			return "9287";
		return "9227";
	case AR_SREV_VERSION_AR9380:
		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
			return "9580";
		return "9380";
	case AR_SREV_VERSION_AR9460:
		return "9460";
	case AR_SREV_VERSION_AR9330:
		return "9330";
	case AR_SREV_VERSION_AR9340:
		return "9340";
	case AR_SREV_VERSION_QCA9550:
		/* XXX should say QCA, not AR */
		return "9550";
	case AR_SREV_VERSION_AR9485:
		return "9485";
	case AR_SREV_VERSION_QCA9565:
		/* XXX should say QCA, not AR */
		return "9565";
	}
	return "????";
}

/*
 * Return the mask of available modes based on the hardware capabilities.
 */
u_int
ath_hal_getwirelessmodes(struct ath_hal*ah)
{
	return ath_hal_getWirelessModes(ah);
}

/* linker set of registered RF backends */
OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);

/*
 * Check the set of registered RF backends to see if
 * any recognize the device as one they can support.
 */
struct ath_hal_rf *
ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
{
	struct ath_hal_rf * const *prf;

	OS_SET_FOREACH(prf, ah_rfs) {
		struct ath_hal_rf *rf = *prf;
		if (rf->probe(ah))
			return rf;
	}
	*ecode = HAL_ENOTSUPP;
	return AH_NULL;
}

const char *
ath_hal_rf_name(struct ath_hal *ah)
{
	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
	case 0:			/* 5210 */
		return "5110";	/* NB: made up */
	case AR_RAD5111_SREV_MAJOR:
	case AR_RAD5111_SREV_PROD:
		return "5111";
	case AR_RAD2111_SREV_MAJOR:
		return "2111";
	case AR_RAD5112_SREV_MAJOR:
	case AR_RAD5112_SREV_2_0:
	case AR_RAD5112_SREV_2_1:
		return "5112";
	case AR_RAD2112_SREV_MAJOR:
	case AR_RAD2112_SREV_2_0:
	case AR_RAD2112_SREV_2_1:
		return "2112";
	case AR_RAD2413_SREV_MAJOR:
		return "2413";
	case AR_RAD5413_SREV_MAJOR:
		return "5413";
	case AR_RAD2316_SREV_MAJOR:
		return "2316";
	case AR_RAD2317_SREV_MAJOR:
		return "2317";
	case AR_RAD5424_SREV_MAJOR:
		return "5424";

	case AR_RAD5133_SREV_MAJOR:
		return "5133";
	case AR_RAD2133_SREV_MAJOR:
		return "2133";
	case AR_RAD5122_SREV_MAJOR:
		return "5122";
	case AR_RAD2122_SREV_MAJOR:
		return "2122";
	}
	return "????";
}

/*
 * Poll the register looking for a specific value.
 */
HAL_BOOL
ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
{
#define	AH_TIMEOUT	1000
	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
#undef AH_TIMEOUT
}

HAL_BOOL
ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
{
	int i;

	for (i = 0; i < timeout; i++) {
		if ((OS_REG_READ(ah, reg) & mask) == val)
			return AH_TRUE;
		OS_DELAY(10);
	}
	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
	return AH_FALSE;
}

/*
 * Reverse the bits starting at the low bit for a value of
 * bit_count in size
 */
uint32_t
ath_hal_reverseBits(uint32_t val, uint32_t n)
{
	uint32_t retval;
	int i;

	for (i = 0, retval = 0; i < n; i++) {
		retval = (retval << 1) | (val & 1);
		val >>= 1;
	}
	return retval;
}

/* 802.11n related timing definitions */

#define	OFDM_PLCP_BITS	22
#define	HT_L_STF	8
#define	HT_L_LTF	8
#define	HT_L_SIG	4
#define	HT_SIG		8
#define	HT_STF		4
#define	HT_LTF(n)	((n) * 4)

#define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
#define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
#define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)

/*
 * Calculate the duration of a packet whether it is 11n or legacy.
 */
uint32_t
ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
    uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble)
{
	uint8_t rc;
	int numStreams;

	rc = rates->info[rateix].rateCode;

	/* Legacy rate? Return the old way */
	if (! IS_HT_RATE(rc))
		return ath_hal_computetxtime(ah, rates, frameLen, rateix, shortPreamble);

	/* 11n frame - extract out the number of spatial streams */
	numStreams = HT_RC_2_STREAMS(rc);
	KASSERT(numStreams > 0 && numStreams <= 4,
	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
	    rateix));

	return ath_computedur_ht(frameLen, rc, numStreams, isht40, shortPreamble);
}

static const uint16_t ht20_bps[32] = {
    26, 52, 78, 104, 156, 208, 234, 260,
    52, 104, 156, 208, 312, 416, 468, 520,
    78, 156, 234, 312, 468, 624, 702, 780,
    104, 208, 312, 416, 624, 832, 936, 1040
};
static const uint16_t ht40_bps[32] = {
    54, 108, 162, 216, 324, 432, 486, 540,
    108, 216, 324, 432, 648, 864, 972, 1080,
    162, 324, 486, 648, 972, 1296, 1458, 1620,
    216, 432, 648, 864, 1296, 1728, 1944, 2160
};

/*
 * Calculate the transmit duration of an 11n frame.
 */
uint32_t
ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
    HAL_BOOL isht40, HAL_BOOL isShortGI)
{
	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;

	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));

	if (isht40)
		bitsPerSymbol = ht40_bps[rate & 0x1f];
	else
		bitsPerSymbol = ht20_bps[rate & 0x1f];
	numBits = OFDM_PLCP_BITS + (frameLen << 3);
	numSymbols = howmany(numBits, bitsPerSymbol);
	if (isShortGI)
		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
	else
		txTime = numSymbols * 4;                /* 4us */
	return txTime + HT_L_STF + HT_L_LTF +
	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
}

/*
 * Compute the time to transmit a frame of length frameLen bytes
 * using the specified rate, phy, and short preamble setting.
 */
uint16_t
ath_hal_computetxtime(struct ath_hal *ah,
	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
	HAL_BOOL shortPreamble)
{
	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
	uint32_t kbps;

	/* Warn if this function is called for 11n rates; it should not be! */
	if (IS_HT_RATE(rates->info[rateix].rateCode))
		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
		    __func__, rateix, rates->info[rateix].rateCode);

	kbps = rates->info[rateix].rateKbps;
	/*
	 * index can be invalid duting dynamic Turbo transitions. 
	 * XXX
	 */
	if (kbps == 0)
		return 0;
	switch (rates->info[rateix].phy) {
	case IEEE80211_T_CCK:
		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
		if (shortPreamble && rates->info[rateix].shortPreamble)
			phyTime >>= 1;
		numBits		= frameLen << 3;
		txTime		= CCK_SIFS_TIME + phyTime
				+ ((numBits * 1000)/kbps);
		break;
	case IEEE80211_T_OFDM:
		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= OFDM_SIFS_TIME
				+ OFDM_PREAMBLE_TIME
				+ (numSymbols * OFDM_SYMBOL_TIME);
		break;
	case IEEE80211_T_OFDM_HALF:
		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= OFDM_HALF_SIFS_TIME
				+ OFDM_HALF_PREAMBLE_TIME
				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
		break;
	case IEEE80211_T_OFDM_QUARTER:
		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= OFDM_QUARTER_SIFS_TIME
				+ OFDM_QUARTER_PREAMBLE_TIME
				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
		break;
	case IEEE80211_T_TURBO:
		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= TURBO_SIFS_TIME
				+ TURBO_PREAMBLE_TIME
				+ (numSymbols * TURBO_SYMBOL_TIME);
		break;
	default:
		HALDEBUG(ah, HAL_DEBUG_PHYIO,
		    "%s: unknown phy %u (rate ix %u)\n",
		    __func__, rates->info[rateix].phy, rateix);
		txTime = 0;
		break;
	}
	return txTime;
}

int
ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	/*
	 * Pick a default mode at bootup. A channel change is inevitable.
	 */
	if (!chan)
		return HAL_MODE_11NG_HT20;

	if (IEEE80211_IS_CHAN_TURBO(chan))
		return HAL_MODE_TURBO;

	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
		return HAL_MODE_11NA_HT20;
	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
		return HAL_MODE_11NA_HT40PLUS;
	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
		return HAL_MODE_11NA_HT40MINUS;
	if (IEEE80211_IS_CHAN_A(chan))
		return HAL_MODE_11A;

	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
		return HAL_MODE_11NG_HT20;
	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
		return HAL_MODE_11NG_HT40PLUS;
	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
		return HAL_MODE_11NG_HT40MINUS;

	/*
	 * XXX For FreeBSD, will this work correctly given the DYN
	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
	 */
	if (IEEE80211_IS_CHAN_G(chan))
		return HAL_MODE_11G;
	if (IEEE80211_IS_CHAN_B(chan))
		return HAL_MODE_11B;

	HALASSERT(0);
	return HAL_MODE_11NG_HT20;
}


typedef enum {
	WIRELESS_MODE_11a   = 0,
	WIRELESS_MODE_TURBO = 1,
	WIRELESS_MODE_11b   = 2,
	WIRELESS_MODE_11g   = 3,
	WIRELESS_MODE_108g  = 4,

	WIRELESS_MODE_MAX
} WIRELESS_MODE;

static WIRELESS_MODE
ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	if (IEEE80211_IS_CHAN_B(chan))
		return WIRELESS_MODE_11b;
	if (IEEE80211_IS_CHAN_G(chan))
		return WIRELESS_MODE_11g;
	if (IEEE80211_IS_CHAN_108G(chan))
		return WIRELESS_MODE_108g;
	if (IEEE80211_IS_CHAN_TURBO(chan))
		return WIRELESS_MODE_TURBO;
	return WIRELESS_MODE_11a;
}

/*
 * Convert between microseconds and core system clocks.
 */
                                     /* 11a Turbo  11b  11g  108g */
static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };

#define	CLOCK_FAST_RATE_5GHZ_OFDM	44

u_int
ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
{
	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
	u_int clks;

	/* NB: ah_curchan may be null when called attach time */
	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
		if (IEEE80211_IS_CHAN_HT40(c))
			clks <<= 1;
	} else if (c != AH_NULL) {
		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
		if (IEEE80211_IS_CHAN_HT40(c))
			clks <<= 1;
	} else
		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];

	/* Compensate for half/quarter rate */
	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
		clks = clks / 2;
	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
		clks = clks / 4;

	return clks;
}

u_int
ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
{
	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
	u_int usec;

	/* NB: ah_curchan may be null when called attach time */
	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
		usec = clks / CLOCK_FAST_RATE_5GHZ_OFDM;
		if (IEEE80211_IS_CHAN_HT40(c))
			usec >>= 1;
	} else if (c != AH_NULL) {
		usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
		if (IEEE80211_IS_CHAN_HT40(c))
			usec >>= 1;
	} else
		usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
	return usec;
}

/*
 * Setup a h/w rate table's reverse lookup table and
 * fill in ack durations.  This routine is called for
 * each rate table returned through the ah_getRateTable
 * method.  The reverse lookup tables are assumed to be
 * initialized to zero (or at least the first entry).
 * We use this as a key that indicates whether or not
 * we've previously setup the reverse lookup table.
 *
 * XXX not reentrant, but shouldn't matter
 */
void
ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
{
#define	N(a)	(sizeof(a)/sizeof(a[0]))
	int i;

	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
		return;
	for (i = 0; i < N(rt->rateCodeToIndex); i++)
		rt->rateCodeToIndex[i] = (uint8_t) -1;
	for (i = 0; i < rt->rateCount; i++) {
		uint8_t code = rt->info[i].rateCode;
		uint8_t cix = rt->info[i].controlRate;

		HALASSERT(code < N(rt->rateCodeToIndex));
		rt->rateCodeToIndex[code] = i;
		HALASSERT((code | rt->info[i].shortPreamble) <
		    N(rt->rateCodeToIndex));
		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
		/*
		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
		 *     depends on whether they are marked as basic rates;
		 *     the static tables are setup with an 11b-compatible
		 *     2Mb/s rate which will work but is suboptimal
		 */
		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
	}
#undef N
}

HAL_STATUS
ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
	uint32_t capability, uint32_t *result)
{
	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;

	switch (type) {
	case HAL_CAP_REG_DMN:		/* regulatory domain */
		*result = AH_PRIVATE(ah)->ah_currentRD;
		return HAL_OK;
	case HAL_CAP_DFS_DMN:		/* DFS Domain */
		*result = AH_PRIVATE(ah)->ah_dfsDomain;
		return HAL_OK;
	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
		return HAL_ENOTSUPP;
	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
		return HAL_ENOTSUPP;
	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
		return HAL_ENOTSUPP;
	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
		return HAL_ENOTSUPP;
	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
		*result =  pCap->halKeyCacheSize;
		return HAL_OK;
	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
		*result = pCap->halTotalQueues;
		return HAL_OK;
	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
	case HAL_CAP_COMPRESSION:
		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_BURST:
		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_FASTFRAME:
		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_DIAG:		/* hardware diagnostic support */
		*result = AH_PRIVATE(ah)->ah_diagreg;
		return HAL_OK;
	case HAL_CAP_TXPOW:		/* global tx power limit  */
		switch (capability) {
		case 0:			/* facility is supported */
			return HAL_OK;
		case 1:			/* current limit */
			*result = AH_PRIVATE(ah)->ah_powerLimit;
			return HAL_OK;
		case 2:			/* current max tx power */
			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
			return HAL_OK;
		case 3:			/* scale factor */
			*result = AH_PRIVATE(ah)->ah_tpScale;
			return HAL_OK;
		}
		return HAL_ENOTSUPP;
	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
		return HAL_ENOTSUPP;
	case HAL_CAP_RFSILENT:		/* rfsilent support  */
		switch (capability) {
		case 0:			/* facility is supported */
			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
		case 1:			/* current setting */
			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
				HAL_OK : HAL_ENOTSUPP;
		case 2:			/* rfsilent config */
			*result = AH_PRIVATE(ah)->ah_rfsilent;
			return HAL_OK;
		}
		return HAL_ENOTSUPP;
	case HAL_CAP_11D:
		return HAL_OK;

	case HAL_CAP_HT:
		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_GTXTO:
		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_FAST_CC:
		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
		*result = pCap->halTxChainMask;
		return HAL_OK;
	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
		*result = pCap->halRxChainMask;
		return HAL_OK;
	case HAL_CAP_NUM_GPIO_PINS:
		*result = pCap->halNumGpioPins;
		return HAL_OK;
	case HAL_CAP_CST:
		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_RTS_AGGR_LIMIT:
		*result = pCap->halRtsAggrLimit;
		return HAL_OK;
	case HAL_CAP_4ADDR_AGGR:
		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_EXT_CHAN_DFS:
		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_RX_STBC:
		return pCap->halRxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_TX_STBC:
		return pCap->halTxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_COMBINED_RADAR_RSSI:
		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_AUTO_SLEEP:
		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_MBSSID_AGGR_SUPPORT:
		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_REG_FLAG:
		*result = AH_PRIVATE(ah)->ah_currentRDext;
		return HAL_OK;
	case HAL_CAP_ENHANCED_DMA_SUPPORT:
		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_NUM_TXMAPS:
		*result = pCap->halNumTxMaps;
		return HAL_OK;
	case HAL_CAP_TXDESCLEN:
		*result = pCap->halTxDescLen;
		return HAL_OK;
	case HAL_CAP_TXSTATUSLEN:
		*result = pCap->halTxStatusLen;
		return HAL_OK;
	case HAL_CAP_RXSTATUSLEN:
		*result = pCap->halRxStatusLen;
		return HAL_OK;
	case HAL_CAP_RXFIFODEPTH:
		switch (capability) {
		case HAL_RX_QUEUE_HP:
			*result = pCap->halRxHpFifoDepth;
			return HAL_OK;
		case HAL_RX_QUEUE_LP:
			*result = pCap->halRxLpFifoDepth;
			return HAL_OK;
		default:
			return HAL_ENOTSUPP;
	}
	case HAL_CAP_RXBUFSIZE:
	case HAL_CAP_NUM_MR_RETRIES:
		*result = pCap->halNumMRRetries;
		return HAL_OK;
	case HAL_CAP_BT_COEX:
		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_SPECTRAL_SCAN:
		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_HT20_SGI:
		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
		*result = pCap->halTstampPrecision;
		return HAL_OK;
	case HAL_CAP_ANT_DIV_COMB:	/* AR9285/AR9485 LNA diversity */
		return pCap->halAntDivCombSupport ? HAL_OK  : HAL_ENOTSUPP;

	case HAL_CAP_ENHANCED_DFS_SUPPORT:
		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;

	/* FreeBSD-specific entries for now */
	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
		*result = pCap->halIntrMask;
		return HAL_OK;
	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
		switch (capability) {
		case 0:			/* TX */
			*result = pCap->halTxStreams;
			return HAL_OK;
		case 1:			/* RX */
			*result = pCap->halRxStreams;
			return HAL_OK;
		default:
			return HAL_ENOTSUPP;
		}
	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_LONG_RXDESC_TSF:		/* 32 bit TSF in RX descriptor? */
		return pCap->halHasLongRxDescTsf ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_MFP:			/* Management frame protection setting */
		*result = pCap->halMfpSupport;
		return HAL_OK;
	case HAL_CAP_RX_LNA_MIXING:	/* Hardware uses an RX LNA mixer to map 2 antennas to a 1 stream receiver */
		return pCap->halRxUsingLnaMixing ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_DO_MYBEACON:	/* Hardware supports filtering my-beacons */
		return pCap->halRxDoMyBeacon ? HAL_OK : HAL_ENOTSUPP;
	default:
		return HAL_EINVAL;
	}
}

HAL_BOOL
ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
	uint32_t capability, uint32_t setting, HAL_STATUS *status)
{

	switch (type) {
	case HAL_CAP_TXPOW:
		switch (capability) {
		case 3:
			if (setting <= HAL_TP_SCALE_MIN) {
				AH_PRIVATE(ah)->ah_tpScale = setting;
				return AH_TRUE;
			}
			break;
		}
		break;
	case HAL_CAP_RFSILENT:		/* rfsilent support  */
		/*
		 * NB: allow even if halRfSilentSupport is false
		 *     in case the EEPROM is misprogrammed.
		 */
		switch (capability) {
		case 1:			/* current setting */
			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
			return AH_TRUE;
		case 2:			/* rfsilent config */
			/* XXX better done per-chip for validation? */
			AH_PRIVATE(ah)->ah_rfsilent = setting;
			return AH_TRUE;
		}
		break;
	case HAL_CAP_REG_DMN:		/* regulatory domain */
		AH_PRIVATE(ah)->ah_currentRD = setting;
		return AH_TRUE;
	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
		return AH_TRUE;
	default:
		break;
	}
	if (status)
		*status = HAL_EINVAL;
	return AH_FALSE;
}

/* 
 * Common support for getDiagState method.
 */

static u_int
ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
	void *dstbuf, int space)
{
	uint32_t *dp = dstbuf;
	int i;

	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
		uint32_t r = regs[i].start;
		uint32_t e = regs[i].end;
		*dp++ = r;
		*dp++ = e;
		space -= 2*sizeof(uint32_t);
		do {
			*dp++ = OS_REG_READ(ah, r);
			r += sizeof(uint32_t);
			space -= sizeof(uint32_t);
		} while (r <= e && space >= sizeof(uint32_t));
	}
	return (char *) dp - (char *) dstbuf;
}
 
static void
ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
{
	while (space >= sizeof(HAL_REGWRITE)) {
		OS_REG_WRITE(ah, regs->addr, regs->value);
		regs++, space -= sizeof(HAL_REGWRITE);
	}
}

HAL_BOOL
ath_hal_getdiagstate(struct ath_hal *ah, int request,
	const void *args, uint32_t argsize,
	void **result, uint32_t *resultsize)
{

	switch (request) {
	case HAL_DIAG_REVS:
		*result = &AH_PRIVATE(ah)->ah_devid;
		*resultsize = sizeof(HAL_REVS);
		return AH_TRUE;
	case HAL_DIAG_REGS:
		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
		return AH_TRUE;
	case HAL_DIAG_SETREGS:
		ath_hal_setregs(ah, args, argsize);
		*resultsize = 0;
		return AH_TRUE;
	case HAL_DIAG_FATALERR:
		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
		return AH_TRUE;
	case HAL_DIAG_EEREAD:
		if (argsize != sizeof(uint16_t))
			return AH_FALSE;
		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
			return AH_FALSE;
		*resultsize = sizeof(uint16_t);
		return AH_TRUE;
#ifdef AH_PRIVATE_DIAG
	case HAL_DIAG_SETKEY: {
		const HAL_DIAG_KEYVAL *dk;

		if (argsize != sizeof(HAL_DIAG_KEYVAL))
			return AH_FALSE;
		dk = (const HAL_DIAG_KEYVAL *)args;
		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
	}
	case HAL_DIAG_RESETKEY:
		if (argsize != sizeof(uint16_t))
			return AH_FALSE;
		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
#ifdef AH_SUPPORT_WRITE_EEPROM
	case HAL_DIAG_EEWRITE: {
		const HAL_DIAG_EEVAL *ee;
		if (argsize != sizeof(HAL_DIAG_EEVAL))
			return AH_FALSE;
		ee = (const HAL_DIAG_EEVAL *)args;
		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
	}
#endif /* AH_SUPPORT_WRITE_EEPROM */
#endif /* AH_PRIVATE_DIAG */
	case HAL_DIAG_11NCOMPAT:
		if (argsize == 0) {
			*resultsize = sizeof(uint32_t);
			*((uint32_t *)(*result)) =
				AH_PRIVATE(ah)->ah_11nCompat;
		} else if (argsize == sizeof(uint32_t)) {
			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
		} else
			return AH_FALSE;
		return AH_TRUE;
	case HAL_DIAG_CHANSURVEY:
		*result = &AH_PRIVATE(ah)->ah_chansurvey;
		*resultsize = sizeof(HAL_CHANNEL_SURVEY);
		return AH_TRUE;
	}
	return AH_FALSE;
}

/*
 * Set the properties of the tx queue with the parameters
 * from qInfo.
 */
HAL_BOOL
ath_hal_setTxQProps(struct ath_hal *ah,
	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
{
	uint32_t cw;

	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
		    "%s: inactive queue\n", __func__);
		return AH_FALSE;
	}
	/* XXX validate parameters */
	qi->tqi_ver = qInfo->tqi_ver;
	qi->tqi_subtype = qInfo->tqi_subtype;
	qi->tqi_qflags = qInfo->tqi_qflags;
	qi->tqi_priority = qInfo->tqi_priority;
	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
	else
		qi->tqi_aifs = INIT_AIFS;
	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
		/* make sure that the CWmin is of the form (2^n - 1) */
		qi->tqi_cwmin = 1;
		while (qi->tqi_cwmin < cw)
			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
	} else
		qi->tqi_cwmin = qInfo->tqi_cwmin;
	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
		/* make sure that the CWmax is of the form (2^n - 1) */
		qi->tqi_cwmax = 1;
		while (qi->tqi_cwmax < cw)
			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
	} else
		qi->tqi_cwmax = INIT_CWMAX;
	/* Set retry limit values */
	if (qInfo->tqi_shretry != 0)
		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
	else
		qi->tqi_shretry = INIT_SH_RETRY;
	if (qInfo->tqi_lgretry != 0)
		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
	else
		qi->tqi_lgretry = INIT_LG_RETRY;
	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
	qi->tqi_burstTime = qInfo->tqi_burstTime;
	qi->tqi_readyTime = qInfo->tqi_readyTime;

	switch (qInfo->tqi_subtype) {
	case HAL_WME_UPSD:
		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
		break;
	default:
		break;		/* NB: silence compiler */
	}
	return AH_TRUE;
}

HAL_BOOL
ath_hal_getTxQProps(struct ath_hal *ah,
	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
{
	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
		    "%s: inactive queue\n", __func__);
		return AH_FALSE;
	}

	qInfo->tqi_qflags = qi->tqi_qflags;
	qInfo->tqi_ver = qi->tqi_ver;
	qInfo->tqi_subtype = qi->tqi_subtype;
	qInfo->tqi_qflags = qi->tqi_qflags;
	qInfo->tqi_priority = qi->tqi_priority;
	qInfo->tqi_aifs = qi->tqi_aifs;
	qInfo->tqi_cwmin = qi->tqi_cwmin;
	qInfo->tqi_cwmax = qi->tqi_cwmax;
	qInfo->tqi_shretry = qi->tqi_shretry;
	qInfo->tqi_lgretry = qi->tqi_lgretry;
	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
	qInfo->tqi_burstTime = qi->tqi_burstTime;
	qInfo->tqi_readyTime = qi->tqi_readyTime;
	return AH_TRUE;
}

                                     /* 11a Turbo  11b  11g  108g */
static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };

/*
 * Read the current channel noise floor and return.
 * If nf cal hasn't finished, channel noise floor should be 0
 * and we return a nominal value based on band and frequency.
 *
 * NB: This is a private routine used by per-chip code to
 *     implement the ah_getChanNoise method.
 */
int16_t
ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	HAL_CHANNEL_INTERNAL *ichan;

	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_NFCAL,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		return 0;
	}
	if (ichan->rawNoiseFloor == 0) {
		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);

		HALASSERT(mode < WIRELESS_MODE_MAX);
		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
	} else
		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
}

/*
 * Fetch the current setup of ctl/ext noise floor values.
 *
 * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
 * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
 *
 * The caller must supply ctl/ext NF arrays which are at least
 * AH_MAX_CHAINS entries long.
 */
int
ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
    const struct ieee80211_channel *chan, int16_t *nf_ctl,
    int16_t *nf_ext)
{
#ifdef	AH_SUPPORT_AR5416
	HAL_CHANNEL_INTERNAL *ichan;
	int i;

	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_NFCAL,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = nf_ext[i] = 0;
		}
		return 0;
	}

	/* Return 0 if there's no valid MIMO values (yet) */
	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = nf_ext[i] = 0;
		}
		return 0;
	}
	if (ichan->rawNoiseFloor == 0) {
		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
		HALASSERT(mode < WIRELESS_MODE_MAX);
		/*
		 * See the comment below - this could cause issues for
		 * stations which have a very low RSSI, below the
		 * 'normalised' NF values in NOISE_FLOOR[].
		 */
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
			    ath_hal_getNfAdjust(ah, ichan);
		}
		return 1;
	} else {
		/*
		 * The value returned here from a MIMO radio is presumed to be
		 * "good enough" as a NF calculation. As RSSI values are calculated
		 * against this, an adjusted NF may be higher than the RSSI value
		 * returned from a vary weak station, resulting in an obscenely
		 * high signal strength calculation being returned.
		 *
		 * This should be re-evaluated at a later date, along with any
		 * signal strength calculations which are made. Quite likely the
		 * RSSI values will need to be adjusted to ensure the calculations
		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
		 */
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
		}
		return 1;
	}
#else
	return 0;
#endif	/* AH_SUPPORT_AR5416 */
}

/*
 * Process all valid raw noise floors into the dBm noise floor values.
 * Though our device has no reference for a dBm noise floor, we perform
 * a relative minimization of NF's based on the lowest NF found across a
 * channel scan.
 */
void
ath_hal_process_noisefloor(struct ath_hal *ah)
{
	HAL_CHANNEL_INTERNAL *c;
	int16_t correct2, correct5;
	int16_t lowest2, lowest5;
	int i;

	/* 
	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
	 * for statistically recorded NF/channel deviation.
	 */
	correct2 = lowest2 = 0;
	correct5 = lowest5 = 0;
	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
		WIRELESS_MODE mode;
		int16_t nf;

		c = &AH_PRIVATE(ah)->ah_channels[i];
		if (c->rawNoiseFloor >= 0)
			continue;
		/* XXX can't identify proper mode */
		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
			ath_hal_getNfAdjust(ah, c);
		if (IS_CHAN_5GHZ(c)) {
			if (nf < lowest5) { 
				lowest5 = nf;
				correct5 = NOISE_FLOOR[mode] -
				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
			}
		} else {
			if (nf < lowest2) { 
				lowest2 = nf;
				correct2 = NOISE_FLOOR[mode] -
				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
			}
		}
	}

	/* Correct the channels to reach the expected NF value */
	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
		c = &AH_PRIVATE(ah)->ah_channels[i];
		if (c->rawNoiseFloor >= 0)
			continue;
		/* Apply correction factor */
		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
	}
}

/*
 * INI support routines.
 */

int
ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
	int col, int regWr)
{
	int r;

	HALASSERT(col < ia->cols);
	for (r = 0; r < ia->rows; r++) {
		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
		    HAL_INI_VAL(ia, r, col));

		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
			OS_DELAY(100);

		DMA_YIELD(regWr);
	}
	return regWr;
}

void
ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
{
	int r;

	HALASSERT(col < ia->cols);
	for (r = 0; r < ia->rows; r++)
		data[r] = HAL_INI_VAL(ia, r, col);
}

int
ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
	const uint32_t data[], int regWr)
{
	int r;

	for (r = 0; r < ia->rows; r++) {
		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
		DMA_YIELD(regWr);
	}
	return regWr;
}

/*
 * These are EEPROM board related routines which should likely live in
 * a helper library of some sort.
 */

/**************************************************************
 * ath_ee_getLowerUppderIndex
 *
 * Return indices surrounding the value in sorted integer lists.
 * Requirement: the input list must be monotonically increasing
 *     and populated up to the list size
 * Returns: match is set if an index in the array matches exactly
 *     or a the target is before or after the range of the array.
 */
HAL_BOOL
ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
                   uint16_t *indexL, uint16_t *indexR)
{
    uint16_t i;

    /*
     * Check first and last elements for beyond ordered array cases.
     */
    if (target <= pList[0]) {
        *indexL = *indexR = 0;
        return AH_TRUE;
    }
    if (target >= pList[listSize-1]) {
        *indexL = *indexR = (uint16_t)(listSize - 1);
        return AH_TRUE;
    }

    /* look for value being near or between 2 values in list */
    for (i = 0; i < listSize - 1; i++) {
        /*
         * If value is close to the current value of the list
         * then target is not between values, it is one of the values
         */
        if (pList[i] == target) {
            *indexL = *indexR = i;
            return AH_TRUE;
        }
        /*
         * Look for value being between current value and next value
         * if so return these 2 values
         */
        if (target < pList[i + 1]) {
            *indexL = i;
            *indexR = (uint16_t)(i + 1);
            return AH_FALSE;
        }
    }
    HALASSERT(0);
    *indexL = *indexR = 0;
    return AH_FALSE;
}

/**************************************************************
 * ath_ee_FillVpdTable
 *
 * Fill the Vpdlist for indices Pmax-Pmin
 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
 */
HAL_BOOL
ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
{
    uint16_t  i, k;
    uint8_t   currPwr = pwrMin;
    uint16_t  idxL, idxR;

    HALASSERT(pwrMax > pwrMin);
    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
        ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
                           &(idxL), &(idxR));
        if (idxR < 1)
            idxR = 1;           /* extrapolate below */
        if (idxL == numIntercepts - 1)
            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
        if (pPwrList[idxL] == pPwrList[idxR])
            k = pVpdList[idxL];
        else
            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
                  (pPwrList[idxR] - pPwrList[idxL]) );
        HALASSERT(k < 256);
        pRetVpdList[i] = (uint8_t)k;
        currPwr += 2;               /* half dB steps */
    }

    return AH_TRUE;
}

/**************************************************************************
 * ath_ee_interpolate
 *
 * Returns signed interpolated or the scaled up interpolated value
 */
int16_t
ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
            int16_t targetLeft, int16_t targetRight)
{
    int16_t rv;

    if (srcRight == srcLeft) {
        rv = targetLeft;
    } else {
        rv = (int16_t)( ((target - srcLeft) * targetRight +
              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
    }
    return rv;
}

/*
 * Adjust the TSF.
 */
void
ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
{
	/* XXX handle wrap/overflow */
	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
}

/*
 * Enable or disable CCA.
 */
void
ath_hal_setcca(struct ath_hal *ah, int ena)
{
	/*
	 * NB: fill me in; this is not provided by default because disabling
	 *     CCA in most locales violates regulatory.
	 */
}

/*
 * Get CCA setting.
 */
int
ath_hal_getcca(struct ath_hal *ah)
{
	u_int32_t diag;
	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
		return 1;
	return ((diag & 0x500000) == 0);
}

/*
 * This routine is only needed when supporting EEPROM-in-RAM setups
 * (eg embedded SoCs and on-board PCI/PCIe devices.)
 */
/* NB: This is in 16 bit words; not bytes */
/* XXX This doesn't belong here!  */
#define ATH_DATA_EEPROM_SIZE    2048

HAL_BOOL
ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
{
	if (ah->ah_eepromdata == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
		return AH_FALSE;
	}
	if (off > ATH_DATA_EEPROM_SIZE) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
		    __func__, off, ATH_DATA_EEPROM_SIZE);
		return AH_FALSE;
	}
	(*data) = ah->ah_eepromdata[off];
	return AH_TRUE;
}

/*
 * Do a 2GHz specific MHz->IEEE based on the hardware
 * frequency.
 *
 * This is the unmapped frequency which is programmed into the hardware.
 */
int
ath_hal_mhz2ieee_2ghz(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
{

	if (ichan->channel == 2484)
		return 14;
	if (ichan->channel < 2484)
		return ((int) ichan->channel - 2407) / 5;
	else
		return 15 + ((ichan->channel - 2512) / 20);
}

/*
 * Clear the current survey data.
 *
 * This should be done during a channel change.
 */
void
ath_hal_survey_clear(struct ath_hal *ah)
{

	OS_MEMZERO(&AH_PRIVATE(ah)->ah_chansurvey,
	    sizeof(AH_PRIVATE(ah)->ah_chansurvey));
}

/*
 * Add a sample to the channel survey.
 */
void
ath_hal_survey_add_sample(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
{
	HAL_CHANNEL_SURVEY *cs;

	cs = &AH_PRIVATE(ah)->ah_chansurvey;

	OS_MEMCPY(&cs->samples[cs->cur_sample], hs, sizeof(*hs));
	cs->samples[cs->cur_sample].seq_num = cs->cur_seq;
	cs->cur_sample = (cs->cur_sample + 1) % CHANNEL_SURVEY_SAMPLE_COUNT;
	cs->cur_seq++;
}
OpenPOWER on IntegriCloud