summaryrefslogtreecommitdiffstats
path: root/sys/dev/agp/agp.c
blob: 7f33a0c924927c9730d6000ac1cd30b3de673b0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
/*-
 * Copyright (c) 2000 Doug Rabson
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	$FreeBSD$
 */

#include "opt_bus.h"
#include "opt_pci.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/agpio.h>
#include <sys/lock.h>
#include <sys/lockmgr.h>
#include <sys/mutex.h>
#include <sys/proc.h>

#include <pci/pcivar.h>
#include <pci/pcireg.h>
#include <pci/agppriv.h>
#include <pci/agpvar.h>
#include <pci/agpreg.h>

#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/pmap.h>

#include <machine/md_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>

MODULE_VERSION(agp, 1);

MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");

#define CDEV_MAJOR	148
				/* agp_drv.c */
static d_open_t agp_open;
static d_close_t agp_close;
static d_ioctl_t agp_ioctl;
static d_mmap_t agp_mmap;

static struct cdevsw agp_cdevsw = {
	/* open */	agp_open,
	/* close */	agp_close,
	/* read */	noread,
	/* write */	nowrite,
	/* ioctl */	agp_ioctl,
	/* poll */	nopoll,
	/* mmap */	agp_mmap,
	/* strategy */	nostrategy,
	/* name */	"agp",
	/* maj */	CDEV_MAJOR,
	/* dump */	nodump,
	/* psize */	nopsize,
	/* flags */	D_TTY,
};

static devclass_t agp_devclass;
#define KDEV2DEV(kdev)	devclass_get_device(agp_devclass, minor(kdev))

/* Helper functions for implementing chipset mini drivers. */

void
agp_flush_cache()
{
#ifdef __i386__
	wbinvd();
#endif
}

u_int8_t
agp_find_caps(device_t dev)
{
	u_int32_t status;
	u_int8_t ptr, next;

	/*
	 * Check the CAP_LIST bit of the PCI status register first.
	 */
	status = pci_read_config(dev, PCIR_STATUS, 2);
	if (!(status & 0x10))
		return 0;

	/*
	 * Traverse the capabilities list.
	 */
	for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
	     ptr != 0;
	     ptr = next) {
		u_int32_t capid = pci_read_config(dev, ptr, 4);
		next = AGP_CAPID_GET_NEXT_PTR(capid);

		/*
		 * If this capability entry ID is 2, then we are done.
		 */
		if (AGP_CAPID_GET_CAP_ID(capid) == 2)
			return ptr;
	}

	return 0;
}

/*
 * Find an AGP display device (if any).
 */
static device_t
agp_find_display(void)
{
	devclass_t pci = devclass_find("pci");
	device_t bus, dev = 0;
	device_t *kids;
	int busnum, numkids, i;

	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
		bus = devclass_get_device(pci, busnum);
		if (!bus)
			continue;
		device_get_children(bus, &kids, &numkids);
		for (i = 0; i < numkids; i++) {
			dev = kids[i];
			if (pci_get_class(dev) == PCIC_DISPLAY
			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
				if (agp_find_caps(dev)) {
					free(kids, M_TEMP);
					return dev;
				}
					
		}
		free(kids, M_TEMP);
	}

	return 0;
}

struct agp_gatt *
agp_alloc_gatt(device_t dev)
{
	u_int32_t apsize = AGP_GET_APERTURE(dev);
	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
	struct agp_gatt *gatt;

	if (bootverbose)
		device_printf(dev,
			      "allocating GATT for aperture of size %dM\n",
			      apsize / (1024*1024));

	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
	if (!gatt)
		return 0;

	gatt->ag_entries = entries;
	gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
					0, ~0, PAGE_SIZE, 0);
	if (!gatt->ag_virtual) {
		if (bootverbose)
			device_printf(dev, "contiguous allocation failed\n");
		free(gatt, M_AGP);
		return 0;
	}
	bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
	agp_flush_cache();

	return gatt;
}

void
agp_free_gatt(struct agp_gatt *gatt)
{
	contigfree(gatt->ag_virtual,
		   gatt->ag_entries * sizeof(u_int32_t), M_AGP);
	free(gatt, M_AGP);
}

static int agp_max[][2] = {
	{0,	0},
	{32,	4},
	{64,	28},
	{128,	96},
	{256,	204},
	{512,	440},
	{1024,	942},
	{2048,	1920},
	{4096,	3932}
};
#define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))

int
agp_generic_attach(device_t dev)
{
	struct agp_softc *sc = device_get_softc(dev);
	int rid, memsize, i;

	/*
	 * Find and map the aperture.
	 */
	rid = AGP_APBASE;
	sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
					     0, ~0, 1, RF_ACTIVE);
	if (!sc->as_aperture)
		return ENOMEM;

	/*
	 * Work out an upper bound for agp memory allocation. This
	 * uses a heurisitc table from the Linux driver.
	 */
	memsize = ptoa(Maxmem) >> 20;
	for (i = 0; i < agp_max_size; i++) {
		if (memsize <= agp_max[i][0])
			break;
	}
	if (i == agp_max_size) i = agp_max_size - 1;
	sc->as_maxmem = agp_max[i][1] << 20U;

	/*
	 * The lock is used to prevent re-entry to
	 * agp_generic_bind_memory() since that function can sleep.
	 */
	lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);

	/*
	 * Initialise stuff for the userland device.
	 */
	agp_devclass = devclass_find("agp");
	TAILQ_INIT(&sc->as_memory);
	sc->as_nextid = 1;

	sc->as_devnode = make_dev(&agp_cdevsw,
				  device_get_unit(dev),
				  UID_ROOT,
				  GID_WHEEL,
				  0600,
				  "agpgart");

	return 0;
}

int
agp_generic_detach(device_t dev)
{
	struct agp_softc *sc = device_get_softc(dev);
	bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
	lockmgr(&sc->as_lock, LK_DRAIN, 0, curthread);
	lockdestroy(&sc->as_lock);
	destroy_dev(sc->as_devnode);
	agp_flush_cache();
	return 0;
}

int
agp_generic_enable(device_t dev, u_int32_t mode)
{
	device_t mdev = agp_find_display();
	u_int32_t tstatus, mstatus;
	u_int32_t command;
	int rq, sba, fw, rate;;

	if (!mdev) {
		AGP_DPF("can't find display\n");
		return ENXIO;
	}

	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);

	/* Set RQ to the min of mode, tstatus and mstatus */
	rq = AGP_MODE_GET_RQ(mode);
	if (AGP_MODE_GET_RQ(tstatus) < rq)
		rq = AGP_MODE_GET_RQ(tstatus);
	if (AGP_MODE_GET_RQ(mstatus) < rq)
		rq = AGP_MODE_GET_RQ(mstatus);

	/* Set SBA if all three can deal with SBA */
	sba = (AGP_MODE_GET_SBA(tstatus)
	       & AGP_MODE_GET_SBA(mstatus)
	       & AGP_MODE_GET_SBA(mode));

	/* Similar for FW */
	fw = (AGP_MODE_GET_FW(tstatus)
	       & AGP_MODE_GET_FW(mstatus)
	       & AGP_MODE_GET_FW(mode));

	/* Figure out the max rate */
	rate = (AGP_MODE_GET_RATE(tstatus)
		& AGP_MODE_GET_RATE(mstatus)
		& AGP_MODE_GET_RATE(mode));
	if (rate & AGP_MODE_RATE_4x)
		rate = AGP_MODE_RATE_4x;
	else if (rate & AGP_MODE_RATE_2x)
		rate = AGP_MODE_RATE_2x;
	else
		rate = AGP_MODE_RATE_1x;

	/* Construct the new mode word and tell the hardware */
	command = AGP_MODE_SET_RQ(0, rq);
	command = AGP_MODE_SET_SBA(command, sba);
	command = AGP_MODE_SET_FW(command, fw);
	command = AGP_MODE_SET_RATE(command, rate);
	command = AGP_MODE_SET_AGP(command, 1);
	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);

	return 0;
}

struct agp_memory *
agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
{
	struct agp_softc *sc = device_get_softc(dev);
	struct agp_memory *mem;

	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
		return 0;

	if (sc->as_allocated + size > sc->as_maxmem)
		return 0;

	if (type != 0) {
		printf("agp_generic_alloc_memory: unsupported type %d\n",
		       type);
		return 0;
	}

	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
	mem->am_id = sc->as_nextid++;
	mem->am_size = size;
	mem->am_type = 0;
	mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
	mem->am_physical = 0;
	mem->am_offset = 0;
	mem->am_is_bound = 0;
	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
	sc->as_allocated += size;

	return mem;
}

int
agp_generic_free_memory(device_t dev, struct agp_memory *mem)
{
	struct agp_softc *sc = device_get_softc(dev);

	if (mem->am_is_bound)
		return EBUSY;

	sc->as_allocated -= mem->am_size;
	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
	vm_object_deallocate(mem->am_obj);
	free(mem, M_AGP);
	return 0;
}

int
agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
			vm_offset_t offset)
{
	struct agp_softc *sc = device_get_softc(dev);
	vm_offset_t i, j, k;
	vm_page_t m;
	int error;

	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);

	if (mem->am_is_bound) {
		device_printf(dev, "memory already bound\n");
		return EINVAL;
	}
	
	if (offset < 0
	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
	    || offset + mem->am_size > AGP_GET_APERTURE(dev)) {
		device_printf(dev, "binding memory at bad offset %#x\n",
			      (int) offset);
		return EINVAL;
	}

	/*
	 * Bind the individual pages and flush the chipset's
	 * TLB.
	 *
	 * XXX Presumably, this needs to be the pci address on alpha
	 * (i.e. use alpha_XXX_dmamap()). I don't have access to any
	 * alpha AGP hardware to check.
	 */
	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
		/*
		 * Find a page from the object and wire it
		 * down. This page will be mapped using one or more
		 * entries in the GATT (assuming that PAGE_SIZE >=
		 * AGP_PAGE_SIZE. If this is the first call to bind,
		 * the pages will be allocated and zeroed.
		 */
		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
		    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
		if ((m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));

		/*
		 * Install entries in the GATT, making sure that if
		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
		 * aligned to PAGE_SIZE, we don't modify too many GATT 
		 * entries.
		 */
		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
		     j += AGP_PAGE_SIZE) {
			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
			AGP_DPF("binding offset %#x to pa %#x\n",
				offset + i + j, pa);
			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
			if (error) {
				/*
				 * Bail out. Reverse all the mappings
				 * and unwire the pages.
				 */
				vm_page_wakeup(m);
				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
					AGP_UNBIND_PAGE(dev, offset + k);
				for (k = 0; k <= i; k += PAGE_SIZE) {
					m = vm_page_lookup(mem->am_obj,
							   OFF_TO_IDX(k));
					vm_page_lock_queues();
					vm_page_unwire(m, 0);
					vm_page_unlock_queues();
				}
				lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
				return error;
			}
		}
		vm_page_wakeup(m);
	}

	/*
	 * Flush the cpu cache since we are providing a new mapping
	 * for these pages.
	 */
	agp_flush_cache();

	/*
	 * Make sure the chipset gets the new mappings.
	 */
	AGP_FLUSH_TLB(dev);

	mem->am_offset = offset;
	mem->am_is_bound = 1;

	lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);

	return 0;
}

int
agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
{
	struct agp_softc *sc = device_get_softc(dev);
	vm_page_t m;
	int i;

	lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);

	if (!mem->am_is_bound) {
		device_printf(dev, "memory is not bound\n");
		return EINVAL;
	}


	/*
	 * Unbind the individual pages and flush the chipset's
	 * TLB. Unwire the pages so they can be swapped.
	 */
	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
		m = vm_page_lookup(mem->am_obj, atop(i));
		vm_page_lock_queues();
		vm_page_unwire(m, 0);
		vm_page_unlock_queues();
	}
		
	agp_flush_cache();
	AGP_FLUSH_TLB(dev);

	mem->am_offset = 0;
	mem->am_is_bound = 0;

	lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);

	return 0;
}

/* Helper functions for implementing user/kernel api */

static int
agp_acquire_helper(device_t dev, enum agp_acquire_state state)
{
	struct agp_softc *sc = device_get_softc(dev);

	if (sc->as_state != AGP_ACQUIRE_FREE)
		return EBUSY;
	sc->as_state = state;

	return 0;
}

static int
agp_release_helper(device_t dev, enum agp_acquire_state state)
{
	struct agp_softc *sc = device_get_softc(dev);

	if (sc->as_state == AGP_ACQUIRE_FREE)
		return 0;

	if (sc->as_state != state)
		return EBUSY;

	sc->as_state = AGP_ACQUIRE_FREE;
	return 0;
}

static struct agp_memory *
agp_find_memory(device_t dev, int id)
{
	struct agp_softc *sc = device_get_softc(dev);
	struct agp_memory *mem;

	AGP_DPF("searching for memory block %d\n", id);
	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
		AGP_DPF("considering memory block %d\n", mem->am_id);
		if (mem->am_id == id)
			return mem;
	}
	return 0;
}

/* Implementation of the userland ioctl api */

static int
agp_info_user(device_t dev, agp_info *info)
{
	struct agp_softc *sc = device_get_softc(dev);

	bzero(info, sizeof *info);
	info->bridge_id = pci_get_devid(dev);
	info->agp_mode = 
	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
	info->aper_base = rman_get_start(sc->as_aperture);
	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;

	return 0;
}

static int
agp_setup_user(device_t dev, agp_setup *setup)
{
	return AGP_ENABLE(dev, setup->agp_mode);
}

static int
agp_allocate_user(device_t dev, agp_allocate *alloc)
{
	struct agp_memory *mem;

	mem = AGP_ALLOC_MEMORY(dev,
			       alloc->type,
			       alloc->pg_count << AGP_PAGE_SHIFT);
	if (mem) {
		alloc->key = mem->am_id;
		alloc->physical = mem->am_physical;
		return 0;
	} else {
		return ENOMEM;
	}
}

static int
agp_deallocate_user(device_t dev, int id)
{
	struct agp_memory *mem = agp_find_memory(dev, id);;

	if (mem) {
		AGP_FREE_MEMORY(dev, mem);
		return 0;
	} else {
		return ENOENT;
	}
}

static int
agp_bind_user(device_t dev, agp_bind *bind)
{
	struct agp_memory *mem = agp_find_memory(dev, bind->key);

	if (!mem)
		return ENOENT;

	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
}

static int
agp_unbind_user(device_t dev, agp_unbind *unbind)
{
	struct agp_memory *mem = agp_find_memory(dev, unbind->key);

	if (!mem)
		return ENOENT;

	return AGP_UNBIND_MEMORY(dev, mem);
}

static int
agp_open(dev_t kdev, int oflags, int devtype, struct thread *td)
{
	device_t dev = KDEV2DEV(kdev);
	struct agp_softc *sc = device_get_softc(dev);

	if (!sc->as_isopen) {
		sc->as_isopen = 1;
		device_busy(dev);
	}

	return 0;
}

static int
agp_close(dev_t kdev, int fflag, int devtype, struct thread *td)
{
	device_t dev = KDEV2DEV(kdev);
	struct agp_softc *sc = device_get_softc(dev);
	struct agp_memory *mem;

	/*
	 * Clear the GATT and force release on last close
	 */
	while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
		if (mem->am_is_bound)
			AGP_UNBIND_MEMORY(dev, mem);
		AGP_FREE_MEMORY(dev, mem);
	}
	if (sc->as_state == AGP_ACQUIRE_USER)
		agp_release_helper(dev, AGP_ACQUIRE_USER);
	sc->as_isopen = 0;
	device_unbusy(dev);

	return 0;
}

static int
agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
{
	device_t dev = KDEV2DEV(kdev);

	switch (cmd) {
	case AGPIOC_INFO:
		return agp_info_user(dev, (agp_info *) data);

	case AGPIOC_ACQUIRE:
		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);

	case AGPIOC_RELEASE:
		return agp_release_helper(dev, AGP_ACQUIRE_USER);

	case AGPIOC_SETUP:
		return agp_setup_user(dev, (agp_setup *)data);

	case AGPIOC_ALLOCATE:
		return agp_allocate_user(dev, (agp_allocate *)data);

	case AGPIOC_DEALLOCATE:
		return agp_deallocate_user(dev, *(int *) data);

	case AGPIOC_BIND:
		return agp_bind_user(dev, (agp_bind *)data);

	case AGPIOC_UNBIND:
		return agp_unbind_user(dev, (agp_unbind *)data);

	}

	return EINVAL;
}

static int
agp_mmap(dev_t kdev, vm_offset_t offset, int prot)
{
	device_t dev = KDEV2DEV(kdev);
	struct agp_softc *sc = device_get_softc(dev);

	if (offset > AGP_GET_APERTURE(dev))
		return -1;
	return atop(rman_get_start(sc->as_aperture) + offset);
}

/* Implementation of the kernel api */

device_t
agp_find_device()
{
	if (!agp_devclass)
		return 0;
	return devclass_get_device(agp_devclass, 0);
}

enum agp_acquire_state
agp_state(device_t dev)
{
	struct agp_softc *sc = device_get_softc(dev);
	return sc->as_state;
}

void
agp_get_info(device_t dev, struct agp_info *info)
{
	struct agp_softc *sc = device_get_softc(dev);

	info->ai_mode =
		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
	info->ai_aperture_base = rman_get_start(sc->as_aperture);
	info->ai_aperture_size = rman_get_size(sc->as_aperture);
	info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
	info->ai_memory_allowed = sc->as_maxmem;
	info->ai_memory_used = sc->as_allocated;
}

int
agp_acquire(device_t dev)
{
	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
}

int
agp_release(device_t dev)
{
	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
}

int
agp_enable(device_t dev, u_int32_t mode)
{
	return AGP_ENABLE(dev, mode);
}

void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
{
	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
}

void agp_free_memory(device_t dev, void *handle)
{
	struct agp_memory *mem = (struct agp_memory *) handle;
	AGP_FREE_MEMORY(dev, mem);
}

int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
{
	struct agp_memory *mem = (struct agp_memory *) handle;
	return AGP_BIND_MEMORY(dev, mem, offset);
}

int agp_unbind_memory(device_t dev, void *handle)
{
	struct agp_memory *mem = (struct agp_memory *) handle;
	return AGP_UNBIND_MEMORY(dev, mem);
}

void agp_memory_info(device_t dev, void *handle, struct
		     agp_memory_info *mi)
{
	struct agp_memory *mem = (struct agp_memory *) handle;

	mi->ami_size = mem->am_size;
	mi->ami_physical = mem->am_physical;
	mi->ami_offset = mem->am_offset;
	mi->ami_is_bound = mem->am_is_bound;
}
OpenPOWER on IntegriCloud