summaryrefslogtreecommitdiffstats
path: root/sys/contrib/octeon-sdk/cvmx-llm.c
blob: 01a202c4c34f6ac4113187ce945769f9b31588b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/***********************license start***************
 * Copyright (c) 2003-2010  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/







/**
 * @file
 *
 * Configuration functions for low latency memory.
 *
 * <hr>$Revision: 70030 $<hr>
 */
#include "cvmx-config.h"
#include "cvmx.h"
#include "cvmx-llm.h"
#include "cvmx-sysinfo.h"
#include "cvmx-csr-db.h"

#define	MIN(a,b) (((a)<(b))?(a):(b))

typedef struct
{
    uint32_t dfa_memcfg0_base;
    uint32_t dfa_memcfg1_base;
    uint32_t mrs_dat_p0bunk0;
    uint32_t mrs_dat_p0bunk1;
    uint32_t mrs_dat_p1bunk0;
    uint32_t mrs_dat_p1bunk1;
    uint8_t  p0_ena;
    uint8_t  p1_ena;
    uint8_t  bunkport;
} rldram_csr_config_t;





int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr);


void print_rld_cfg(rldram_csr_config_t *cfg_ptr);
void write_rld_cfg(rldram_csr_config_t *cfg_ptr);
static void cn31xx_dfa_memory_init(void);

static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str);



#ifndef CVMX_LLM_NUM_PORTS
#warning WARNING: default CVMX_LLM_NUM_PORTS used.  Defaults deprecated, please set in executive-config.h
#define CVMX_LLM_NUM_PORTS 1
#endif


#if (CVMX_LLM_NUM_PORTS != 1) && (CVMX_LLM_NUM_PORTS != 2)
#error "Invalid CVMX_LLM_NUM_PORTS value: must be 1 or 2\n"
#endif

int cvmx_llm_initialize()
{
    if (cvmx_llm_initialize_desc(NULL) < 0)
        return -1;

    return 0;
}


int cvmx_llm_get_default_descriptor(llm_descriptor_t *llm_desc_ptr)
{
    cvmx_sysinfo_t *sys_ptr;
    sys_ptr = cvmx_sysinfo_get();

    if (!llm_desc_ptr)
        return -1;

    memset(llm_desc_ptr, 0, sizeof(llm_descriptor_t));

    llm_desc_ptr->cpu_hz = cvmx_clock_get_rate(CVMX_CLOCK_CORE);

    if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT3000)
    { // N3K->RLD0 Address Swizzle
        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
        // N3K->RLD1 Address Swizzle
        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
        /* NOTE: The ebt3000 has a strange RLDRAM configuration for validation purposes.  It is not recommended to have
        ** different amounts of memory on different ports as that renders some memory unusable */
        llm_desc_ptr->rld0_bunks = 2;
        llm_desc_ptr->rld1_bunks = 2;
        llm_desc_ptr->rld0_mbytes = 128;          // RLD0: 4x 32Mx9
        llm_desc_ptr->rld1_mbytes = 64;           // RLD1: 2x 16Mx18
    }
    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT5800)
    {
        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
        llm_desc_ptr->rld0_bunks = 2;
        llm_desc_ptr->rld1_bunks = 2;
        llm_desc_ptr->rld0_mbytes = 128;
        llm_desc_ptr->rld1_mbytes = 128;
        llm_desc_ptr->max_rld_clock_mhz = 400;  /* CN58XX needs a max clock speed for selecting optimal divisor */
    }
    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3000)
    {
        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
        llm_desc_ptr->rld0_bunks = 2;
        llm_desc_ptr->rld1_bunks = 2;
        llm_desc_ptr->rld0_mbytes = 128;
        llm_desc_ptr->rld1_mbytes = 128;
    }
    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_THUNDER)
    {

        if (sys_ptr->board_rev_major >= 4)
        {
            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 13 11 01 02 07 19 03 18 10 12 20 06 04 08 17 05 14 16 00 09 15");
            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 11 13 04 08 17 05 14 16 00 09 15 06 01 02 07 19 03 18 10 12 20");
            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 02 19 18 17 16 09 14 13 20 11 10 01 08 03 06 15 04 07 05 12 00");
            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 02 08 03 06 15 04 07 05 12 00 01 18 17 16 09 14 13 20 11 10");
        }
        else
        {
            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        }

        llm_desc_ptr->rld0_bunks = 2;
        llm_desc_ptr->rld1_bunks = 2;
        llm_desc_ptr->rld0_mbytes = 128;
        llm_desc_ptr->rld1_mbytes = 128;
    }
    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_NICPRO2)
    {
        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
        llm_desc_ptr->rld0_bunks = 2;
        llm_desc_ptr->rld1_bunks = 2;
        llm_desc_ptr->rld0_mbytes = 256;
        llm_desc_ptr->rld1_mbytes = 256;
        llm_desc_ptr->max_rld_clock_mhz = 400;  /* CN58XX needs a max clock speed for selecting optimal divisor */
    }
    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
    {
        /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory */
        llm_desc_ptr->rld0_bunks = 1;
        llm_desc_ptr->rld0_mbytes = 256;
    }
    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_KBP)
    {
        strcpy(llm_desc_ptr->addr_rld0_fb_str, "");
        strcpy(llm_desc_ptr->addr_rld0_bb_str, "");
        llm_desc_ptr->rld0_bunks = 0;
        llm_desc_ptr->rld0_mbytes = 0;
        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
        llm_desc_ptr->rld1_bunks = 2;
        llm_desc_ptr->rld1_mbytes = 64;
    }
    else
    {
        cvmx_dprintf("No default LLM configuration available for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type),  sys_ptr->board_type);
        return -1;
    }

    return(0);
}

int cvmx_llm_initialize_desc(llm_descriptor_t *llm_desc_ptr)
{
    cvmx_sysinfo_t *sys_ptr;
    sys_ptr = cvmx_sysinfo_get();
    llm_descriptor_t default_llm_desc;

    memset(&default_llm_desc, 0, sizeof(default_llm_desc));
    if (sys_ptr->board_type == CVMX_BOARD_TYPE_SIM)
    {
        cvmx_dprintf("Skipping llm configuration for simulator.\n");
        return 0;
    }

    if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
    {
        /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory
        ** config descriptors are not supported yet.*/
        cvmx_dprintf("Warning: preliminary DFA memory configuration\n");
        cn31xx_dfa_memory_init();
        return(256*1024*1024);
    }

    /* If no descriptor passed, generate default descriptor based on board type.
    ** Fail if no default available for given board type
    */
    if (!llm_desc_ptr)
    {
        /* Get default descriptor */
        if (0 > cvmx_llm_get_default_descriptor(&default_llm_desc))
            return -1;

        /* Disable second port depending on CVMX config */
        if (CVMX_LLM_NUM_PORTS == 1)
	  default_llm_desc.rld0_bunks = 0;        // For single port: Force RLD0(P1) to appear EMPTY

        cvmx_dprintf("Using default LLM configuration for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type),  sys_ptr->board_type);

        llm_desc_ptr = &default_llm_desc;
    }



    rldram_csr_config_t ebt3000_rld_cfg;
    if (!rld_csr_config_generate(llm_desc_ptr, &ebt3000_rld_cfg))
    {
        cvmx_dprintf("Configuring %d llm port(s).\n", !!llm_desc_ptr->rld0_bunks + !!llm_desc_ptr->rld1_bunks);
        write_rld_cfg(&ebt3000_rld_cfg);
    }
    else
    {
        cvmx_dprintf("Error creating rldram configuration\n");
        return(-1);
    }

    /* Compute how much memory is configured
    ** Memory is interleaved, so if one port has more than the other some memory is not usable */

    /* If both ports are enabled, handle the case where one port has more than the other.
    ** This is an unusual and not recommended configuration that exists on the ebt3000 board */
    if (!!llm_desc_ptr->rld0_bunks && !!llm_desc_ptr->rld1_bunks)
        llm_desc_ptr->rld0_mbytes = llm_desc_ptr->rld1_mbytes = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);

    return(((!!llm_desc_ptr->rld0_bunks) * llm_desc_ptr->rld0_mbytes
          + (!!llm_desc_ptr->rld1_bunks) * llm_desc_ptr->rld1_mbytes) * 1024*1024);
}

//======================
// SUPPORT FUNCTIONS:
//======================
//======================================================================
// Extracts srcvec[srcbitpos] and places it in return int (bit[0])
int bit_extract ( int srcvec,         // source word (to extract)
                  int srcbitpos       // source bit position
                )
{
    return(((1 << srcbitpos) & srcvec) >> srcbitpos);
}
//======================================================================
// Inserts srcvec[0] into dstvec[dstbitpos] (without affecting other bits)
int bit_insert ( int srcvec,           // srcvec[0] = bit to be inserted
                 int dstbitpos,        // Bit position to insert into returned int
                 int dstvec            // dstvec (destination vector)
               )
{
    return((srcvec << dstbitpos) | dstvec);      // Shift bit to insert into bit position/OR with accumulated number
}
//======================================================================

int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr)
{
    char *addr_rld0_fb_str;
    char *addr_rld0_bb_str;
    char *addr_rld1_fb_str;
    char *addr_rld1_bb_str;
    int eclk_ps;
    int mtype = 0;                           // MTYPE (0: RLDRAM/1: FCRAM
    int trcmin = 20;                         // tRC(min) - from RLDRAM data sheet
    int trc_cyc;                             // TRC(cyc)
    int trc_mod;
    int trl_cyc;                             // TRL(cyc)
    int twl_cyc;                             // TWL(cyc)
    int tmrsc_cyc = 6;                       // tMRSC(cyc)  [2-7]
    int mclk_ps;                             // DFA Memory Clock(in ps) = 2x eclk
    int rldcfg = 99;                         // RLDRAM-II CFG (1,2,3)
    int mrs_odt = 0;                         // RLDRAM MRS A[9]=ODT (default)
    int mrs_impmatch = 0;                    // RLDRAM MRS A[8]=Impedance Matching (default)
    int mrs_dllrst = 1;                      // RLDRAM MRS A[7]=DLL Reset (default)
    uint32_t mrs_dat;
    int mrs_dat_p0bunk0 = 0;                 // MRS Register Data After Address Map (for Port0 Bunk0)
    int mrs_dat_p0bunk1 = 0;                 // MRS Register Data After Address Map (for Port0 Bunk1)
    int mrs_dat_p1bunk0 = 0;                 // MRS Register Data After Address Map (for Port1 Bunk0)
    int mrs_dat_p1bunk1 = 0;                 // MRS Register Data After Address Map (for Port1 Bunk1)
    int p0_ena = 0;                          // DFA Port#0 Enabled
    int p1_ena = 0;                          // DFA Port#1 Enabled
    int memport = 0;                       // Memory(MB) per Port [MAX=512]
    int membunk;                             // Memory(MB) per Bunk
    int bunkport = 0;                        // Bunks/Port [1/2]
    int pbunk = 0;                               // Physical Bunk(or Rank) encoding for address bit
    int tref_ms = 32;                        // tREF(ms) (RLDRAM-II overall device refresh interval
    int trefi_ns;                            // tREFI(ns) = tREF(ns)/#rows/bank
    int rows = 8;                            // #rows/bank (K) typically 8K
    int ref512int;
    int ref512mod;
    int tskw_cyc = 0;
    int fprch = 1;
    int bprch = 0;
    int dfa_memcfg0_base = 0;
    int dfa_memcfg1_base = 0;
    int tbl = 1;                             // tBL (1: 2-burst /2: 4-burst)
    int rw_dly;
    int wr_dly;
    int r2r = 1;
    int sil_lat = 1;
    int clkdiv = 2;  /* CN38XX is fixed at 2, CN58XX supports 2,3,4 */
    int clkdiv_enc = 0x0;  /* Encoded clock divisor, only used for CN58XX */

    if (!llm_desc_ptr)
        return -1;

    /* Setup variables from descriptor */

    addr_rld0_fb_str = llm_desc_ptr->addr_rld0_fb_str;
    addr_rld0_bb_str = llm_desc_ptr->addr_rld0_bb_str;
    addr_rld1_fb_str = llm_desc_ptr->addr_rld1_fb_str;
    addr_rld1_bb_str = llm_desc_ptr->addr_rld1_bb_str;

    p0_ena = !!llm_desc_ptr->rld1_bunks;        // NOTE: P0 == RLD1
    p1_ena = !!llm_desc_ptr->rld0_bunks;        // NOTE: P1 == RLD0

    // Massage the code, so that if the user had imbalanced memory per-port (or imbalanced bunks/port), we
    // at least try to configure 'workable' memory.
    if (p0_ena && p1_ena)  // IF BOTH PORTS Enabled (imbalanced memory), select smaller of BOTH
    {
        memport = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);
        bunkport = MIN(llm_desc_ptr->rld0_bunks, llm_desc_ptr->rld1_bunks);
    }
    else if (p0_ena) // P0=RLD1 Enabled
    {
        memport = llm_desc_ptr->rld1_mbytes;
        bunkport = llm_desc_ptr->rld1_bunks;
    }
    else if (p1_ena) // P1=RLD0 Enabled
    {
        memport = llm_desc_ptr->rld0_mbytes;
        bunkport = llm_desc_ptr->rld0_bunks;
    }
    else
        return -1;

    uint32_t eclk_mhz = llm_desc_ptr->cpu_hz/1000000;



    /* Tweak skew based on cpu clock */
    if (eclk_mhz <= 367)
    {
        tskw_cyc = 0;
    }
    else
    {
        tskw_cyc = 1;
    }

    /* Determine clock divider ratio (only required for CN58XX) */
    if (OCTEON_IS_MODEL(OCTEON_CN58XX))
    {
        uint32_t max_llm_clock_mhz = llm_desc_ptr->max_rld_clock_mhz;
        if (!max_llm_clock_mhz)
        {
            max_llm_clock_mhz = 400;  /* Default to 400 MHz */
            cvmx_dprintf("Warning, using default max_rld_clock_mhz of: %lu MHz\n", (unsigned long)max_llm_clock_mhz);
        }

        /* Compute the divisor, and round up */
        clkdiv = eclk_mhz/max_llm_clock_mhz;
        if (clkdiv * max_llm_clock_mhz < eclk_mhz)
            clkdiv++;

        if (clkdiv > 4)
        {
            cvmx_dprintf("ERROR: CN58XX LLM clock divisor out of range\n");
            goto TERMINATE;
        }
        if (clkdiv < 2)
            clkdiv = 2;

        cvmx_dprintf("Using llm clock divisor: %d, llm clock is: %lu MHz\n", clkdiv, (unsigned long)eclk_mhz/clkdiv);
        /* Translate divisor into bit encoding for register */
        /* 0 -> div 2
        ** 1 -> reserved
        ** 2 -> div 3
        ** 3 -> div 4
        */
        if (clkdiv == 2)
            clkdiv_enc = 0;
        else
            clkdiv_enc = clkdiv - 1;

    /* Odd divisor needs sil_lat to be 2 */
        if (clkdiv == 0x3)
            sil_lat = 2;

        /* Increment tskw for high clock speeds */
        if ((unsigned long)eclk_mhz/clkdiv >= 375)
            tskw_cyc += 1;
    }

    eclk_ps = (1000000+(eclk_mhz-1)) / eclk_mhz;  // round up if nonzero remainder
    //=======================================================================

    //=======================================================================
    // Now, Query User for DFA Memory Type
    if (mtype != 0)
    {
        goto TERMINATE;         // Complete this code for FCRAM usage on N3K-P2
    }
    //=======================================================================
    // Query what the tRC(min) value is from the data sheets
    //=======================================================================
    // Now determine the Best CFG based on Memory clock(ps) and tRCmin(ns)
    mclk_ps = eclk_ps * clkdiv;
    trc_cyc = ((trcmin * 1000)/mclk_ps);
    trc_mod = ((trcmin * 1000) % mclk_ps);
    // If remainder exists, bump up to the next integer multiple
    if (trc_mod != 0)
    {
        trc_cyc = trc_cyc + 1;
    }
    // If tRC is now ODD, then bump it to the next EVEN integer (RLDRAM-II does not support odd tRC values at this time).
    if (trc_cyc & 1)
    {
        trc_cyc = trc_cyc + 1;           // Bump it to an even #
    }
    // RLDRAM CFG Range Check: If the computed trc_cyc is less than 4, then set it to min CFG1 [tRC=4]
    if (trc_cyc < 4)
    {
        trc_cyc = 4;             // If computed trc_cyc < 4 then clamp to 4
    }
    else if (trc_cyc > 8)
    {    // If the computed trc_cyc > 8, then report an error (because RLDRAM cannot support a tRC>8
        goto TERMINATE;
    }
    // Assuming all is ok(up to here)
    // At this point the tRC_cyc has been clamped  between 4 and 8 (and is even), So it can only be 4,6,8 which are
    // the RLDRAM valid CFG range values.
    trl_cyc = trc_cyc;                 // tRL = tRC (for RLDRAM=II)
    twl_cyc = trl_cyc + 1;             // tWL = tRL + 1 (for RLDRAM-II)
    // NOTE: RLDRAM-II (as of 4/25/05) only have 3 supported CFG encodings:
    if (trc_cyc == 4)
    {
        rldcfg = 1;           // CFG #1 (tRL=4/tRC=4/tWL=5)
    }
    else if (trc_cyc == 6)
    {
        rldcfg = 2;           // CFG #2 (tRL=6/tRC=6/tWL=7)
    }
    else if (trc_cyc == 8)
    {
        rldcfg = 3;           // CFG #3 (tRL=8/tRC=8/tWL=9)
    }
    else
    {
        goto TERMINATE;
    }
    //=======================================================================
    mrs_dat = ( (mrs_odt << 9) | (mrs_impmatch << 8) | (mrs_dllrst << 7) | rldcfg );
    //=======================================================================
    // If there is only a single bunk, then skip over address mapping queries (which are not required)
    if (bunkport == 1)
    {
        goto CALC_PBUNK;
    }

    /* Process the address mappings */
    /* Note that that RLD0 pins corresponds to Port#1, and
    **                RLD1 pins corresponds to Port#0.
    */
    mrs_dat_p1bunk0 = process_address_map_str(mrs_dat, addr_rld0_fb_str);
    mrs_dat_p1bunk1 = process_address_map_str(mrs_dat, addr_rld0_bb_str);
    mrs_dat_p0bunk0 = process_address_map_str(mrs_dat, addr_rld1_fb_str);
    mrs_dat_p0bunk1 = process_address_map_str(mrs_dat, addr_rld1_bb_str);


    //=======================================================================
    CALC_PBUNK:
    // Determine the PBUNK field (based on Memory/Bunk)
    // This determines the addr bit used to distinguish when crossing a bunk.
    // NOTE: For RLDRAM, the bunk bit is extracted from 'a' programmably selected high
    // order addr bit. [linear address per-bunk]
    if (bunkport == 2)
    {
        membunk = (memport / 2);
    }
    else
    {
        membunk = memport;
    }
    if (membunk == 16)
    {       // 16MB/bunk MA[19]
        pbunk = 0;
    }
    else if (membunk == 32)
    {  // 32MB/bunk MA[20]
        pbunk = 1;
    }
    else if (membunk == 64)
    {  // 64MB/bunk MA[21]
        pbunk = 2;
    }
    else if (membunk == 128)
    { // 128MB/bunk MA[22]
        pbunk = 3;
    }
    else if (membunk == 256)
    { // 256MB/bunk MA[23]
        pbunk = 4;
    }
    else if (membunk == 512)
    { // 512MB/bunk
    }
    //=======================================================================
    //=======================================================================
    //=======================================================================
    // Now determine N3K REFINT
    trefi_ns = (tref_ms * 1000 * 1000) / (rows * 1024);
    ref512int = ((trefi_ns * 1000) / (eclk_ps * 512));
    ref512mod = ((trefi_ns * 1000) % (eclk_ps * 512));
    //=======================================================================
    // Ask about tSKW
#if 0
    if (tskw_ps ==  0)
    {
        tskw_cyc = 0;
    }
    else
    { // CEILING function
        tskw_cyc = (tskw_ps / eclk_ps);
        tskw_mod = (tskw_ps % eclk_ps);
        if (tskw_mod != 0)
        {  // If there's a remainder - then bump to next (+1)
            tskw_cyc = tskw_cyc + 1;
        }
    }
#endif
    if (tskw_cyc > 3)
    {
        goto TERMINATE;
    }

    tbl = 1;        // BLEN=2 (ALWAYs for RLDRAM)
    //=======================================================================
    // RW_DLY = (ROUND_UP{[[(TRL+TBL)*2 + tSKW + BPRCH] + 1] / 2}) - tWL
    rw_dly = ((((trl_cyc + tbl) * 2 + tskw_cyc + bprch) + 1) / 2);
    if (rw_dly & 1)
    { // If it's ODD then round up
        rw_dly = rw_dly + 1;
    }
    rw_dly = rw_dly - twl_cyc +1 ;
    if (rw_dly < 0)
    { // range check - is it positive
        goto TERMINATE;
    }
    //=======================================================================
    // WR_DLY = (ROUND_UP[[(tWL + tBL)*2 - tSKW + FPRCH] / 2]) - tRL
    wr_dly = (((twl_cyc + tbl) * 2 - tskw_cyc + fprch) / 2);
    if (wr_dly & 1)
    { // If it's ODD then round up
        wr_dly = wr_dly + 1;
    }
    wr_dly = wr_dly - trl_cyc + 1;
    if (wr_dly < 0)
    { // range check - is it positive
        goto TERMINATE;
    }


    dfa_memcfg0_base = 0;
    dfa_memcfg0_base = ( p0_ena |
                         (p1_ena << 1) |
                         (mtype << 3) |
                         (sil_lat << 4) |
                         (rw_dly << 6) |
                         (wr_dly << 10) |
                         (fprch << 14) |
                         (bprch << 16) |
                         (0 << 18) |         // BLEN=0(2-burst for RLDRAM)
                         (pbunk << 19) |
                         (r2r << 22) |       // R2R=1
    			 (clkdiv_enc << 28 )
                       );


    dfa_memcfg1_base = 0;
    dfa_memcfg1_base = ( ref512int |
                         (tskw_cyc << 4) |
                         (trl_cyc << 8) |
                         (twl_cyc << 12) |
                         (trc_cyc << 16) |
                         (tmrsc_cyc << 20)
                       );




    cfg_ptr->dfa_memcfg0_base = dfa_memcfg0_base;
    cfg_ptr->dfa_memcfg1_base = dfa_memcfg1_base;
    cfg_ptr->mrs_dat_p0bunk0 =  mrs_dat_p0bunk0;
    cfg_ptr->mrs_dat_p1bunk0 =  mrs_dat_p1bunk0;
    cfg_ptr->mrs_dat_p0bunk1 =  mrs_dat_p0bunk1;
    cfg_ptr->mrs_dat_p1bunk1 =  mrs_dat_p1bunk1;
    cfg_ptr->p0_ena =           p0_ena;
    cfg_ptr->p1_ena =           p1_ena;
    cfg_ptr->bunkport =         bunkport;
    //=======================================================================

    return(0);
    TERMINATE:
    return(-1);

}



static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str)
{
    int count = 0;
    int amap [23];
    uint32_t new_mrs_dat = 0;

//    cvmx_dprintf("mrs_dat: 0x%x, str: %x\n", mrs_dat, addr_str);
    char *charptr = strtok(addr_str," ");
    while ((charptr != NULL) & (count <= 22))
    {
        amap[22-count] = atoi(charptr);         // Assign the AMAP Array
        charptr = strtok(NULL," ");             // Get Next char string (which represents next addr bit mapping)
        count++;
    }
    // Now do the bit swap of MRSDAT (based on address mapping)
    uint32_t mrsdat_bit;
    for (count=0;count<=22;count++)
    {
        mrsdat_bit = bit_extract(mrs_dat, count);
        new_mrs_dat = bit_insert(mrsdat_bit, amap[count], new_mrs_dat);
    }

    return new_mrs_dat;
}


//#define PRINT_LLM_CONFIG
#ifdef PRINT_LLM_CONFIG
#define ll_printf printf
#else
#define ll_printf(...)
#define cvmx_csr_db_decode(...)
#endif

static void cn31xx_dfa_memory_init(void)
{
    if (OCTEON_IS_MODEL(OCTEON_CN31XX))
    {
        cvmx_dfa_ddr2_cfg_t  dfaCfg;
        cvmx_dfa_eclkcfg_t   dfaEcklCfg;
        cvmx_dfa_ddr2_addr_t dfaAddr;
        cvmx_dfa_ddr2_tmg_t  dfaTmg;
        cvmx_dfa_ddr2_pll_t  dfaPll;
        int mem_freq_hz = 533*1000000;
        int ref_freq_hz = cvmx_sysinfo_get()->dfa_ref_clock_hz;
        if (!ref_freq_hz)
            ref_freq_hz = 33*1000000;

        cvmx_dprintf ("Configuring DFA memory for %d MHz operation.\n",mem_freq_hz/1000000);

          /* Turn on the DFA memory port. */
        dfaCfg.u64 = cvmx_read_csr (CVMX_DFA_DDR2_CFG);
        dfaCfg.s.prtena = 1;
        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);

          /* Start the PLL alignment sequence */
        dfaPll.u64 = 0;
        dfaPll.s.pll_ratio  = mem_freq_hz/ref_freq_hz         /*400Mhz / 33MHz*/;
        dfaPll.s.pll_div2   = 1              /*400 - 1 */;
        dfaPll.s.pll_bypass = 0;
        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);

        dfaPll.s.pll_init = 1;
        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);

        cvmx_wait (RLD_INIT_DELAY); //want 150uS
        dfaPll.s.qdll_ena = 1;
        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);

        cvmx_wait (RLD_INIT_DELAY); //want 10us
        dfaEcklCfg.u64 = 0;
        dfaEcklCfg.s.dfa_frstn = 1;
        cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);

          /* Configure the DFA Memory */
        dfaCfg.s.silo_hc = 1 /*400 - 1 */;
        dfaCfg.s.silo_qc = 0 /*400 - 0 */;
        dfaCfg.s.tskw    = 1 /*400 - 1 */;
        dfaCfg.s.ref_int = 0x820 /*533 - 0x820  400 - 0x618*/;
        dfaCfg.s.trfc    = 0x1A  /*533 - 0x23   400 - 0x1A*/;
        dfaCfg.s.fprch   = 0; /* 1 more conservative*/
        dfaCfg.s.bprch   = 0; /* 1 */
        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);

        dfaEcklCfg.u64 = cvmx_read_csr (CVMX_DFA_ECLKCFG);
        dfaEcklCfg.s.maxbnk = 1;
        cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);

        dfaAddr.u64 = cvmx_read_csr (CVMX_DFA_DDR2_ADDR);
        dfaAddr.s.num_cols    = 0x1;
        dfaAddr.s.num_colrows = 0x2;
        dfaAddr.s.num_rnks    = 0x1;
        cvmx_write_csr (CVMX_DFA_DDR2_ADDR, dfaAddr.u64);

        dfaTmg.u64 =  cvmx_read_csr (CVMX_DFA_DDR2_TMG);
        dfaTmg.s.ddr2t    = 0;
        dfaTmg.s.tmrd     = 0x2;
        dfaTmg.s.caslat   = 0x4 /*400 - 0x3, 500 - 0x4*/;
        dfaTmg.s.pocas    = 0;
        dfaTmg.s.addlat   = 0;
        dfaTmg.s.trcd     = 4   /*400 - 3, 500 - 4*/;
        dfaTmg.s.trrd     = 2;
        dfaTmg.s.tras     = 0xB /*400 - 8, 500 - 0xB*/;
        dfaTmg.s.trp      = 4   /*400 - 3, 500 - 4*/;
        dfaTmg.s.twr      = 4   /*400 - 3, 500 - 4*/;
        dfaTmg.s.twtr     = 2   /*400 - 2 */;
        dfaTmg.s.tfaw     = 0xE /*400 - 0xA, 500 - 0xE*/;
        dfaTmg.s.r2r_slot = 0;
        dfaTmg.s.dic      = 0;  /*400 - 0 */
        dfaTmg.s.dqsn_ena = 0;
        dfaTmg.s.odt_rtt  = 0;
        cvmx_write_csr (CVMX_DFA_DDR2_TMG, dfaTmg.u64);

          /* Turn on the DDR2 interface and wait a bit for the hardware to setup. */
        dfaCfg.s.init = 1;
        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
        cvmx_wait(RLD_INIT_DELAY); // want at least 64K cycles
    }
}

void write_rld_cfg(rldram_csr_config_t *cfg_ptr)
{
    cvmx_dfa_memcfg0_t    memcfg0;
    cvmx_dfa_memcfg2_t    memcfg2;

    memcfg0.u64 = cfg_ptr->dfa_memcfg0_base;

    if ((OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
    {
        uint32_t dfa_memcfg0;

        if (OCTEON_IS_MODEL (OCTEON_CN58XX)) {
	      // Set RLDQK90_RST and RDLCK_RST to reset all three DLLs.
	    memcfg0.s.rldck_rst    = 1;
	    memcfg0.s.rldqck90_rst = 1;
            cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  clk/qk90 reset\n", (uint32_t) memcfg0.u64);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);

	      // Clear RDLCK_RST while asserting RLDQK90_RST to bring RLDCK DLL out of reset.
	    memcfg0.s.rldck_rst    = 0;
	    memcfg0.s.rldqck90_rst = 1;
            cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
            cvmx_wait(4000000);  /* Wait  */
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  qk90 reset\n", (uint32_t) memcfg0.u64);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);

	      // Clear both RDLCK90_RST and RLDQK90_RST to bring the RLDQK90 DLL out of reset.
	    memcfg0.s.rldck_rst    = 0;
	    memcfg0.s.rldqck90_rst = 0;
	    cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
            cvmx_wait(4000000);  /* Wait  */
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  DLL out of reset\n", (uint32_t) memcfg0.u64);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
	}

        //=======================================================================
        // Now print out the sequence of events:
        cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
        ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  port enables\n", cfg_ptr->dfa_memcfg0_base);
        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
        cvmx_wait(4000000);  /* Wait  */

        cvmx_write_csr(CVMX_DFA_MEMCFG1, cfg_ptr->dfa_memcfg1_base);
        ll_printf("CVMX_DFA_MEMCFG1: 0x%08x\n", cfg_ptr->dfa_memcfg1_base);
        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG1 & ~(1ull<<63), cfg_ptr->dfa_memcfg1_base);

        if (cfg_ptr->p0_ena ==1)
        {
            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p0bunk0);
            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk0);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk0);

            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
                            (1 << 23) |   // P0_INIT
                            (1 << 25)     // BUNK_INIT[1:0]=Bunk#0
                          );

            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p0_init/bunk_init\n", dfa_memcfg0);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
            cvmx_wait(RLD_INIT_DELAY);
            ll_printf("Delay.....\n");
            cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  back to base\n", cfg_ptr->dfa_memcfg0_base);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
        }

        if (cfg_ptr->p1_ena ==1)
        {
            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p1bunk0);
            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk0);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk0);

            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
                            (1 << 24) |   // P1_INIT
                            (1 << 25)     // BUNK_INIT[1:0]=Bunk#0
                          );
            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p1_init/bunk_init\n", dfa_memcfg0);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
            cvmx_wait(RLD_INIT_DELAY);
            ll_printf("Delay.....\n");
            cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  back to base\n", cfg_ptr->dfa_memcfg0_base);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
	}

        // P0 Bunk#1
        if ((cfg_ptr->p0_ena ==1) && (cfg_ptr->bunkport == 2))
        {
            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p0bunk1);
            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk1);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk1);

            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
                            (1 << 23) |   // P0_INIT
                            (2 << 25)     // BUNK_INIT[1:0]=Bunk#1
                          );
            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p0_init/bunk_init\n", dfa_memcfg0);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
            cvmx_wait(RLD_INIT_DELAY);
            ll_printf("Delay.....\n");

            if (cfg_ptr->p1_ena == 1)
            { // Re-arm Px_INIT if P1-B1 init is required
                cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
                ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  px_init rearm\n", cfg_ptr->dfa_memcfg0_base);
                cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
            }
        }

        if ((cfg_ptr->p1_ena == 1) && (cfg_ptr->bunkport == 2))
        {
            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p1bunk1);
            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk1);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk1);

            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
                            (1 << 24) |   // P1_INIT
                            (2 << 25)     // BUNK_INIT[1:0]=10
                          );
            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p1_init/bunk_init\n", dfa_memcfg0);
            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
        }
        cvmx_wait(4000000);  // 1/100S, 0.01S, 10mS
        ll_printf("Delay.....\n");

          /* Enable bunks */
        dfa_memcfg0 = cfg_ptr->dfa_memcfg0_base |((cfg_ptr->bunkport >= 1) << 25) | ((cfg_ptr->bunkport == 2) << 26);
        cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
        ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  enable bunks\n", dfa_memcfg0);
        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
        cvmx_wait(RLD_INIT_DELAY);
        ll_printf("Delay.....\n");

          /* Issue a Silo reset by toggling SILRST in memcfg2. */
        memcfg2.u64 = cvmx_read_csr (CVMX_DFA_MEMCFG2);
        memcfg2.s.silrst = 1;
	cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
        ll_printf("CVMX_DFA_MEMCFG2: 0x%08x  silo reset start\n", (uint32_t) memcfg2.u64);
        memcfg2.s.silrst = 0;
	cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
        ll_printf("CVMX_DFA_MEMCFG2: 0x%08x  silo reset done\n", (uint32_t) memcfg2.u64);
    }
}

OpenPOWER on IntegriCloud