summaryrefslogtreecommitdiffstats
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_raidz.c
blob: 08df7e09ba08550cbed4727518f59758d73d9cf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/fs/zfs.h>
#include <sys/fm/fs/zfs.h>

/*
 * Virtual device vector for RAID-Z.
 *
 * This vdev supports both single and double parity. For single parity, we
 * use a simple XOR of all the data columns. For double parity, we use both
 * the simple XOR as well as a technique described in "The mathematics of
 * RAID-6" by H. Peter Anvin. This technique defines a Galois field, GF(2^8),
 * over the integers expressable in a single byte. Briefly, the operations on
 * the field are defined as follows:
 *
 *   o addition (+) is represented by a bitwise XOR
 *   o subtraction (-) is therefore identical to addition: A + B = A - B
 *   o multiplication of A by 2 is defined by the following bitwise expression:
 *	(A * 2)_7 = A_6
 *	(A * 2)_6 = A_5
 *	(A * 2)_5 = A_4
 *	(A * 2)_4 = A_3 + A_7
 *	(A * 2)_3 = A_2 + A_7
 *	(A * 2)_2 = A_1 + A_7
 *	(A * 2)_1 = A_0
 *	(A * 2)_0 = A_7
 *
 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
 *
 * Observe that any number in the field (except for 0) can be expressed as a
 * power of 2 -- a generator for the field. We store a table of the powers of
 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
 * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
 * than field addition). The inverse of a field element A (A^-1) is A^254.
 *
 * The two parity columns, P and Q, over several data columns, D_0, ... D_n-1,
 * can be expressed by field operations:
 *
 *	P = D_0 + D_1 + ... + D_n-2 + D_n-1
 *	Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
 *	  = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
 *
 * See the reconstruction code below for how P and Q can used individually or
 * in concert to recover missing data columns.
 */

typedef struct raidz_col {
	uint64_t rc_devidx;		/* child device index for I/O */
	uint64_t rc_offset;		/* device offset */
	uint64_t rc_size;		/* I/O size */
	void *rc_data;			/* I/O data */
	int rc_error;			/* I/O error for this device */
	uint8_t rc_tried;		/* Did we attempt this I/O column? */
	uint8_t rc_skipped;		/* Did we skip this I/O column? */
} raidz_col_t;

typedef struct raidz_map {
	uint64_t rm_cols;		/* Column count */
	uint64_t rm_bigcols;		/* Number of oversized columns */
	uint64_t rm_asize;		/* Actual total I/O size */
	uint64_t rm_missingdata;	/* Count of missing data devices */
	uint64_t rm_missingparity;	/* Count of missing parity devices */
	uint64_t rm_firstdatacol;	/* First data column/parity count */
	raidz_col_t rm_col[1];		/* Flexible array of I/O columns */
} raidz_map_t;

#define	VDEV_RAIDZ_P		0
#define	VDEV_RAIDZ_Q		1

#define	VDEV_RAIDZ_MAXPARITY	2

#define	VDEV_RAIDZ_MUL_2(a)	(((a) << 1) ^ (((a) & 0x80) ? 0x1d : 0))

/*
 * These two tables represent powers and logs of 2 in the Galois field defined
 * above. These values were computed by repeatedly multiplying by 2 as above.
 */
static const uint8_t vdev_raidz_pow2[256] = {
	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
	0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
	0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
	0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
	0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
	0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
	0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
	0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
	0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
	0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
	0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
	0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
	0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
	0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
	0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
	0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
	0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
	0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
	0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
	0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
	0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
	0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
	0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
	0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
	0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
	0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
	0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
	0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
	0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
	0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
	0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
	0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
};
static const uint8_t vdev_raidz_log2[256] = {
	0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
	0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
	0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
	0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
	0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
	0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
	0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
	0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
	0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
	0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
	0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
	0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
	0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
	0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
	0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
	0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
	0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
	0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
	0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
	0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
	0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
	0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
	0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
	0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
	0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
	0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
	0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
	0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
	0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
	0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
	0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
	0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
};

/*
 * Multiply a given number by 2 raised to the given power.
 */
static uint8_t
vdev_raidz_exp2(uint_t a, int exp)
{
	if (a == 0)
		return (0);

	ASSERT(exp >= 0);
	ASSERT(vdev_raidz_log2[a] > 0 || a == 1);

	exp += vdev_raidz_log2[a];
	if (exp > 255)
		exp -= 255;

	return (vdev_raidz_pow2[exp]);
}

static raidz_map_t *
vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
    uint64_t nparity)
{
	raidz_map_t *rm;
	uint64_t b = zio->io_offset >> unit_shift;
	uint64_t s = zio->io_size >> unit_shift;
	uint64_t f = b % dcols;
	uint64_t o = (b / dcols) << unit_shift;
	uint64_t q, r, c, bc, col, acols, coff, devidx;

	q = s / (dcols - nparity);
	r = s - q * (dcols - nparity);
	bc = (r == 0 ? 0 : r + nparity);

	acols = (q == 0 ? bc : dcols);

	rm = kmem_alloc(offsetof(raidz_map_t, rm_col[acols]), KM_SLEEP);

	rm->rm_cols = acols;
	rm->rm_bigcols = bc;
	rm->rm_asize = 0;
	rm->rm_missingdata = 0;
	rm->rm_missingparity = 0;
	rm->rm_firstdatacol = nparity;

	for (c = 0; c < acols; c++) {
		col = f + c;
		coff = o;
		if (col >= dcols) {
			col -= dcols;
			coff += 1ULL << unit_shift;
		}
		rm->rm_col[c].rc_devidx = col;
		rm->rm_col[c].rc_offset = coff;
		rm->rm_col[c].rc_size = (q + (c < bc)) << unit_shift;
		rm->rm_col[c].rc_data = NULL;
		rm->rm_col[c].rc_error = 0;
		rm->rm_col[c].rc_tried = 0;
		rm->rm_col[c].rc_skipped = 0;
		rm->rm_asize += rm->rm_col[c].rc_size;
	}

	rm->rm_asize = roundup(rm->rm_asize, (nparity + 1) << unit_shift);

	for (c = 0; c < rm->rm_firstdatacol; c++)
		rm->rm_col[c].rc_data = zio_buf_alloc(rm->rm_col[c].rc_size);

	rm->rm_col[c].rc_data = zio->io_data;

	for (c = c + 1; c < acols; c++)
		rm->rm_col[c].rc_data = (char *)rm->rm_col[c - 1].rc_data +
		    rm->rm_col[c - 1].rc_size;

	/*
	 * If all data stored spans all columns, there's a danger that parity
	 * will always be on the same device and, since parity isn't read
	 * during normal operation, that that device's I/O bandwidth won't be
	 * used effectively. We therefore switch the parity every 1MB.
	 *
	 * ... at least that was, ostensibly, the theory. As a practical
	 * matter unless we juggle the parity between all devices evenly, we
	 * won't see any benefit. Further, occasional writes that aren't a
	 * multiple of the LCM of the number of children and the minimum
	 * stripe width are sufficient to avoid pessimal behavior.
	 * Unfortunately, this decision created an implicit on-disk format
	 * requirement that we need to support for all eternity, but only
	 * for single-parity RAID-Z.
	 */
	ASSERT(rm->rm_cols >= 2);
	ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);

	if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
		devidx = rm->rm_col[0].rc_devidx;
		o = rm->rm_col[0].rc_offset;
		rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
		rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
		rm->rm_col[1].rc_devidx = devidx;
		rm->rm_col[1].rc_offset = o;
	}

	zio->io_vsd = rm;
	return (rm);
}

static void
vdev_raidz_map_free(zio_t *zio)
{
	raidz_map_t *rm = zio->io_vsd;
	int c;

	for (c = 0; c < rm->rm_firstdatacol; c++)
		zio_buf_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size);

	kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_cols]));
	zio->io_vsd = NULL;
}

static void
vdev_raidz_generate_parity_p(raidz_map_t *rm)
{
	uint64_t *p, *src, pcount, ccount, i;
	int c;

	pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);

	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
		src = rm->rm_col[c].rc_data;
		p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
		ccount = rm->rm_col[c].rc_size / sizeof (src[0]);

		if (c == rm->rm_firstdatacol) {
			ASSERT(ccount == pcount);
			for (i = 0; i < ccount; i++, p++, src++) {
				*p = *src;
			}
		} else {
			ASSERT(ccount <= pcount);
			for (i = 0; i < ccount; i++, p++, src++) {
				*p ^= *src;
			}
		}
	}
}

static void
vdev_raidz_generate_parity_pq(raidz_map_t *rm)
{
	uint64_t *q, *p, *src, pcount, ccount, mask, i;
	int c;

	pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]);
	ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);

	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
		src = rm->rm_col[c].rc_data;
		p = rm->rm_col[VDEV_RAIDZ_P].rc_data;
		q = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
		ccount = rm->rm_col[c].rc_size / sizeof (src[0]);

		if (c == rm->rm_firstdatacol) {
			ASSERT(ccount == pcount || ccount == 0);
			for (i = 0; i < ccount; i++, p++, q++, src++) {
				*q = *src;
				*p = *src;
			}
			for (; i < pcount; i++, p++, q++, src++) {
				*q = 0;
				*p = 0;
			}
		} else {
			ASSERT(ccount <= pcount);

			/*
			 * Rather than multiplying each byte individually (as
			 * described above), we are able to handle 8 at once
			 * by generating a mask based on the high bit in each
			 * byte and using that to conditionally XOR in 0x1d.
			 */
			for (i = 0; i < ccount; i++, p++, q++, src++) {
				mask = *q & 0x8080808080808080ULL;
				mask = (mask << 1) - (mask >> 7);
				*q = ((*q << 1) & 0xfefefefefefefefeULL) ^
				    (mask & 0x1d1d1d1d1d1d1d1dULL);
				*q ^= *src;
				*p ^= *src;
			}

			/*
			 * Treat short columns as though they are full of 0s.
			 */
			for (; i < pcount; i++, q++) {
				mask = *q & 0x8080808080808080ULL;
				mask = (mask << 1) - (mask >> 7);
				*q = ((*q << 1) & 0xfefefefefefefefeULL) ^
				    (mask & 0x1d1d1d1d1d1d1d1dULL);
			}
		}
	}
}

static void
vdev_raidz_reconstruct_p(raidz_map_t *rm, int x)
{
	uint64_t *dst, *src, xcount, ccount, count, i;
	int c;

	xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
	ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]));
	ASSERT(xcount > 0);

	src = rm->rm_col[VDEV_RAIDZ_P].rc_data;
	dst = rm->rm_col[x].rc_data;
	for (i = 0; i < xcount; i++, dst++, src++) {
		*dst = *src;
	}

	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
		src = rm->rm_col[c].rc_data;
		dst = rm->rm_col[x].rc_data;

		if (c == x)
			continue;

		ccount = rm->rm_col[c].rc_size / sizeof (src[0]);
		count = MIN(ccount, xcount);

		for (i = 0; i < count; i++, dst++, src++) {
			*dst ^= *src;
		}
	}
}

static void
vdev_raidz_reconstruct_q(raidz_map_t *rm, int x)
{
	uint64_t *dst, *src, xcount, ccount, count, mask, i;
	uint8_t *b;
	int c, j, exp;

	xcount = rm->rm_col[x].rc_size / sizeof (src[0]);
	ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_Q].rc_size / sizeof (src[0]));

	for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
		src = rm->rm_col[c].rc_data;
		dst = rm->rm_col[x].rc_data;

		if (c == x)
			ccount = 0;
		else
			ccount = rm->rm_col[c].rc_size / sizeof (src[0]);

		count = MIN(ccount, xcount);

		if (c == rm->rm_firstdatacol) {
			for (i = 0; i < count; i++, dst++, src++) {
				*dst = *src;
			}
			for (; i < xcount; i++, dst++) {
				*dst = 0;
			}

		} else {
			/*
			 * For an explanation of this, see the comment in
			 * vdev_raidz_generate_parity_pq() above.
			 */
			for (i = 0; i < count; i++, dst++, src++) {
				mask = *dst & 0x8080808080808080ULL;
				mask = (mask << 1) - (mask >> 7);
				*dst = ((*dst << 1) & 0xfefefefefefefefeULL) ^
				    (mask & 0x1d1d1d1d1d1d1d1dULL);
				*dst ^= *src;
			}

			for (; i < xcount; i++, dst++) {
				mask = *dst & 0x8080808080808080ULL;
				mask = (mask << 1) - (mask >> 7);
				*dst = ((*dst << 1) & 0xfefefefefefefefeULL) ^
				    (mask & 0x1d1d1d1d1d1d1d1dULL);
			}
		}
	}

	src = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
	dst = rm->rm_col[x].rc_data;
	exp = 255 - (rm->rm_cols - 1 - x);

	for (i = 0; i < xcount; i++, dst++, src++) {
		*dst ^= *src;
		for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
			*b = vdev_raidz_exp2(*b, exp);
		}
	}
}

static void
vdev_raidz_reconstruct_pq(raidz_map_t *rm, int x, int y)
{
	uint8_t *p, *q, *pxy, *qxy, *xd, *yd, tmp, a, b, aexp, bexp;
	void *pdata, *qdata;
	uint64_t xsize, ysize, i;

	ASSERT(x < y);
	ASSERT(x >= rm->rm_firstdatacol);
	ASSERT(y < rm->rm_cols);

	ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);

	/*
	 * Move the parity data aside -- we're going to compute parity as
	 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
	 * reuse the parity generation mechanism without trashing the actual
	 * parity so we make those columns appear to be full of zeros by
	 * setting their lengths to zero.
	 */
	pdata = rm->rm_col[VDEV_RAIDZ_P].rc_data;
	qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
	xsize = rm->rm_col[x].rc_size;
	ysize = rm->rm_col[y].rc_size;

	rm->rm_col[VDEV_RAIDZ_P].rc_data =
	    zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_P].rc_size);
	rm->rm_col[VDEV_RAIDZ_Q].rc_data =
	    zio_buf_alloc(rm->rm_col[VDEV_RAIDZ_Q].rc_size);
	rm->rm_col[x].rc_size = 0;
	rm->rm_col[y].rc_size = 0;

	vdev_raidz_generate_parity_pq(rm);

	rm->rm_col[x].rc_size = xsize;
	rm->rm_col[y].rc_size = ysize;

	p = pdata;
	q = qdata;
	pxy = rm->rm_col[VDEV_RAIDZ_P].rc_data;
	qxy = rm->rm_col[VDEV_RAIDZ_Q].rc_data;
	xd = rm->rm_col[x].rc_data;
	yd = rm->rm_col[y].rc_data;

	/*
	 * We now have:
	 *	Pxy = P + D_x + D_y
	 *	Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
	 *
	 * We can then solve for D_x:
	 *	D_x = A * (P + Pxy) + B * (Q + Qxy)
	 * where
	 *	A = 2^(x - y) * (2^(x - y) + 1)^-1
	 *	B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
	 *
	 * With D_x in hand, we can easily solve for D_y:
	 *	D_y = P + Pxy + D_x
	 */

	a = vdev_raidz_pow2[255 + x - y];
	b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
	tmp = 255 - vdev_raidz_log2[a ^ 1];

	aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
	bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];

	for (i = 0; i < xsize; i++, p++, q++, pxy++, qxy++, xd++, yd++) {
		*xd = vdev_raidz_exp2(*p ^ *pxy, aexp) ^
		    vdev_raidz_exp2(*q ^ *qxy, bexp);

		if (i < ysize)
			*yd = *p ^ *pxy ^ *xd;
	}

	zio_buf_free(rm->rm_col[VDEV_RAIDZ_P].rc_data,
	    rm->rm_col[VDEV_RAIDZ_P].rc_size);
	zio_buf_free(rm->rm_col[VDEV_RAIDZ_Q].rc_data,
	    rm->rm_col[VDEV_RAIDZ_Q].rc_size);

	/*
	 * Restore the saved parity data.
	 */
	rm->rm_col[VDEV_RAIDZ_P].rc_data = pdata;
	rm->rm_col[VDEV_RAIDZ_Q].rc_data = qdata;
}


static int
vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift)
{
	vdev_t *cvd;
	uint64_t nparity = vd->vdev_nparity;
	int c, error;
	int lasterror = 0;
	int numerrors = 0;

	ASSERT(nparity > 0);

	if (nparity > VDEV_RAIDZ_MAXPARITY ||
	    vd->vdev_children < nparity + 1) {
		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
		return (EINVAL);
	}

	for (c = 0; c < vd->vdev_children; c++) {
		cvd = vd->vdev_child[c];

		if ((error = vdev_open(cvd)) != 0) {
			lasterror = error;
			numerrors++;
			continue;
		}

		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
		*ashift = MAX(*ashift, cvd->vdev_ashift);
	}

	*asize *= vd->vdev_children;

	if (numerrors > nparity) {
		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
		return (lasterror);
	}

	return (0);
}

static void
vdev_raidz_close(vdev_t *vd)
{
	int c;

	for (c = 0; c < vd->vdev_children; c++)
		vdev_close(vd->vdev_child[c]);
}

static uint64_t
vdev_raidz_asize(vdev_t *vd, uint64_t psize)
{
	uint64_t asize;
	uint64_t ashift = vd->vdev_top->vdev_ashift;
	uint64_t cols = vd->vdev_children;
	uint64_t nparity = vd->vdev_nparity;

	asize = ((psize - 1) >> ashift) + 1;
	asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
	asize = roundup(asize, nparity + 1) << ashift;

	return (asize);
}

static void
vdev_raidz_child_done(zio_t *zio)
{
	raidz_col_t *rc = zio->io_private;

	rc->rc_error = zio->io_error;
	rc->rc_tried = 1;
	rc->rc_skipped = 0;
}

static void
vdev_raidz_repair_done(zio_t *zio)
{
	ASSERT(zio->io_private == zio->io_parent);
	vdev_raidz_map_free(zio->io_private);
}

static void
vdev_raidz_io_start(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	vdev_t *tvd = vd->vdev_top;
	vdev_t *cvd;
	blkptr_t *bp = zio->io_bp;
	raidz_map_t *rm;
	raidz_col_t *rc;
	int c;

	rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
	    vd->vdev_nparity);

	ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));

	if (zio->io_type == ZIO_TYPE_WRITE) {
		/*
		 * Generate RAID parity in the first virtual columns.
		 */
		if (rm->rm_firstdatacol == 1)
			vdev_raidz_generate_parity_p(rm);
		else
			vdev_raidz_generate_parity_pq(rm);

		for (c = 0; c < rm->rm_cols; c++) {
			rc = &rm->rm_col[c];
			cvd = vd->vdev_child[rc->rc_devidx];
			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
			    rc->rc_offset, rc->rc_data, rc->rc_size,
			    zio->io_type, zio->io_priority, ZIO_FLAG_CANFAIL,
			    vdev_raidz_child_done, rc));
		}
		zio_wait_children_done(zio);
		return;
	}

	ASSERT(zio->io_type == ZIO_TYPE_READ);

	/*
	 * Iterate over the columns in reverse order so that we hit the parity
	 * last -- any errors along the way will force us to read the parity
	 * data.
	 */
	for (c = rm->rm_cols - 1; c >= 0; c--) {
		rc = &rm->rm_col[c];
		cvd = vd->vdev_child[rc->rc_devidx];
		if (vdev_is_dead(cvd)) {
			if (c >= rm->rm_firstdatacol)
				rm->rm_missingdata++;
			else
				rm->rm_missingparity++;
			rc->rc_error = ENXIO;
			rc->rc_tried = 1;	/* don't even try */
			rc->rc_skipped = 1;
			continue;
		}
		if (vdev_dtl_contains(&cvd->vdev_dtl_map, bp->blk_birth, 1)) {
			if (c >= rm->rm_firstdatacol)
				rm->rm_missingdata++;
			else
				rm->rm_missingparity++;
			rc->rc_error = ESTALE;
			rc->rc_skipped = 1;
			continue;
		}
		if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
		    (zio->io_flags & ZIO_FLAG_SCRUB)) {
			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
			    rc->rc_offset, rc->rc_data, rc->rc_size,
			    zio->io_type, zio->io_priority, ZIO_FLAG_CANFAIL,
			    vdev_raidz_child_done, rc));
		}
	}

	zio_wait_children_done(zio);
}

/*
 * Report a checksum error for a child of a RAID-Z device.
 */
static void
raidz_checksum_error(zio_t *zio, raidz_col_t *rc)
{
	vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
	dprintf_bp(zio->io_bp, "imputed checksum error on %s: ",
	    vdev_description(vd));

	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
		mutex_enter(&vd->vdev_stat_lock);
		vd->vdev_stat.vs_checksum_errors++;
		mutex_exit(&vd->vdev_stat_lock);
	}

	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE))
		zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM,
		    zio->io_spa, vd, zio, rc->rc_offset, rc->rc_size);
}

/*
 * Generate the parity from the data columns. If we tried and were able to
 * read the parity without error, verify that the generated parity matches the
 * data we read. If it doesn't, we fire off a checksum error. Return the
 * number such failures.
 */
static int
raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
{
	void *orig[VDEV_RAIDZ_MAXPARITY];
	int c, ret = 0;
	raidz_col_t *rc;

	for (c = 0; c < rm->rm_firstdatacol; c++) {
		rc = &rm->rm_col[c];
		if (!rc->rc_tried || rc->rc_error != 0)
			continue;
		orig[c] = zio_buf_alloc(rc->rc_size);
		bcopy(rc->rc_data, orig[c], rc->rc_size);
	}

	if (rm->rm_firstdatacol == 1)
		vdev_raidz_generate_parity_p(rm);
	else
		vdev_raidz_generate_parity_pq(rm);

	for (c = 0; c < rm->rm_firstdatacol; c++) {
		rc = &rm->rm_col[c];
		if (!rc->rc_tried || rc->rc_error != 0)
			continue;
		if (bcmp(orig[c], rc->rc_data, rc->rc_size) != 0) {
			raidz_checksum_error(zio, rc);
			rc->rc_error = ECKSUM;
			ret++;
		}
		zio_buf_free(orig[c], rc->rc_size);
	}

	return (ret);
}

static uint64_t raidz_corrected_p;
static uint64_t raidz_corrected_q;
static uint64_t raidz_corrected_pq;

static void
vdev_raidz_io_done(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	vdev_t *cvd;
	raidz_map_t *rm = zio->io_vsd;
	raidz_col_t *rc, *rc1;
	int unexpected_errors = 0;
	int parity_errors = 0;
	int parity_untried = 0;
	int data_errors = 0;
	int n, c, c1;

	ASSERT(zio->io_bp != NULL);  /* XXX need to add code to enforce this */

	zio->io_error = 0;
	zio->io_numerrors = 0;

	ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
	ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);

	for (c = 0; c < rm->rm_cols; c++) {
		rc = &rm->rm_col[c];

		/*
		 * We preserve any EIOs because those may be worth retrying;
		 * whereas ECKSUM and ENXIO are more likely to be persistent.
		 */
		if (rc->rc_error) {
			if (zio->io_error != EIO)
				zio->io_error = rc->rc_error;

			if (c < rm->rm_firstdatacol)
				parity_errors++;
			else
				data_errors++;

			if (!rc->rc_skipped)
				unexpected_errors++;

			zio->io_numerrors++;
		} else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
			parity_untried++;
		}
	}

	if (zio->io_type == ZIO_TYPE_WRITE) {
		/*
		 * If this is not a failfast write, and we were able to
		 * write enough columns to reconstruct the data, good enough.
		 */
		/* XXPOLICY */
		if (zio->io_numerrors <= rm->rm_firstdatacol &&
		    !(zio->io_flags & ZIO_FLAG_FAILFAST))
			zio->io_error = 0;

		vdev_raidz_map_free(zio);
		zio_next_stage(zio);
		return;
	}

	ASSERT(zio->io_type == ZIO_TYPE_READ);
	/*
	 * There are three potential phases for a read:
	 *	1. produce valid data from the columns read
	 *	2. read all disks and try again
	 *	3. perform combinatorial reconstruction
	 *
	 * Each phase is progressively both more expensive and less likely to
	 * occur. If we encounter more errors than we can repair or all phases
	 * fail, we have no choice but to return an error.
	 */

	/*
	 * If the number of errors we saw was correctable -- less than or equal
	 * to the number of parity disks read -- attempt to produce data that
	 * has a valid checksum. Naturally, this case applies in the absence of
	 * any errors.
	 */
	if (zio->io_numerrors <= rm->rm_firstdatacol - parity_untried) {
		switch (data_errors) {
		case 0:
			if (zio_checksum_error(zio) == 0) {
				zio->io_error = 0;
				if (parity_errors + parity_untried <
				    rm->rm_firstdatacol) {
					n = raidz_parity_verify(zio, rm);
					unexpected_errors += n;
					ASSERT(parity_errors + n <=
					    rm->rm_firstdatacol);
				}
				goto done;
			}
			break;

		case 1:
			/*
			 * We either attempt to read all the parity columns or
			 * none of them. If we didn't try to read parity, we
			 * wouldn't be here in the correctable case. There must
			 * also have been fewer parity errors than parity
			 * columns or, again, we wouldn't be in this code path.
			 */
			ASSERT(parity_untried == 0);
			ASSERT(parity_errors < rm->rm_firstdatacol);

			/*
			 * Find the column that reported the error.
			 */
			for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
				rc = &rm->rm_col[c];
				if (rc->rc_error != 0)
					break;
			}
			ASSERT(c != rm->rm_cols);
			ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO ||
			    rc->rc_error == ESTALE);

			if (rm->rm_col[VDEV_RAIDZ_P].rc_error == 0) {
				vdev_raidz_reconstruct_p(rm, c);
			} else {
				ASSERT(rm->rm_firstdatacol > 1);
				vdev_raidz_reconstruct_q(rm, c);
			}

			if (zio_checksum_error(zio) == 0) {
				zio->io_error = 0;
				if (rm->rm_col[VDEV_RAIDZ_P].rc_error == 0)
					atomic_inc_64(&raidz_corrected_p);
				else
					atomic_inc_64(&raidz_corrected_q);

				/*
				 * If there's more than one parity disk that
				 * was successfully read, confirm that the
				 * other parity disk produced the correct data.
				 * This routine is suboptimal in that it
				 * regenerates both the parity we wish to test
				 * as well as the parity we just used to
				 * perform the reconstruction, but this should
				 * be a relatively uncommon case, and can be
				 * optimized if it becomes a problem.
				 */
				if (parity_errors < rm->rm_firstdatacol - 1) {
					n = raidz_parity_verify(zio, rm);
					unexpected_errors += n;
					ASSERT(parity_errors + n <=
					    rm->rm_firstdatacol);
				}

				goto done;
			}
			break;

		case 2:
			/*
			 * Two data column errors require double parity.
			 */
			ASSERT(rm->rm_firstdatacol == 2);

			/*
			 * Find the two columns that reported errors.
			 */
			for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
				rc = &rm->rm_col[c];
				if (rc->rc_error != 0)
					break;
			}
			ASSERT(c != rm->rm_cols);
			ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO ||
			    rc->rc_error == ESTALE);

			for (c1 = c++; c < rm->rm_cols; c++) {
				rc = &rm->rm_col[c];
				if (rc->rc_error != 0)
					break;
			}
			ASSERT(c != rm->rm_cols);
			ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO ||
			    rc->rc_error == ESTALE);

			vdev_raidz_reconstruct_pq(rm, c1, c);

			if (zio_checksum_error(zio) == 0) {
				zio->io_error = 0;
				atomic_inc_64(&raidz_corrected_pq);

				goto done;
			}
			break;

		default:
			ASSERT(rm->rm_firstdatacol <= 2);
			ASSERT(0);
		}
	}

	/*
	 * This isn't a typical situation -- either we got a read error or
	 * a child silently returned bad data. Read every block so we can
	 * try again with as much data and parity as we can track down. If
	 * we've already been through once before, all children will be marked
	 * as tried so we'll proceed to combinatorial reconstruction.
	 */
	unexpected_errors = 1;
	rm->rm_missingdata = 0;
	rm->rm_missingparity = 0;

	for (c = 0; c < rm->rm_cols; c++) {
		if (rm->rm_col[c].rc_tried)
			continue;

		zio->io_error = 0;
		zio_vdev_io_redone(zio);
		do {
			rc = &rm->rm_col[c];
			if (rc->rc_tried)
				continue;
			zio_nowait(zio_vdev_child_io(zio, NULL,
			    vd->vdev_child[rc->rc_devidx],
			    rc->rc_offset, rc->rc_data, rc->rc_size,
			    zio->io_type, zio->io_priority, ZIO_FLAG_CANFAIL,
			    vdev_raidz_child_done, rc));
		} while (++c < rm->rm_cols);
		dprintf("rereading\n");
		zio_wait_children_done(zio);
		return;
	}

	/*
	 * At this point we've attempted to reconstruct the data given the
	 * errors we detected, and we've attempted to read all columns. There
	 * must, therefore, be one or more additional problems -- silent errors
	 * resulting in invalid data rather than explicit I/O errors resulting
	 * in absent data. Before we attempt combinatorial reconstruction make
	 * sure we have a chance of coming up with the right answer.
	 */
	if (zio->io_numerrors >= rm->rm_firstdatacol) {
		ASSERT(zio->io_error != 0);
		goto done;
	}

	if (rm->rm_col[VDEV_RAIDZ_P].rc_error == 0) {
		/*
		 * Attempt to reconstruct the data from parity P.
		 */
		for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
			void *orig;
			rc = &rm->rm_col[c];

			orig = zio_buf_alloc(rc->rc_size);
			bcopy(rc->rc_data, orig, rc->rc_size);
			vdev_raidz_reconstruct_p(rm, c);

			if (zio_checksum_error(zio) == 0) {
				zio_buf_free(orig, rc->rc_size);
				zio->io_error = 0;
				atomic_inc_64(&raidz_corrected_p);

				/*
				 * If this child didn't know that it returned
				 * bad data, inform it.
				 */
				if (rc->rc_tried && rc->rc_error == 0)
					raidz_checksum_error(zio, rc);
				rc->rc_error = ECKSUM;
				goto done;
			}

			bcopy(orig, rc->rc_data, rc->rc_size);
			zio_buf_free(orig, rc->rc_size);
		}
	}

	if (rm->rm_firstdatacol > 1 && rm->rm_col[VDEV_RAIDZ_Q].rc_error == 0) {
		/*
		 * Attempt to reconstruct the data from parity Q.
		 */
		for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
			void *orig;
			rc = &rm->rm_col[c];

			orig = zio_buf_alloc(rc->rc_size);
			bcopy(rc->rc_data, orig, rc->rc_size);
			vdev_raidz_reconstruct_q(rm, c);

			if (zio_checksum_error(zio) == 0) {
				zio_buf_free(orig, rc->rc_size);
				zio->io_error = 0;
				atomic_inc_64(&raidz_corrected_q);

				/*
				 * If this child didn't know that it returned
				 * bad data, inform it.
				 */
				if (rc->rc_tried && rc->rc_error == 0)
					raidz_checksum_error(zio, rc);
				rc->rc_error = ECKSUM;
				goto done;
			}

			bcopy(orig, rc->rc_data, rc->rc_size);
			zio_buf_free(orig, rc->rc_size);
		}
	}

	if (rm->rm_firstdatacol > 1 &&
	    rm->rm_col[VDEV_RAIDZ_P].rc_error == 0 &&
	    rm->rm_col[VDEV_RAIDZ_Q].rc_error == 0) {
		/*
		 * Attempt to reconstruct the data from both P and Q.
		 */
		for (c = rm->rm_firstdatacol; c < rm->rm_cols - 1; c++) {
			void *orig, *orig1;
			rc = &rm->rm_col[c];

			orig = zio_buf_alloc(rc->rc_size);
			bcopy(rc->rc_data, orig, rc->rc_size);

			for (c1 = c + 1; c1 < rm->rm_cols; c1++) {
				rc1 = &rm->rm_col[c1];

				orig1 = zio_buf_alloc(rc1->rc_size);
				bcopy(rc1->rc_data, orig1, rc1->rc_size);

				vdev_raidz_reconstruct_pq(rm, c, c1);

				if (zio_checksum_error(zio) == 0) {
					zio_buf_free(orig, rc->rc_size);
					zio_buf_free(orig1, rc1->rc_size);
					zio->io_error = 0;
					atomic_inc_64(&raidz_corrected_pq);

					/*
					 * If these children didn't know they
					 * returned bad data, inform them.
					 */
					if (rc->rc_tried && rc->rc_error == 0)
						raidz_checksum_error(zio, rc);
					if (rc1->rc_tried && rc1->rc_error == 0)
						raidz_checksum_error(zio, rc1);

					rc->rc_error = ECKSUM;
					rc1->rc_error = ECKSUM;

					goto done;
				}

				bcopy(orig1, rc1->rc_data, rc1->rc_size);
				zio_buf_free(orig1, rc1->rc_size);
			}

			bcopy(orig, rc->rc_data, rc->rc_size);
			zio_buf_free(orig, rc->rc_size);
		}
	}

	/*
	 * All combinations failed to checksum. Generate checksum ereports for
	 * all children.
	 */
	zio->io_error = ECKSUM;
	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
		for (c = 0; c < rm->rm_cols; c++) {
			rc = &rm->rm_col[c];
			zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM,
			    zio->io_spa, vd->vdev_child[rc->rc_devidx], zio,
			    rc->rc_offset, rc->rc_size);
		}
	}

done:
	zio_checksum_verified(zio);

	if (zio->io_error == 0 && (spa_mode & FWRITE) &&
	    (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
		zio_t *rio;

		/*
		 * Use the good data we have in hand to repair damaged children.
		 *
		 * We issue all repair I/Os as children of 'rio' to arrange
		 * that vdev_raidz_map_free(zio) will be invoked after all
		 * repairs complete, but before we advance to the next stage.
		 */
		rio = zio_null(zio, zio->io_spa,
		    vdev_raidz_repair_done, zio, ZIO_FLAG_CANFAIL);

		for (c = 0; c < rm->rm_cols; c++) {
			rc = &rm->rm_col[c];
			cvd = vd->vdev_child[rc->rc_devidx];

			if (rc->rc_error == 0)
				continue;

			dprintf("%s resilvered %s @ 0x%llx error %d\n",
			    vdev_description(vd),
			    vdev_description(cvd),
			    zio->io_offset, rc->rc_error);

			zio_nowait(zio_vdev_child_io(rio, NULL, cvd,
			    rc->rc_offset, rc->rc_data, rc->rc_size,
			    ZIO_TYPE_WRITE, zio->io_priority,
			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_DONT_PROPAGATE |
			    ZIO_FLAG_CANFAIL, NULL, NULL));
		}

		zio_nowait(rio);
		zio_wait_children_done(zio);
		return;
	}

	vdev_raidz_map_free(zio);
	zio_next_stage(zio);
}

static void
vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
{
	if (faulted > vd->vdev_nparity)
		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
		    VDEV_AUX_NO_REPLICAS);
	else if (degraded + faulted != 0)
		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
	else
		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}

vdev_ops_t vdev_raidz_ops = {
	vdev_raidz_open,
	vdev_raidz_close,
	vdev_raidz_asize,
	vdev_raidz_io_start,
	vdev_raidz_io_done,
	vdev_raidz_state_change,
	VDEV_TYPE_RAIDZ,	/* name of this vdev type */
	B_FALSE			/* not a leaf vdev */
};
OpenPOWER on IntegriCloud