summaryrefslogtreecommitdiffstats
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_misc.c
blob: 5da1f96c85c56ac210225d464f9762afbb47687e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/zap.h>
#include <sys/zil.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab.h>
#include <sys/uberblock_impl.h>
#include <sys/txg.h>
#include <sys/avl.h>
#include <sys/unique.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/fs/zfs.h>

/*
 * SPA locking
 *
 * There are four basic locks for managing spa_t structures:
 *
 * spa_namespace_lock (global mutex)
 *
 *	This lock must be acquired to do any of the following:
 *
 *		- Lookup a spa_t by name
 *		- Add or remove a spa_t from the namespace
 *		- Increase spa_refcount from non-zero
 *		- Check if spa_refcount is zero
 *		- Rename a spa_t
 *		- add/remove/attach/detach devices
 *		- Held for the duration of create/destroy/import/export
 *
 *	It does not need to handle recursion.  A create or destroy may
 *	reference objects (files or zvols) in other pools, but by
 *	definition they must have an existing reference, and will never need
 *	to lookup a spa_t by name.
 *
 * spa_refcount (per-spa refcount_t protected by mutex)
 *
 *	This reference count keep track of any active users of the spa_t.  The
 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
 *	the refcount is never really 'zero' - opening a pool implicitly keeps
 *	some references in the DMU.  Internally we check against SPA_MINREF, but
 *	present the image of a zero/non-zero value to consumers.
 *
 * spa_config_lock (per-spa crazy rwlock)
 *
 *	This SPA special is a recursive rwlock, capable of being acquired from
 *	asynchronous threads.  It has protects the spa_t from config changes,
 *	and must be held in the following circumstances:
 *
 *		- RW_READER to perform I/O to the spa
 *		- RW_WRITER to change the vdev config
 *
 * spa_config_cache_lock (per-spa mutex)
 *
 *	This mutex prevents the spa_config nvlist from being updated.  No
 *      other locks are required to obtain this lock, although implicitly you
 *      must have the namespace lock or non-zero refcount to have any kind
 *      of spa_t pointer at all.
 *
 * The locking order is fairly straightforward:
 *
 *		spa_namespace_lock	->	spa_refcount
 *
 *	The namespace lock must be acquired to increase the refcount from 0
 *	or to check if it is zero.
 *
 *		spa_refcount		->	spa_config_lock
 *
 *	There must be at least one valid reference on the spa_t to acquire
 *	the config lock.
 *
 *		spa_namespace_lock	->	spa_config_lock
 *
 *	The namespace lock must always be taken before the config lock.
 *
 *
 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
 * are globally visible.
 *
 * The namespace is manipulated using the following functions, all which require
 * the spa_namespace_lock to be held.
 *
 *	spa_lookup()		Lookup a spa_t by name.
 *
 *	spa_add()		Create a new spa_t in the namespace.
 *
 *	spa_remove()		Remove a spa_t from the namespace.  This also
 *				frees up any memory associated with the spa_t.
 *
 *	spa_next()		Returns the next spa_t in the system, or the
 *				first if NULL is passed.
 *
 *	spa_evict_all()		Shutdown and remove all spa_t structures in
 *				the system.
 *
 *	spa_guid_exists()	Determine whether a pool/device guid exists.
 *
 * The spa_refcount is manipulated using the following functions:
 *
 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
 *				called with spa_namespace_lock held if the
 *				refcount is currently zero.
 *
 *	spa_close()		Remove a reference from the spa_t.  This will
 *				not free the spa_t or remove it from the
 *				namespace.  No locking is required.
 *
 *	spa_refcount_zero()	Returns true if the refcount is currently
 *				zero.  Must be called with spa_namespace_lock
 *				held.
 *
 * The spa_config_lock is manipulated using the following functions:
 *
 *	spa_config_enter()	Acquire the config lock as RW_READER or
 *				RW_WRITER.  At least one reference on the spa_t
 *				must exist.
 *
 *	spa_config_exit()	Release the config lock.
 *
 *	spa_config_held()	Returns true if the config lock is currently
 *				held in the given state.
 *
 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
 *
 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
 *				for writing.
 *
 *	spa_vdev_exit()		Release the config lock, wait for all I/O
 *				to complete, sync the updated configs to the
 *				cache, and release the namespace lock.
 *
 * The spa_name() function also requires either the spa_namespace_lock
 * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
 * also implemented within this file since is requires manipulation of the
 * namespace.
 */

static avl_tree_t spa_namespace_avl;
kmutex_t spa_namespace_lock;
static kcondvar_t spa_namespace_cv;
static int spa_active_count;
int spa_max_replication_override = SPA_DVAS_PER_BP;

static kmutex_t spa_spare_lock;
static avl_tree_t spa_spare_avl;

kmem_cache_t *spa_buffer_pool;
int spa_mode;

#ifdef ZFS_DEBUG
int zfs_flags = ~0;
#else
int zfs_flags = 0;
#endif

/*
 * zfs_recover can be set to nonzero to attempt to recover from
 * otherwise-fatal errors, typically caused by on-disk corruption.  When
 * set, calls to zfs_panic_recover() will turn into warning messages.
 */
int zfs_recover = 0;
SYSCTL_DECL(_vfs_zfs);
TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
    "Try to recover from otherwise-fatal errors.");

#define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */

/*
 * ==========================================================================
 * SPA namespace functions
 * ==========================================================================
 */

/*
 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
 * Returns NULL if no matching spa_t is found.
 */
spa_t *
spa_lookup(const char *name)
{
	spa_t search, *spa;
	avl_index_t where;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	search.spa_name = (char *)name;
	spa = avl_find(&spa_namespace_avl, &search, &where);

	return (spa);
}

/*
 * Create an uninitialized spa_t with the given name.  Requires
 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
 * exist by calling spa_lookup() first.
 */
spa_t *
spa_add(const char *name, const char *altroot)
{
	spa_t *spa;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);

	spa->spa_name = spa_strdup(name);
	spa->spa_state = POOL_STATE_UNINITIALIZED;
	spa->spa_freeze_txg = UINT64_MAX;
	spa->spa_final_txg = UINT64_MAX;

	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);

	cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);

	refcount_create(&spa->spa_refcount);
	refcount_create(&spa->spa_config_lock.scl_count);

	avl_add(&spa_namespace_avl, spa);

	/*
	 * Set the alternate root, if there is one.
	 */
	if (altroot) {
		spa->spa_root = spa_strdup(altroot);
		spa_active_count++;
	}

	return (spa);
}

/*
 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
 * spa_namespace_lock.  This is called only after the spa_t has been closed and
 * deactivated.
 */
void
spa_remove(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
	ASSERT(spa->spa_scrub_thread == NULL);

	avl_remove(&spa_namespace_avl, spa);
	cv_broadcast(&spa_namespace_cv);

	if (spa->spa_root) {
		spa_strfree(spa->spa_root);
		spa_active_count--;
	}

	if (spa->spa_name)
		spa_strfree(spa->spa_name);

	spa_config_set(spa, NULL);

	refcount_destroy(&spa->spa_refcount);
	refcount_destroy(&spa->spa_config_lock.scl_count);

	cv_destroy(&spa->spa_async_cv);
	cv_destroy(&spa->spa_scrub_io_cv);
	cv_destroy(&spa->spa_scrub_cv);

	mutex_destroy(&spa->spa_scrub_lock);
	mutex_destroy(&spa->spa_async_lock);
	mutex_destroy(&spa->spa_config_cache_lock);

	kmem_free(spa, sizeof (spa_t));
}

/*
 * Given a pool, return the next pool in the namespace, or NULL if there is
 * none.  If 'prev' is NULL, return the first pool.
 */
spa_t *
spa_next(spa_t *prev)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	if (prev)
		return (AVL_NEXT(&spa_namespace_avl, prev));
	else
		return (avl_first(&spa_namespace_avl));
}

/*
 * ==========================================================================
 * SPA refcount functions
 * ==========================================================================
 */

/*
 * Add a reference to the given spa_t.  Must have at least one reference, or
 * have the namespace lock held.
 */
void
spa_open_ref(spa_t *spa, void *tag)
{
	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
	    MUTEX_HELD(&spa_namespace_lock));

	(void) refcount_add(&spa->spa_refcount, tag);
}

/*
 * Remove a reference to the given spa_t.  Must have at least one reference, or
 * have the namespace lock held.
 */
void
spa_close(spa_t *spa, void *tag)
{
	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
	    MUTEX_HELD(&spa_namespace_lock));

	(void) refcount_remove(&spa->spa_refcount, tag);
}

/*
 * Check to see if the spa refcount is zero.  Must be called with
 * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
 * number of references acquired when opening a pool
 */
boolean_t
spa_refcount_zero(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
}

/*
 * ==========================================================================
 * SPA spare tracking
 * ==========================================================================
 */

/*
 * Spares are tracked globally due to the following constraints:
 *
 * 	- A spare may be part of multiple pools.
 * 	- A spare may be added to a pool even if it's actively in use within
 *	  another pool.
 * 	- A spare in use in any pool can only be the source of a replacement if
 *	  the target is a spare in the same pool.
 *
 * We keep track of all spares on the system through the use of a reference
 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
 * spare, then we bump the reference count in the AVL tree.  In addition, we set
 * the 'vdev_isspare' member to indicate that the device is a spare (active or
 * inactive).  When a spare is made active (used to replace a device in the
 * pool), we also keep track of which pool its been made a part of.
 *
 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
 * called under the spa_namespace lock as part of vdev reconfiguration.  The
 * separate spare lock exists for the status query path, which does not need to
 * be completely consistent with respect to other vdev configuration changes.
 */

typedef struct spa_spare {
	uint64_t	spare_guid;
	uint64_t	spare_pool;
	avl_node_t	spare_avl;
	int		spare_count;
} spa_spare_t;

static int
spa_spare_compare(const void *a, const void *b)
{
	const spa_spare_t *sa = a;
	const spa_spare_t *sb = b;

	if (sa->spare_guid < sb->spare_guid)
		return (-1);
	else if (sa->spare_guid > sb->spare_guid)
		return (1);
	else
		return (0);
}

void
spa_spare_add(vdev_t *vd)
{
	avl_index_t where;
	spa_spare_t search;
	spa_spare_t *spare;

	mutex_enter(&spa_spare_lock);
	ASSERT(!vd->vdev_isspare);

	search.spare_guid = vd->vdev_guid;
	if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
		spare->spare_count++;
	} else {
		spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP);
		spare->spare_guid = vd->vdev_guid;
		spare->spare_count = 1;
		avl_insert(&spa_spare_avl, spare, where);
	}
	vd->vdev_isspare = B_TRUE;

	mutex_exit(&spa_spare_lock);
}

void
spa_spare_remove(vdev_t *vd)
{
	spa_spare_t search;
	spa_spare_t *spare;
	avl_index_t where;

	mutex_enter(&spa_spare_lock);

	search.spare_guid = vd->vdev_guid;
	spare = avl_find(&spa_spare_avl, &search, &where);

	ASSERT(vd->vdev_isspare);
	ASSERT(spare != NULL);

	if (--spare->spare_count == 0) {
		avl_remove(&spa_spare_avl, spare);
		kmem_free(spare, sizeof (spa_spare_t));
	} else if (spare->spare_pool == spa_guid(vd->vdev_spa)) {
		spare->spare_pool = 0ULL;
	}

	vd->vdev_isspare = B_FALSE;
	mutex_exit(&spa_spare_lock);
}

boolean_t
spa_spare_exists(uint64_t guid, uint64_t *pool)
{
	spa_spare_t search, *found;
	avl_index_t where;

	mutex_enter(&spa_spare_lock);

	search.spare_guid = guid;
	found = avl_find(&spa_spare_avl, &search, &where);

	if (pool) {
		if (found)
			*pool = found->spare_pool;
		else
			*pool = 0ULL;
	}

	mutex_exit(&spa_spare_lock);

	return (found != NULL);
}

void
spa_spare_activate(vdev_t *vd)
{
	spa_spare_t search, *found;
	avl_index_t where;

	mutex_enter(&spa_spare_lock);
	ASSERT(vd->vdev_isspare);

	search.spare_guid = vd->vdev_guid;
	found = avl_find(&spa_spare_avl, &search, &where);
	ASSERT(found != NULL);
	ASSERT(found->spare_pool == 0ULL);

	found->spare_pool = spa_guid(vd->vdev_spa);
	mutex_exit(&spa_spare_lock);
}

/*
 * ==========================================================================
 * SPA config locking
 * ==========================================================================
 */

/*
 * Acquire the config lock.  The config lock is a special rwlock that allows for
 * recursive enters.  Because these enters come from the same thread as well as
 * asynchronous threads working on behalf of the owner, we must unilaterally
 * allow all reads access as long at least one reader is held (even if a write
 * is requested).  This has the side effect of write starvation, but write locks
 * are extremely rare, and a solution to this problem would be significantly
 * more complex (if even possible).
 *
 * We would like to assert that the namespace lock isn't held, but this is a
 * valid use during create.
 */
void
spa_config_enter(spa_t *spa, krw_t rw, void *tag)
{
	spa_config_lock_t *scl = &spa->spa_config_lock;

	mutex_enter(&scl->scl_lock);

	if (scl->scl_writer != curthread) {
		if (rw == RW_READER) {
			while (scl->scl_writer != NULL)
				cv_wait(&scl->scl_cv, &scl->scl_lock);
		} else {
			while (scl->scl_writer != NULL ||
			    !refcount_is_zero(&scl->scl_count))
				cv_wait(&scl->scl_cv, &scl->scl_lock);
			scl->scl_writer = curthread;
		}
	}

	(void) refcount_add(&scl->scl_count, tag);

	mutex_exit(&scl->scl_lock);
}

/*
 * Release the spa config lock, notifying any waiters in the process.
 */
void
spa_config_exit(spa_t *spa, void *tag)
{
	spa_config_lock_t *scl = &spa->spa_config_lock;

	mutex_enter(&scl->scl_lock);

	ASSERT(!refcount_is_zero(&scl->scl_count));
	if (refcount_remove(&scl->scl_count, tag) == 0) {
		cv_broadcast(&scl->scl_cv);
		scl->scl_writer = NULL;  /* OK in either case */
	}

	mutex_exit(&scl->scl_lock);
}

/*
 * Returns true if the config lock is held in the given manner.
 */
boolean_t
spa_config_held(spa_t *spa, krw_t rw)
{
	spa_config_lock_t *scl = &spa->spa_config_lock;
	boolean_t held;

	mutex_enter(&scl->scl_lock);
	if (rw == RW_WRITER)
		held = (scl->scl_writer == curthread);
	else
		held = !refcount_is_zero(&scl->scl_count);
	mutex_exit(&scl->scl_lock);

	return (held);
}

/*
 * ==========================================================================
 * SPA vdev locking
 * ==========================================================================
 */

/*
 * Lock the given spa_t for the purpose of adding or removing a vdev.
 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
 * It returns the next transaction group for the spa_t.
 */
uint64_t
spa_vdev_enter(spa_t *spa)
{
	/*
	 * Suspend scrub activity while we mess with the config.
	 */
	spa_scrub_suspend(spa);

	mutex_enter(&spa_namespace_lock);

	spa_config_enter(spa, RW_WRITER, spa);

	return (spa_last_synced_txg(spa) + 1);
}

/*
 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
 * locking of spa_vdev_enter(), we also want make sure the transactions have
 * synced to disk, and then update the global configuration cache with the new
 * information.
 */
int
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
{
	int config_changed = B_FALSE;

	ASSERT(txg > spa_last_synced_txg(spa));

	/*
	 * Reassess the DTLs.
	 */
	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);

	/*
	 * If the config changed, notify the scrub thread that it must restart.
	 */
	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
		config_changed = B_TRUE;
		spa_scrub_restart(spa, txg);
	}

	spa_config_exit(spa, spa);

	/*
	 * Allow scrubbing to resume.
	 */
	spa_scrub_resume(spa);

	/*
	 * Note: this txg_wait_synced() is important because it ensures
	 * that there won't be more than one config change per txg.
	 * This allows us to use the txg as the generation number.
	 */
	if (error == 0)
		txg_wait_synced(spa->spa_dsl_pool, txg);

	if (vd != NULL) {
		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
		vdev_free(vd);
	}

	/*
	 * If the config changed, update the config cache.
	 */
	if (config_changed)
		spa_config_sync();

	mutex_exit(&spa_namespace_lock);

	return (error);
}

/*
 * ==========================================================================
 * Miscellaneous functions
 * ==========================================================================
 */

/*
 * Rename a spa_t.
 */
int
spa_rename(const char *name, const char *newname)
{
	spa_t *spa;
	int err;

	/*
	 * Lookup the spa_t and grab the config lock for writing.  We need to
	 * actually open the pool so that we can sync out the necessary labels.
	 * It's OK to call spa_open() with the namespace lock held because we
	 * allow recursive calls for other reasons.
	 */
	mutex_enter(&spa_namespace_lock);
	if ((err = spa_open(name, &spa, FTAG)) != 0) {
		mutex_exit(&spa_namespace_lock);
		return (err);
	}

	spa_config_enter(spa, RW_WRITER, FTAG);

	avl_remove(&spa_namespace_avl, spa);
	spa_strfree(spa->spa_name);
	spa->spa_name = spa_strdup(newname);
	avl_add(&spa_namespace_avl, spa);

	/*
	 * Sync all labels to disk with the new names by marking the root vdev
	 * dirty and waiting for it to sync.  It will pick up the new pool name
	 * during the sync.
	 */
	vdev_config_dirty(spa->spa_root_vdev);

	spa_config_exit(spa, FTAG);

	txg_wait_synced(spa->spa_dsl_pool, 0);

	/*
	 * Sync the updated config cache.
	 */
	spa_config_sync();

	spa_close(spa, FTAG);

	mutex_exit(&spa_namespace_lock);

	return (0);
}


/*
 * Determine whether a pool with given pool_guid exists.  If device_guid is
 * non-zero, determine whether the pool exists *and* contains a device with the
 * specified device_guid.
 */
boolean_t
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
{
	spa_t *spa;
	avl_tree_t *t = &spa_namespace_avl;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
			continue;
		if (spa->spa_root_vdev == NULL)
			continue;
		if (spa_guid(spa) == pool_guid) {
			if (device_guid == 0)
				break;

			if (vdev_lookup_by_guid(spa->spa_root_vdev,
			    device_guid) != NULL)
				break;

			/*
			 * Check any devices we may in the process of adding.
			 */
			if (spa->spa_pending_vdev) {
				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
				    device_guid) != NULL)
					break;
			}
		}
	}

	return (spa != NULL);
}

char *
spa_strdup(const char *s)
{
	size_t len;
	char *new;

	len = strlen(s);
	new = kmem_alloc(len + 1, KM_SLEEP);
	bcopy(s, new, len);
	new[len] = '\0';

	return (new);
}

void
spa_strfree(char *s)
{
	kmem_free(s, strlen(s) + 1);
}

uint64_t
spa_get_random(uint64_t range)
{
	uint64_t r;

	ASSERT(range != 0);

	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));

	return (r % range);
}

void
sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
{
	int d;

	if (bp == NULL) {
		(void) snprintf(buf, len, "<NULL>");
		return;
	}

	if (BP_IS_HOLE(bp)) {
		(void) snprintf(buf, len, "<hole>");
		return;
	}

	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
	    (u_longlong_t)BP_GET_LEVEL(bp),
	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
	    (u_longlong_t)BP_GET_LSIZE(bp),
	    (u_longlong_t)BP_GET_PSIZE(bp));

	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
		const dva_t *dva = &bp->blk_dva[d];
		(void) snprintf(buf + strlen(buf), len - strlen(buf),
		    "DVA[%d]=<%llu:%llx:%llx> ", d,
		    (u_longlong_t)DVA_GET_VDEV(dva),
		    (u_longlong_t)DVA_GET_OFFSET(dva),
		    (u_longlong_t)DVA_GET_ASIZE(dva));
	}

	(void) snprintf(buf + strlen(buf), len - strlen(buf),
	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
	    BP_IS_GANG(bp) ? "gang" : "contiguous",
	    (u_longlong_t)bp->blk_birth,
	    (u_longlong_t)bp->blk_fill,
	    (u_longlong_t)bp->blk_cksum.zc_word[0],
	    (u_longlong_t)bp->blk_cksum.zc_word[1],
	    (u_longlong_t)bp->blk_cksum.zc_word[2],
	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
}

void
spa_freeze(spa_t *spa)
{
	uint64_t freeze_txg = 0;

	spa_config_enter(spa, RW_WRITER, FTAG);
	if (spa->spa_freeze_txg == UINT64_MAX) {
		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
		spa->spa_freeze_txg = freeze_txg;
	}
	spa_config_exit(spa, FTAG);
	if (freeze_txg != 0)
		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
}

void
zfs_panic_recover(const char *fmt, ...)
{
	va_list adx;

	va_start(adx, fmt);
	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
	va_end(adx);
}

/*
 * ==========================================================================
 * Accessor functions
 * ==========================================================================
 */

krwlock_t *
spa_traverse_rwlock(spa_t *spa)
{
	return (&spa->spa_traverse_lock);
}

int
spa_traverse_wanted(spa_t *spa)
{
	return (spa->spa_traverse_wanted);
}

dsl_pool_t *
spa_get_dsl(spa_t *spa)
{
	return (spa->spa_dsl_pool);
}

blkptr_t *
spa_get_rootblkptr(spa_t *spa)
{
	return (&spa->spa_ubsync.ub_rootbp);
}

void
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
{
	spa->spa_uberblock.ub_rootbp = *bp;
}

void
spa_altroot(spa_t *spa, char *buf, size_t buflen)
{
	if (spa->spa_root == NULL)
		buf[0] = '\0';
	else
		(void) strncpy(buf, spa->spa_root, buflen);
}

int
spa_sync_pass(spa_t *spa)
{
	return (spa->spa_sync_pass);
}

char *
spa_name(spa_t *spa)
{
	/*
	 * Accessing the name requires holding either the namespace lock or the
	 * config lock, both of which are required to do a rename.
	 */
	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
	    spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));

	return (spa->spa_name);
}

uint64_t
spa_guid(spa_t *spa)
{
	/*
	 * If we fail to parse the config during spa_load(), we can go through
	 * the error path (which posts an ereport) and end up here with no root
	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
	 * this case.
	 */
	if (spa->spa_root_vdev != NULL)
		return (spa->spa_root_vdev->vdev_guid);
	else
		return (spa->spa_load_guid);
}

uint64_t
spa_last_synced_txg(spa_t *spa)
{
	return (spa->spa_ubsync.ub_txg);
}

uint64_t
spa_first_txg(spa_t *spa)
{
	return (spa->spa_first_txg);
}

int
spa_state(spa_t *spa)
{
	return (spa->spa_state);
}

uint64_t
spa_freeze_txg(spa_t *spa)
{
	return (spa->spa_freeze_txg);
}

/*
 * In the future, this may select among different metaslab classes
 * depending on the zdp.  For now, there's no such distinction.
 */
metaslab_class_t *
spa_metaslab_class_select(spa_t *spa)
{
	return (spa->spa_normal_class);
}

/*
 * Return how much space is allocated in the pool (ie. sum of all asize)
 */
uint64_t
spa_get_alloc(spa_t *spa)
{
	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
}

/*
 * Return how much (raid-z inflated) space there is in the pool.
 */
uint64_t
spa_get_space(spa_t *spa)
{
	return (spa->spa_root_vdev->vdev_stat.vs_space);
}

/*
 * Return the amount of raid-z-deflated space in the pool.
 */
uint64_t
spa_get_dspace(spa_t *spa)
{
	if (spa->spa_deflate)
		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
	else
		return (spa->spa_root_vdev->vdev_stat.vs_space);
}

/* ARGSUSED */
uint64_t
spa_get_asize(spa_t *spa, uint64_t lsize)
{
	/*
	 * For now, the worst case is 512-byte RAID-Z blocks, in which
	 * case the space requirement is exactly 2x; so just assume that.
	 * Add to this the fact that we can have up to 3 DVAs per bp, and
	 * we have to multiply by a total of 6x.
	 */
	return (lsize * 6);
}

uint64_t
spa_version(spa_t *spa)
{
	return (spa->spa_ubsync.ub_version);
}

int
spa_max_replication(spa_t *spa)
{
	/*
	 * As of ZFS_VERSION == ZFS_VERSION_DITTO_BLOCKS, we are able to
	 * handle BPs with more than one DVA allocated.  Set our max
	 * replication level accordingly.
	 */
	if (spa_version(spa) < ZFS_VERSION_DITTO_BLOCKS)
		return (1);
	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
}

uint64_t
bp_get_dasize(spa_t *spa, const blkptr_t *bp)
{
	int sz = 0, i;

	if (!spa->spa_deflate)
		return (BP_GET_ASIZE(bp));

	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
		vdev_t *vd =
		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
		sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) *
		    vd->vdev_deflate_ratio;
	}
	return (sz);
}

/*
 * ==========================================================================
 * Initialization and Termination
 * ==========================================================================
 */

static int
spa_name_compare(const void *a1, const void *a2)
{
	const spa_t *s1 = a1;
	const spa_t *s2 = a2;
	int s;

	s = strcmp(s1->spa_name, s2->spa_name);
	if (s > 0)
		return (1);
	if (s < 0)
		return (-1);
	return (0);
}

int
spa_busy(void)
{
	return (spa_active_count);
}

void
spa_init(int mode)
{
	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);

	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
	    offsetof(spa_t, spa_avl));

	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);

	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
	    offsetof(spa_spare_t, spare_avl));

	spa_mode = mode;

	refcount_init();
	unique_init();
	zio_init();
	dmu_init();
	zil_init();
	spa_config_load();
}

void
spa_fini(void)
{
	spa_evict_all();

	zil_fini();
	dmu_fini();
	zio_fini();
	refcount_fini();

	avl_destroy(&spa_namespace_avl);
	avl_destroy(&spa_spare_avl);

	cv_destroy(&spa_namespace_cv);
	mutex_destroy(&spa_namespace_lock);
	mutex_destroy(&spa_spare_lock);
}
OpenPOWER on IntegriCloud