summaryrefslogtreecommitdiffstats
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/arc.c
blob: 59a376a1347f141c953c373c6ad6b58bf93f1941 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * DVA-based Adjustable Replacement Cache
 *
 * While much of the theory of operation used here is
 * based on the self-tuning, low overhead replacement cache
 * presented by Megiddo and Modha at FAST 2003, there are some
 * significant differences:
 *
 * 1. The Megiddo and Modha model assumes any page is evictable.
 * Pages in its cache cannot be "locked" into memory.  This makes
 * the eviction algorithm simple: evict the last page in the list.
 * This also make the performance characteristics easy to reason
 * about.  Our cache is not so simple.  At any given moment, some
 * subset of the blocks in the cache are un-evictable because we
 * have handed out a reference to them.  Blocks are only evictable
 * when there are no external references active.  This makes
 * eviction far more problematic:  we choose to evict the evictable
 * blocks that are the "lowest" in the list.
 *
 * There are times when it is not possible to evict the requested
 * space.  In these circumstances we are unable to adjust the cache
 * size.  To prevent the cache growing unbounded at these times we
 * implement a "cache throttle" that slowes the flow of new data
 * into the cache until we can make space avaiable.
 *
 * 2. The Megiddo and Modha model assumes a fixed cache size.
 * Pages are evicted when the cache is full and there is a cache
 * miss.  Our model has a variable sized cache.  It grows with
 * high use, but also tries to react to memory preasure from the
 * operating system: decreasing its size when system memory is
 * tight.
 *
 * 3. The Megiddo and Modha model assumes a fixed page size. All
 * elements of the cache are therefor exactly the same size.  So
 * when adjusting the cache size following a cache miss, its simply
 * a matter of choosing a single page to evict.  In our model, we
 * have variable sized cache blocks (rangeing from 512 bytes to
 * 128K bytes).  We therefor choose a set of blocks to evict to make
 * space for a cache miss that approximates as closely as possible
 * the space used by the new block.
 *
 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
 * by N. Megiddo & D. Modha, FAST 2003
 */

/*
 * The locking model:
 *
 * A new reference to a cache buffer can be obtained in two
 * ways: 1) via a hash table lookup using the DVA as a key,
 * or 2) via one of the ARC lists.  The arc_read() inerface
 * uses method 1, while the internal arc algorithms for
 * adjusting the cache use method 2.  We therefor provide two
 * types of locks: 1) the hash table lock array, and 2) the
 * arc list locks.
 *
 * Buffers do not have their own mutexs, rather they rely on the
 * hash table mutexs for the bulk of their protection (i.e. most
 * fields in the arc_buf_hdr_t are protected by these mutexs).
 *
 * buf_hash_find() returns the appropriate mutex (held) when it
 * locates the requested buffer in the hash table.  It returns
 * NULL for the mutex if the buffer was not in the table.
 *
 * buf_hash_remove() expects the appropriate hash mutex to be
 * already held before it is invoked.
 *
 * Each arc state also has a mutex which is used to protect the
 * buffer list associated with the state.  When attempting to
 * obtain a hash table lock while holding an arc list lock you
 * must use: mutex_tryenter() to avoid deadlock.  Also note that
 * the active state mutex must be held before the ghost state mutex.
 *
 * Arc buffers may have an associated eviction callback function.
 * This function will be invoked prior to removing the buffer (e.g.
 * in arc_do_user_evicts()).  Note however that the data associated
 * with the buffer may be evicted prior to the callback.  The callback
 * must be made with *no locks held* (to prevent deadlock).  Additionally,
 * the users of callbacks must ensure that their private data is
 * protected from simultaneous callbacks from arc_buf_evict()
 * and arc_do_user_evicts().
 *
 * Note that the majority of the performance stats are manipulated
 * with atomic operations.
 */

#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/refcount.h>
#ifdef _KERNEL
#include <sys/dnlc.h>
#endif
#include <sys/callb.h>
#include <sys/kstat.h>
#include <sys/sdt.h>

#define	ARC_FREE_AT_ONCE	4194304

static kmutex_t		arc_reclaim_thr_lock;
static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
static uint8_t		arc_thread_exit;

#define	ARC_REDUCE_DNLC_PERCENT	3
uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;

typedef enum arc_reclaim_strategy {
	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
} arc_reclaim_strategy_t;

/* number of seconds before growing cache again */
static int		arc_grow_retry = 60;

/*
 * minimum lifespan of a prefetch block in clock ticks
 * (initialized in arc_init())
 */
static int		arc_min_prefetch_lifespan;

static int arc_dead;

/*
 * These tunables are for performance analysis.
 */
uint64_t zfs_arc_max;
uint64_t zfs_arc_min;

/*
 * Note that buffers can be on one of 5 states:
 *	ARC_anon	- anonymous (discussed below)
 *	ARC_mru		- recently used, currently cached
 *	ARC_mru_ghost	- recentely used, no longer in cache
 *	ARC_mfu		- frequently used, currently cached
 *	ARC_mfu_ghost	- frequently used, no longer in cache
 * When there are no active references to the buffer, they
 * are linked onto one of the lists in arc.  These are the
 * only buffers that can be evicted or deleted.
 *
 * Anonymous buffers are buffers that are not associated with
 * a DVA.  These are buffers that hold dirty block copies
 * before they are written to stable storage.  By definition,
 * they are "ref'd" and are considered part of arc_mru
 * that cannot be freed.  Generally, they will aquire a DVA
 * as they are written and migrate onto the arc_mru list.
 */

typedef struct arc_state {
	list_t	arcs_list;	/* linked list of evictable buffer in state */
	uint64_t arcs_lsize;	/* total size of buffers in the linked list */
	uint64_t arcs_size;	/* total size of all buffers in this state */
	kmutex_t arcs_mtx;
} arc_state_t;

/* The 5 states: */
static arc_state_t ARC_anon;
static arc_state_t ARC_mru;
static arc_state_t ARC_mru_ghost;
static arc_state_t ARC_mfu;
static arc_state_t ARC_mfu_ghost;

typedef struct arc_stats {
	kstat_named_t arcstat_hits;
	kstat_named_t arcstat_misses;
	kstat_named_t arcstat_demand_data_hits;
	kstat_named_t arcstat_demand_data_misses;
	kstat_named_t arcstat_demand_metadata_hits;
	kstat_named_t arcstat_demand_metadata_misses;
	kstat_named_t arcstat_prefetch_data_hits;
	kstat_named_t arcstat_prefetch_data_misses;
	kstat_named_t arcstat_prefetch_metadata_hits;
	kstat_named_t arcstat_prefetch_metadata_misses;
	kstat_named_t arcstat_mru_hits;
	kstat_named_t arcstat_mru_ghost_hits;
	kstat_named_t arcstat_mfu_hits;
	kstat_named_t arcstat_mfu_ghost_hits;
	kstat_named_t arcstat_deleted;
	kstat_named_t arcstat_recycle_miss;
	kstat_named_t arcstat_mutex_miss;
	kstat_named_t arcstat_evict_skip;
	kstat_named_t arcstat_hash_elements;
	kstat_named_t arcstat_hash_elements_max;
	kstat_named_t arcstat_hash_collisions;
	kstat_named_t arcstat_hash_chains;
	kstat_named_t arcstat_hash_chain_max;
	kstat_named_t arcstat_p;
	kstat_named_t arcstat_c;
	kstat_named_t arcstat_c_min;
	kstat_named_t arcstat_c_max;
	kstat_named_t arcstat_size;
} arc_stats_t;

static arc_stats_t arc_stats = {
	{ "hits",			KSTAT_DATA_UINT64 },
	{ "misses",			KSTAT_DATA_UINT64 },
	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
	{ "mru_hits",			KSTAT_DATA_UINT64 },
	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
	{ "mfu_hits",			KSTAT_DATA_UINT64 },
	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
	{ "deleted",			KSTAT_DATA_UINT64 },
	{ "recycle_miss",		KSTAT_DATA_UINT64 },
	{ "mutex_miss",			KSTAT_DATA_UINT64 },
	{ "evict_skip",			KSTAT_DATA_UINT64 },
	{ "hash_elements",		KSTAT_DATA_UINT64 },
	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
	{ "hash_collisions",		KSTAT_DATA_UINT64 },
	{ "hash_chains",		KSTAT_DATA_UINT64 },
	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
	{ "p",				KSTAT_DATA_UINT64 },
	{ "c",				KSTAT_DATA_UINT64 },
	{ "c_min",			KSTAT_DATA_UINT64 },
	{ "c_max",			KSTAT_DATA_UINT64 },
	{ "size",			KSTAT_DATA_UINT64 }
};

#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)

#define	ARCSTAT_INCR(stat, val) \
	atomic_add_64(&arc_stats.stat.value.ui64, (val));

#define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)

#define	ARCSTAT_MAX(stat, val) {					\
	uint64_t m;							\
	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
		continue;						\
}

#define	ARCSTAT_MAXSTAT(stat) \
	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)

/*
 * We define a macro to allow ARC hits/misses to be easily broken down by
 * two separate conditions, giving a total of four different subtypes for
 * each of hits and misses (so eight statistics total).
 */
#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
	if (cond1) {							\
		if (cond2) {						\
			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
		} else {						\
			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
		}							\
	} else {							\
		if (cond2) {						\
			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
		} else {						\
			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
		}							\
	}

kstat_t			*arc_ksp;
static arc_state_t 	*arc_anon;
static arc_state_t	*arc_mru;
static arc_state_t	*arc_mru_ghost;
static arc_state_t	*arc_mfu;
static arc_state_t	*arc_mfu_ghost;

/*
 * There are several ARC variables that are critical to export as kstats --
 * but we don't want to have to grovel around in the kstat whenever we wish to
 * manipulate them.  For these variables, we therefore define them to be in
 * terms of the statistic variable.  This assures that we are not introducing
 * the possibility of inconsistency by having shadow copies of the variables,
 * while still allowing the code to be readable.
 */
#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */

static int		arc_no_grow;	/* Don't try to grow cache size */
static uint64_t		arc_tempreserve;

typedef struct arc_callback arc_callback_t;

struct arc_callback {
	void			*acb_private;
	arc_done_func_t		*acb_done;
	arc_byteswap_func_t	*acb_byteswap;
	arc_buf_t		*acb_buf;
	zio_t			*acb_zio_dummy;
	arc_callback_t		*acb_next;
};

typedef struct arc_write_callback arc_write_callback_t;

struct arc_write_callback {
	void		*awcb_private;
	arc_done_func_t	*awcb_ready;
	arc_done_func_t	*awcb_done;
	arc_buf_t	*awcb_buf;
};

struct arc_buf_hdr {
	/* protected by hash lock */
	dva_t			b_dva;
	uint64_t		b_birth;
	uint64_t		b_cksum0;

	kmutex_t		b_freeze_lock;
	zio_cksum_t		*b_freeze_cksum;

	arc_buf_hdr_t		*b_hash_next;
	arc_buf_t		*b_buf;
	uint32_t		b_flags;
	uint32_t		b_datacnt;

	arc_callback_t		*b_acb;
	kcondvar_t		b_cv;

	/* immutable */
	arc_buf_contents_t	b_type;
	uint64_t		b_size;
	spa_t			*b_spa;

	/* protected by arc state mutex */
	arc_state_t		*b_state;
	list_node_t		b_arc_node;

	/* updated atomically */
	clock_t			b_arc_access;

	/* self protecting */
	refcount_t		b_refcnt;
};

static arc_buf_t *arc_eviction_list;
static kmutex_t arc_eviction_mtx;
static arc_buf_hdr_t arc_eviction_hdr;
static void arc_get_data_buf(arc_buf_t *buf);
static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);

#define	GHOST_STATE(state)	\
	((state) == arc_mru_ghost || (state) == arc_mfu_ghost)

/*
 * Private ARC flags.  These flags are private ARC only flags that will show up
 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
 * be passed in as arc_flags in things like arc_read.  However, these flags
 * should never be passed and should only be set by ARC code.  When adding new
 * public flags, make sure not to smash the private ones.
 */

#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */

#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)

/*
 * Hash table routines
 */

#define	HT_LOCK_PAD	128

struct ht_lock {
	kmutex_t	ht_lock;
#ifdef _KERNEL
	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
#endif
};

#define	BUF_LOCKS 256
typedef struct buf_hash_table {
	uint64_t ht_mask;
	arc_buf_hdr_t **ht_table;
	struct ht_lock ht_locks[BUF_LOCKS];
} buf_hash_table_t;

static buf_hash_table_t buf_hash_table;

#define	BUF_HASH_INDEX(spa, dva, birth) \
	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
#define	HDR_LOCK(buf) \
	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))

uint64_t zfs_crc64_table[256];

static uint64_t
buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
{
	uintptr_t spav = (uintptr_t)spa;
	uint8_t *vdva = (uint8_t *)dva;
	uint64_t crc = -1ULL;
	int i;

	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);

	for (i = 0; i < sizeof (dva_t); i++)
		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];

	crc ^= (spav>>8) ^ birth;

	return (crc);
}

#define	BUF_EMPTY(buf)						\
	((buf)->b_dva.dva_word[0] == 0 &&			\
	(buf)->b_dva.dva_word[1] == 0 &&			\
	(buf)->b_birth == 0)

#define	BUF_EQUAL(spa, dva, birth, buf)				\
	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
	((buf)->b_birth == birth) && ((buf)->b_spa == spa)

static arc_buf_hdr_t *
buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
{
	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
	arc_buf_hdr_t *buf;

	mutex_enter(hash_lock);
	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
	    buf = buf->b_hash_next) {
		if (BUF_EQUAL(spa, dva, birth, buf)) {
			*lockp = hash_lock;
			return (buf);
		}
	}
	mutex_exit(hash_lock);
	*lockp = NULL;
	return (NULL);
}

/*
 * Insert an entry into the hash table.  If there is already an element
 * equal to elem in the hash table, then the already existing element
 * will be returned and the new element will not be inserted.
 * Otherwise returns NULL.
 */
static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
{
	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
	arc_buf_hdr_t *fbuf;
	uint32_t i;

	ASSERT(!HDR_IN_HASH_TABLE(buf));
	*lockp = hash_lock;
	mutex_enter(hash_lock);
	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
	    fbuf = fbuf->b_hash_next, i++) {
		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
			return (fbuf);
	}

	buf->b_hash_next = buf_hash_table.ht_table[idx];
	buf_hash_table.ht_table[idx] = buf;
	buf->b_flags |= ARC_IN_HASH_TABLE;

	/* collect some hash table performance data */
	if (i > 0) {
		ARCSTAT_BUMP(arcstat_hash_collisions);
		if (i == 1)
			ARCSTAT_BUMP(arcstat_hash_chains);

		ARCSTAT_MAX(arcstat_hash_chain_max, i);
	}

	ARCSTAT_BUMP(arcstat_hash_elements);
	ARCSTAT_MAXSTAT(arcstat_hash_elements);

	return (NULL);
}

static void
buf_hash_remove(arc_buf_hdr_t *buf)
{
	arc_buf_hdr_t *fbuf, **bufp;
	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);

	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
	ASSERT(HDR_IN_HASH_TABLE(buf));

	bufp = &buf_hash_table.ht_table[idx];
	while ((fbuf = *bufp) != buf) {
		ASSERT(fbuf != NULL);
		bufp = &fbuf->b_hash_next;
	}
	*bufp = buf->b_hash_next;
	buf->b_hash_next = NULL;
	buf->b_flags &= ~ARC_IN_HASH_TABLE;

	/* collect some hash table performance data */
	ARCSTAT_BUMPDOWN(arcstat_hash_elements);

	if (buf_hash_table.ht_table[idx] &&
	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
}

/*
 * Global data structures and functions for the buf kmem cache.
 */
static kmem_cache_t *hdr_cache;
static kmem_cache_t *buf_cache;

static void
buf_fini(void)
{
	int i;

	kmem_free(buf_hash_table.ht_table,
	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
	for (i = 0; i < BUF_LOCKS; i++)
		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
	kmem_cache_destroy(hdr_cache);
	kmem_cache_destroy(buf_cache);
}

/*
 * Constructor callback - called when the cache is empty
 * and a new buf is requested.
 */
/* ARGSUSED */
static int
hdr_cons(void *vbuf, void *unused, int kmflag)
{
	arc_buf_hdr_t *buf = vbuf;

	bzero(buf, sizeof (arc_buf_hdr_t));
	refcount_create(&buf->b_refcnt);
	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
	return (0);
}

/*
 * Destructor callback - called when a cached buf is
 * no longer required.
 */
/* ARGSUSED */
static void
hdr_dest(void *vbuf, void *unused)
{
	arc_buf_hdr_t *buf = vbuf;

	refcount_destroy(&buf->b_refcnt);
	cv_destroy(&buf->b_cv);
}

/*
 * Reclaim callback -- invoked when memory is low.
 */
/* ARGSUSED */
static void
hdr_recl(void *unused)
{
	dprintf("hdr_recl called\n");
	/*
	 * umem calls the reclaim func when we destroy the buf cache,
	 * which is after we do arc_fini().
	 */
	if (!arc_dead)
		cv_signal(&arc_reclaim_thr_cv);
}

static void
buf_init(void)
{
	uint64_t *ct;
	uint64_t hsize = 1ULL << 12;
	int i, j;

	/*
	 * The hash table is big enough to fill all of physical memory
	 * with an average 64K block size.  The table will take up
	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
	 */
	while (hsize * 65536 < physmem * PAGESIZE)
		hsize <<= 1;
retry:
	buf_hash_table.ht_mask = hsize - 1;
	buf_hash_table.ht_table =
	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
	if (buf_hash_table.ht_table == NULL) {
		ASSERT(hsize > (1ULL << 8));
		hsize >>= 1;
		goto retry;
	}

	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
	    0, NULL, NULL, NULL, NULL, NULL, 0);

	for (i = 0; i < 256; i++)
		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);

	for (i = 0; i < BUF_LOCKS; i++) {
		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
		    NULL, MUTEX_DEFAULT, NULL);
	}
}

#define	ARC_MINTIME	(hz>>4) /* 62 ms */

static void
arc_cksum_verify(arc_buf_t *buf)
{
	zio_cksum_t zc;

	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
		return;

	mutex_enter(&buf->b_hdr->b_freeze_lock);
	if (buf->b_hdr->b_freeze_cksum == NULL ||
	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
		mutex_exit(&buf->b_hdr->b_freeze_lock);
		return;
	}
	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
		panic("buffer modified while frozen!");
	mutex_exit(&buf->b_hdr->b_freeze_lock);
}

static void
arc_cksum_compute(arc_buf_t *buf)
{
	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
		return;

	mutex_enter(&buf->b_hdr->b_freeze_lock);
	if (buf->b_hdr->b_freeze_cksum != NULL) {
		mutex_exit(&buf->b_hdr->b_freeze_lock);
		return;
	}
	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
	    buf->b_hdr->b_freeze_cksum);
	mutex_exit(&buf->b_hdr->b_freeze_lock);
}

void
arc_buf_thaw(arc_buf_t *buf)
{
	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
		return;

	if (buf->b_hdr->b_state != arc_anon)
		panic("modifying non-anon buffer!");
	if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
		panic("modifying buffer while i/o in progress!");
	arc_cksum_verify(buf);
	mutex_enter(&buf->b_hdr->b_freeze_lock);
	if (buf->b_hdr->b_freeze_cksum != NULL) {
		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
		buf->b_hdr->b_freeze_cksum = NULL;
	}
	mutex_exit(&buf->b_hdr->b_freeze_lock);
}

void
arc_buf_freeze(arc_buf_t *buf)
{
	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
		return;

	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
	    buf->b_hdr->b_state == arc_anon);
	arc_cksum_compute(buf);
}

static void
add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
{
	ASSERT(MUTEX_HELD(hash_lock));

	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
	    (ab->b_state != arc_anon)) {
		uint64_t delta = ab->b_size * ab->b_datacnt;

		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
		mutex_enter(&ab->b_state->arcs_mtx);
		ASSERT(list_link_active(&ab->b_arc_node));
		list_remove(&ab->b_state->arcs_list, ab);
		if (GHOST_STATE(ab->b_state)) {
			ASSERT3U(ab->b_datacnt, ==, 0);
			ASSERT3P(ab->b_buf, ==, NULL);
			delta = ab->b_size;
		}
		ASSERT(delta > 0);
		ASSERT3U(ab->b_state->arcs_lsize, >=, delta);
		atomic_add_64(&ab->b_state->arcs_lsize, -delta);
		mutex_exit(&ab->b_state->arcs_mtx);
		/* remove the prefetch flag is we get a reference */
		if (ab->b_flags & ARC_PREFETCH)
			ab->b_flags &= ~ARC_PREFETCH;
	}
}

static int
remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
{
	int cnt;
	arc_state_t *state = ab->b_state;

	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
	ASSERT(!GHOST_STATE(state));

	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
	    (state != arc_anon)) {
		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
		mutex_enter(&state->arcs_mtx);
		ASSERT(!list_link_active(&ab->b_arc_node));
		list_insert_head(&state->arcs_list, ab);
		ASSERT(ab->b_datacnt > 0);
		atomic_add_64(&state->arcs_lsize, ab->b_size * ab->b_datacnt);
		ASSERT3U(state->arcs_size, >=, state->arcs_lsize);
		mutex_exit(&state->arcs_mtx);
	}
	return (cnt);
}

/*
 * Move the supplied buffer to the indicated state.  The mutex
 * for the buffer must be held by the caller.
 */
static void
arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
{
	arc_state_t *old_state = ab->b_state;
	int64_t refcnt = refcount_count(&ab->b_refcnt);
	uint64_t from_delta, to_delta;

	ASSERT(MUTEX_HELD(hash_lock));
	ASSERT(new_state != old_state);
	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));

	from_delta = to_delta = ab->b_datacnt * ab->b_size;

	/*
	 * If this buffer is evictable, transfer it from the
	 * old state list to the new state list.
	 */
	if (refcnt == 0) {
		if (old_state != arc_anon) {
			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);

			if (use_mutex)
				mutex_enter(&old_state->arcs_mtx);

			ASSERT(list_link_active(&ab->b_arc_node));
			list_remove(&old_state->arcs_list, ab);

			/*
			 * If prefetching out of the ghost cache,
			 * we will have a non-null datacnt.
			 */
			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
				/* ghost elements have a ghost size */
				ASSERT(ab->b_buf == NULL);
				from_delta = ab->b_size;
			}
			ASSERT3U(old_state->arcs_lsize, >=, from_delta);
			atomic_add_64(&old_state->arcs_lsize, -from_delta);

			if (use_mutex)
				mutex_exit(&old_state->arcs_mtx);
		}
		if (new_state != arc_anon) {
			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);

			if (use_mutex)
				mutex_enter(&new_state->arcs_mtx);

			list_insert_head(&new_state->arcs_list, ab);

			/* ghost elements have a ghost size */
			if (GHOST_STATE(new_state)) {
				ASSERT(ab->b_datacnt == 0);
				ASSERT(ab->b_buf == NULL);
				to_delta = ab->b_size;
			}
			atomic_add_64(&new_state->arcs_lsize, to_delta);
			ASSERT3U(new_state->arcs_size + to_delta, >=,
			    new_state->arcs_lsize);

			if (use_mutex)
				mutex_exit(&new_state->arcs_mtx);
		}
	}

	ASSERT(!BUF_EMPTY(ab));
	if (new_state == arc_anon && old_state != arc_anon) {
		buf_hash_remove(ab);
	}

	/* adjust state sizes */
	if (to_delta)
		atomic_add_64(&new_state->arcs_size, to_delta);
	if (from_delta) {
		ASSERT3U(old_state->arcs_size, >=, from_delta);
		atomic_add_64(&old_state->arcs_size, -from_delta);
	}
	ab->b_state = new_state;
}

arc_buf_t *
arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
{
	arc_buf_hdr_t *hdr;
	arc_buf_t *buf;

	ASSERT3U(size, >, 0);
	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
	ASSERT(BUF_EMPTY(hdr));
	hdr->b_size = size;
	hdr->b_type = type;
	hdr->b_spa = spa;
	hdr->b_state = arc_anon;
	hdr->b_arc_access = 0;
	mutex_init(&hdr->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
	buf->b_hdr = hdr;
	buf->b_data = NULL;
	buf->b_efunc = NULL;
	buf->b_private = NULL;
	buf->b_next = NULL;
	hdr->b_buf = buf;
	arc_get_data_buf(buf);
	hdr->b_datacnt = 1;
	hdr->b_flags = 0;
	ASSERT(refcount_is_zero(&hdr->b_refcnt));
	(void) refcount_add(&hdr->b_refcnt, tag);

	return (buf);
}

static arc_buf_t *
arc_buf_clone(arc_buf_t *from)
{
	arc_buf_t *buf;
	arc_buf_hdr_t *hdr = from->b_hdr;
	uint64_t size = hdr->b_size;

	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
	buf->b_hdr = hdr;
	buf->b_data = NULL;
	buf->b_efunc = NULL;
	buf->b_private = NULL;
	buf->b_next = hdr->b_buf;
	hdr->b_buf = buf;
	arc_get_data_buf(buf);
	bcopy(from->b_data, buf->b_data, size);
	hdr->b_datacnt += 1;
	return (buf);
}

void
arc_buf_add_ref(arc_buf_t *buf, void* tag)
{
	arc_buf_hdr_t *hdr;
	kmutex_t *hash_lock;

	/*
	 * Check to see if this buffer is currently being evicted via
	 * arc_do_user_evicts().
	 */
	mutex_enter(&arc_eviction_mtx);
	hdr = buf->b_hdr;
	if (hdr == NULL) {
		mutex_exit(&arc_eviction_mtx);
		return;
	}
	hash_lock = HDR_LOCK(hdr);
	mutex_exit(&arc_eviction_mtx);

	mutex_enter(hash_lock);
	if (buf->b_data == NULL) {
		/*
		 * This buffer is evicted.
		 */
		mutex_exit(hash_lock);
		return;
	}

	ASSERT(buf->b_hdr == hdr);
	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
	add_reference(hdr, hash_lock, tag);
	arc_access(hdr, hash_lock);
	mutex_exit(hash_lock);
	ARCSTAT_BUMP(arcstat_hits);
	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
	    data, metadata, hits);
}

static void
arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
{
	arc_buf_t **bufp;

	/* free up data associated with the buf */
	if (buf->b_data) {
		arc_state_t *state = buf->b_hdr->b_state;
		uint64_t size = buf->b_hdr->b_size;
		arc_buf_contents_t type = buf->b_hdr->b_type;

		arc_cksum_verify(buf);
		if (!recycle) {
			if (type == ARC_BUFC_METADATA) {
				zio_buf_free(buf->b_data, size);
			} else {
				ASSERT(type == ARC_BUFC_DATA);
				zio_data_buf_free(buf->b_data, size);
			}
			atomic_add_64(&arc_size, -size);
		}
		if (list_link_active(&buf->b_hdr->b_arc_node)) {
			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
			ASSERT(state != arc_anon);
			ASSERT3U(state->arcs_lsize, >=, size);
			atomic_add_64(&state->arcs_lsize, -size);
		}
		ASSERT3U(state->arcs_size, >=, size);
		atomic_add_64(&state->arcs_size, -size);
		buf->b_data = NULL;
		ASSERT(buf->b_hdr->b_datacnt > 0);
		buf->b_hdr->b_datacnt -= 1;
	}

	/* only remove the buf if requested */
	if (!all)
		return;

	/* remove the buf from the hdr list */
	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
		continue;
	*bufp = buf->b_next;

	ASSERT(buf->b_efunc == NULL);

	/* clean up the buf */
	buf->b_hdr = NULL;
	kmem_cache_free(buf_cache, buf);
}

static void
arc_hdr_destroy(arc_buf_hdr_t *hdr)
{
	ASSERT(refcount_is_zero(&hdr->b_refcnt));
	ASSERT3P(hdr->b_state, ==, arc_anon);
	ASSERT(!HDR_IO_IN_PROGRESS(hdr));

	if (!BUF_EMPTY(hdr)) {
		ASSERT(!HDR_IN_HASH_TABLE(hdr));
		bzero(&hdr->b_dva, sizeof (dva_t));
		hdr->b_birth = 0;
		hdr->b_cksum0 = 0;
	}
	while (hdr->b_buf) {
		arc_buf_t *buf = hdr->b_buf;

		if (buf->b_efunc) {
			mutex_enter(&arc_eviction_mtx);
			ASSERT(buf->b_hdr != NULL);
			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
			hdr->b_buf = buf->b_next;
			buf->b_hdr = &arc_eviction_hdr;
			buf->b_next = arc_eviction_list;
			arc_eviction_list = buf;
			mutex_exit(&arc_eviction_mtx);
		} else {
			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
		}
	}
	if (hdr->b_freeze_cksum != NULL) {
		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
		hdr->b_freeze_cksum = NULL;
	}
	mutex_destroy(&hdr->b_freeze_lock);

	ASSERT(!list_link_active(&hdr->b_arc_node));
	ASSERT3P(hdr->b_hash_next, ==, NULL);
	ASSERT3P(hdr->b_acb, ==, NULL);
	kmem_cache_free(hdr_cache, hdr);
}

void
arc_buf_free(arc_buf_t *buf, void *tag)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;
	int hashed = hdr->b_state != arc_anon;

	ASSERT(buf->b_efunc == NULL);
	ASSERT(buf->b_data != NULL);

	if (hashed) {
		kmutex_t *hash_lock = HDR_LOCK(hdr);

		mutex_enter(hash_lock);
		(void) remove_reference(hdr, hash_lock, tag);
		if (hdr->b_datacnt > 1)
			arc_buf_destroy(buf, FALSE, TRUE);
		else
			hdr->b_flags |= ARC_BUF_AVAILABLE;
		mutex_exit(hash_lock);
	} else if (HDR_IO_IN_PROGRESS(hdr)) {
		int destroy_hdr;
		/*
		 * We are in the middle of an async write.  Don't destroy
		 * this buffer unless the write completes before we finish
		 * decrementing the reference count.
		 */
		mutex_enter(&arc_eviction_mtx);
		(void) remove_reference(hdr, NULL, tag);
		ASSERT(refcount_is_zero(&hdr->b_refcnt));
		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
		mutex_exit(&arc_eviction_mtx);
		if (destroy_hdr)
			arc_hdr_destroy(hdr);
	} else {
		if (remove_reference(hdr, NULL, tag) > 0) {
			ASSERT(HDR_IO_ERROR(hdr));
			arc_buf_destroy(buf, FALSE, TRUE);
		} else {
			arc_hdr_destroy(hdr);
		}
	}
}

int
arc_buf_remove_ref(arc_buf_t *buf, void* tag)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;
	kmutex_t *hash_lock = HDR_LOCK(hdr);
	int no_callback = (buf->b_efunc == NULL);

	if (hdr->b_state == arc_anon) {
		arc_buf_free(buf, tag);
		return (no_callback);
	}

	mutex_enter(hash_lock);
	ASSERT(hdr->b_state != arc_anon);
	ASSERT(buf->b_data != NULL);

	(void) remove_reference(hdr, hash_lock, tag);
	if (hdr->b_datacnt > 1) {
		if (no_callback)
			arc_buf_destroy(buf, FALSE, TRUE);
	} else if (no_callback) {
		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
		hdr->b_flags |= ARC_BUF_AVAILABLE;
	}
	ASSERT(no_callback || hdr->b_datacnt > 1 ||
	    refcount_is_zero(&hdr->b_refcnt));
	mutex_exit(hash_lock);
	return (no_callback);
}

int
arc_buf_size(arc_buf_t *buf)
{
	return (buf->b_hdr->b_size);
}

/*
 * Evict buffers from list until we've removed the specified number of
 * bytes.  Move the removed buffers to the appropriate evict state.
 * If the recycle flag is set, then attempt to "recycle" a buffer:
 * - look for a buffer to evict that is `bytes' long.
 * - return the data block from this buffer rather than freeing it.
 * This flag is used by callers that are trying to make space for a
 * new buffer in a full arc cache.
 */
static void *
arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle,
    arc_buf_contents_t type)
{
	arc_state_t *evicted_state;
	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
	arc_buf_hdr_t *ab, *ab_prev = NULL;
	kmutex_t *hash_lock;
	boolean_t have_lock;
	void *stolen = NULL;

	ASSERT(state == arc_mru || state == arc_mfu);

	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;

	mutex_enter(&state->arcs_mtx);
	mutex_enter(&evicted_state->arcs_mtx);

	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
		ab_prev = list_prev(&state->arcs_list, ab);
		/* prefetch buffers have a minimum lifespan */
		if (HDR_IO_IN_PROGRESS(ab) ||
		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
			skipped++;
			continue;
		}
		/* "lookahead" for better eviction candidate */
		if (recycle && ab->b_size != bytes &&
		    ab_prev && ab_prev->b_size == bytes)
			continue;
		hash_lock = HDR_LOCK(ab);
		have_lock = MUTEX_HELD(hash_lock);
		if (have_lock || mutex_tryenter(hash_lock)) {
			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
			ASSERT(ab->b_datacnt > 0);
			while (ab->b_buf) {
				arc_buf_t *buf = ab->b_buf;
				if (buf->b_data) {
					bytes_evicted += ab->b_size;
					if (recycle && ab->b_type == type &&
					    ab->b_size == bytes) {
						stolen = buf->b_data;
						recycle = FALSE;
					}
				}
				if (buf->b_efunc) {
					mutex_enter(&arc_eviction_mtx);
					arc_buf_destroy(buf,
					    buf->b_data == stolen, FALSE);
					ab->b_buf = buf->b_next;
					buf->b_hdr = &arc_eviction_hdr;
					buf->b_next = arc_eviction_list;
					arc_eviction_list = buf;
					mutex_exit(&arc_eviction_mtx);
				} else {
					arc_buf_destroy(buf,
					    buf->b_data == stolen, TRUE);
				}
			}
			ASSERT(ab->b_datacnt == 0);
			arc_change_state(evicted_state, ab, hash_lock);
			ASSERT(HDR_IN_HASH_TABLE(ab));
			ab->b_flags = ARC_IN_HASH_TABLE;
			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
			if (!have_lock)
				mutex_exit(hash_lock);
			if (bytes >= 0 && bytes_evicted >= bytes)
				break;
		} else {
			missed += 1;
		}
	}

	mutex_exit(&evicted_state->arcs_mtx);
	mutex_exit(&state->arcs_mtx);

	if (bytes_evicted < bytes)
		dprintf("only evicted %lld bytes from %x",
		    (longlong_t)bytes_evicted, state);

	if (skipped)
		ARCSTAT_INCR(arcstat_evict_skip, skipped);

	if (missed)
		ARCSTAT_INCR(arcstat_mutex_miss, missed);

	return (stolen);
}

/*
 * Remove buffers from list until we've removed the specified number of
 * bytes.  Destroy the buffers that are removed.
 */
static void
arc_evict_ghost(arc_state_t *state, int64_t bytes)
{
	arc_buf_hdr_t *ab, *ab_prev;
	kmutex_t *hash_lock;
	uint64_t bytes_deleted = 0;
	uint64_t bufs_skipped = 0;

	ASSERT(GHOST_STATE(state));
top:
	mutex_enter(&state->arcs_mtx);
	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
		ab_prev = list_prev(&state->arcs_list, ab);
		hash_lock = HDR_LOCK(ab);
		if (mutex_tryenter(hash_lock)) {
			ASSERT(!HDR_IO_IN_PROGRESS(ab));
			ASSERT(ab->b_buf == NULL);
			arc_change_state(arc_anon, ab, hash_lock);
			mutex_exit(hash_lock);
			ARCSTAT_BUMP(arcstat_deleted);
			bytes_deleted += ab->b_size;
			arc_hdr_destroy(ab);
			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
			if (bytes >= 0 && bytes_deleted >= bytes)
				break;
		} else {
			if (bytes < 0) {
				mutex_exit(&state->arcs_mtx);
				mutex_enter(hash_lock);
				mutex_exit(hash_lock);
				goto top;
			}
			bufs_skipped += 1;
		}
	}
	mutex_exit(&state->arcs_mtx);

	if (bufs_skipped) {
		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
		ASSERT(bytes >= 0);
	}

	if (bytes_deleted < bytes)
		dprintf("only deleted %lld bytes from %p",
		    (longlong_t)bytes_deleted, state);
}

static void
arc_adjust(void)
{
	int64_t top_sz, mru_over, arc_over, todelete;

	top_sz = arc_anon->arcs_size + arc_mru->arcs_size;

	if (top_sz > arc_p && arc_mru->arcs_lsize > 0) {
		int64_t toevict = MIN(arc_mru->arcs_lsize, top_sz - arc_p);
		(void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_UNDEF);
		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
	}

	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;

	if (mru_over > 0) {
		if (arc_mru_ghost->arcs_lsize > 0) {
			todelete = MIN(arc_mru_ghost->arcs_lsize, mru_over);
			arc_evict_ghost(arc_mru_ghost, todelete);
		}
	}

	if ((arc_over = arc_size - arc_c) > 0) {
		int64_t tbl_over;

		if (arc_mfu->arcs_lsize > 0) {
			int64_t toevict = MIN(arc_mfu->arcs_lsize, arc_over);
			(void) arc_evict(arc_mfu, toevict, FALSE,
			    ARC_BUFC_UNDEF);
		}

		tbl_over = arc_size + arc_mru_ghost->arcs_lsize +
		    arc_mfu_ghost->arcs_lsize - arc_c*2;

		if (tbl_over > 0 && arc_mfu_ghost->arcs_lsize > 0) {
			todelete = MIN(arc_mfu_ghost->arcs_lsize, tbl_over);
			arc_evict_ghost(arc_mfu_ghost, todelete);
		}
	}
}

static void
arc_do_user_evicts(void)
{
	mutex_enter(&arc_eviction_mtx);
	while (arc_eviction_list != NULL) {
		arc_buf_t *buf = arc_eviction_list;
		arc_eviction_list = buf->b_next;
		buf->b_hdr = NULL;
		mutex_exit(&arc_eviction_mtx);

		if (buf->b_efunc != NULL)
			VERIFY(buf->b_efunc(buf) == 0);

		buf->b_efunc = NULL;
		buf->b_private = NULL;
		kmem_cache_free(buf_cache, buf);
		mutex_enter(&arc_eviction_mtx);
	}
	mutex_exit(&arc_eviction_mtx);
}

/*
 * Flush all *evictable* data from the cache.
 * NOTE: this will not touch "active" (i.e. referenced) data.
 */
void
arc_flush(void)
{
	while (list_head(&arc_mru->arcs_list))
		(void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_UNDEF);
	while (list_head(&arc_mfu->arcs_list))
		(void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_UNDEF);

	arc_evict_ghost(arc_mru_ghost, -1);
	arc_evict_ghost(arc_mfu_ghost, -1);

	mutex_enter(&arc_reclaim_thr_lock);
	arc_do_user_evicts();
	mutex_exit(&arc_reclaim_thr_lock);
	ASSERT(arc_eviction_list == NULL);
}

int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */

void
arc_shrink(void)
{
	if (arc_c > arc_c_min) {
		uint64_t to_free;

#ifdef _KERNEL
		to_free = arc_c >> arc_shrink_shift;
#else
		to_free = arc_c >> arc_shrink_shift;
#endif
		if (arc_c > arc_c_min + to_free)
			atomic_add_64(&arc_c, -to_free);
		else
			arc_c = arc_c_min;

		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
		if (arc_c > arc_size)
			arc_c = MAX(arc_size, arc_c_min);
		if (arc_p > arc_c)
			arc_p = (arc_c >> 1);
		ASSERT(arc_c >= arc_c_min);
		ASSERT((int64_t)arc_p >= 0);
	}

	if (arc_size > arc_c)
		arc_adjust();
}

static int zfs_needfree = 0;

static int
arc_reclaim_needed(void)
{
#if 0
	uint64_t extra;
#endif

#ifdef _KERNEL

	if (zfs_needfree)
		return (1);

#if 0
	/*
	 * check to make sure that swapfs has enough space so that anon
	 * reservations can still succeeed. anon_resvmem() checks that the
	 * availrmem is greater than swapfs_minfree, and the number of reserved
	 * swap pages.  We also add a bit of extra here just to prevent
	 * circumstances from getting really dire.
	 */
	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
		return (1);

	/*
	 * If zio data pages are being allocated out of a separate heap segment,
	 * then check that the size of available vmem for this area remains
	 * above 1/4th free.  This needs to be done when the size of the
	 * non-default segment is smaller than physical memory, so we could
	 * conceivably run out of VA in that segment before running out of
	 * physical memory.
	 */
	if (zio_arena != NULL) {
		size_t arc_ziosize =
		    btop(vmem_size(zio_arena, VMEM_FREE | VMEM_ALLOC));

		if ((physmem > arc_ziosize) &&
		    (btop(vmem_size(zio_arena, VMEM_FREE)) < arc_ziosize >> 2))
			return (1);
	}

#if defined(__i386)
	/*
	 * If we're on an i386 platform, it's possible that we'll exhaust the
	 * kernel heap space before we ever run out of available physical
	 * memory.  Most checks of the size of the heap_area compare against
	 * tune.t_minarmem, which is the minimum available real memory that we
	 * can have in the system.  However, this is generally fixed at 25 pages
	 * which is so low that it's useless.  In this comparison, we seek to
	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
	 * free)
	 */
	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
		return (1);
#endif
#else
	if (kmem_map->size > (vm_kmem_size * 3) / 4)
		return (1);
#endif

#else
	if (spa_get_random(100) == 0)
		return (1);
#endif
	return (0);
}

static void
arc_kmem_reap_now(arc_reclaim_strategy_t strat)
{
#ifdef ZIO_USE_UMA
	size_t			i;
	kmem_cache_t		*prev_cache = NULL;
	kmem_cache_t		*prev_data_cache = NULL;
	extern kmem_cache_t	*zio_buf_cache[];
	extern kmem_cache_t	*zio_data_buf_cache[];
#endif

#ifdef _KERNEL
	/*
	 * First purge some DNLC entries, in case the DNLC is using
	 * up too much memory.
	 */
	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);

#if defined(__i386)
	/*
	 * Reclaim unused memory from all kmem caches.
	 */
	kmem_reap();
#endif
#endif

	/*
	 * An agressive reclamation will shrink the cache size as well as
	 * reap free buffers from the arc kmem caches.
	 */
	if (strat == ARC_RECLAIM_AGGR)
		arc_shrink();

#ifdef ZIO_USE_UMA
	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
		if (zio_buf_cache[i] != prev_cache) {
			prev_cache = zio_buf_cache[i];
			kmem_cache_reap_now(zio_buf_cache[i]);
		}
		if (zio_data_buf_cache[i] != prev_data_cache) {
			prev_data_cache = zio_data_buf_cache[i];
			kmem_cache_reap_now(zio_data_buf_cache[i]);
		}
	}
#endif
	kmem_cache_reap_now(buf_cache);
	kmem_cache_reap_now(hdr_cache);
}

static void
arc_reclaim_thread(void *dummy __unused)
{
	clock_t			growtime = 0;
	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
	callb_cpr_t		cpr;

	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);

	mutex_enter(&arc_reclaim_thr_lock);
	while (arc_thread_exit == 0) {
		if (arc_reclaim_needed()) {

			if (arc_no_grow) {
				if (last_reclaim == ARC_RECLAIM_CONS) {
					last_reclaim = ARC_RECLAIM_AGGR;
				} else {
					last_reclaim = ARC_RECLAIM_CONS;
				}
			} else {
				arc_no_grow = TRUE;
				last_reclaim = ARC_RECLAIM_AGGR;
				membar_producer();
			}

			/* reset the growth delay for every reclaim */
			growtime = lbolt + (arc_grow_retry * hz);
			ASSERT(growtime > 0);

			if (zfs_needfree && last_reclaim == ARC_RECLAIM_CONS) {
				/*
				 * If zfs_needfree is TRUE our vm_lowmem hook
				 * was called and in that case we must free some
				 * memory, so switch to aggressive mode.
				 */
				arc_no_grow = TRUE;
				last_reclaim = ARC_RECLAIM_AGGR;
			}
			arc_kmem_reap_now(last_reclaim);
		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
			arc_no_grow = FALSE;
		}

		if (zfs_needfree ||
		    (2 * arc_c < arc_size +
		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size))
			arc_adjust();

		if (arc_eviction_list != NULL)
			arc_do_user_evicts();

		if (arc_reclaim_needed()) {
			zfs_needfree = 0;
#ifdef _KERNEL
			wakeup(&zfs_needfree);
#endif
		}

		/* block until needed, or one second, whichever is shorter */
		CALLB_CPR_SAFE_BEGIN(&cpr);
		(void) cv_timedwait(&arc_reclaim_thr_cv,
		    &arc_reclaim_thr_lock, hz);
		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
	}

	arc_thread_exit = 0;
	cv_broadcast(&arc_reclaim_thr_cv);
	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
	thread_exit();
}

/*
 * Adapt arc info given the number of bytes we are trying to add and
 * the state that we are comming from.  This function is only called
 * when we are adding new content to the cache.
 */
static void
arc_adapt(int bytes, arc_state_t *state)
{
	int mult;

	ASSERT(bytes > 0);
	/*
	 * Adapt the target size of the MRU list:
	 *	- if we just hit in the MRU ghost list, then increase
	 *	  the target size of the MRU list.
	 *	- if we just hit in the MFU ghost list, then increase
	 *	  the target size of the MFU list by decreasing the
	 *	  target size of the MRU list.
	 */
	if (state == arc_mru_ghost) {
		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));

		arc_p = MIN(arc_c, arc_p + bytes * mult);
	} else if (state == arc_mfu_ghost) {
		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));

		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
	}
	ASSERT((int64_t)arc_p >= 0);

	if (arc_reclaim_needed()) {
		cv_signal(&arc_reclaim_thr_cv);
		return;
	}

	if (arc_no_grow)
		return;

	if (arc_c >= arc_c_max)
		return;

	/*
	 * If we're within (2 * maxblocksize) bytes of the target
	 * cache size, increment the target cache size
	 */
	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
		atomic_add_64(&arc_c, (int64_t)bytes);
		if (arc_c > arc_c_max)
			arc_c = arc_c_max;
		else if (state == arc_anon)
			atomic_add_64(&arc_p, (int64_t)bytes);
		if (arc_p > arc_c)
			arc_p = arc_c;
	}
	ASSERT((int64_t)arc_p >= 0);
}

/*
 * Check if the cache has reached its limits and eviction is required
 * prior to insert.
 */
static int
arc_evict_needed()
{
	if (arc_reclaim_needed())
		return (1);

	return (arc_size > arc_c);
}

/*
 * The buffer, supplied as the first argument, needs a data block.
 * So, if we are at cache max, determine which cache should be victimized.
 * We have the following cases:
 *
 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
 * In this situation if we're out of space, but the resident size of the MFU is
 * under the limit, victimize the MFU cache to satisfy this insertion request.
 *
 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
 * Here, we've used up all of the available space for the MRU, so we need to
 * evict from our own cache instead.  Evict from the set of resident MRU
 * entries.
 *
 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
 * c minus p represents the MFU space in the cache, since p is the size of the
 * cache that is dedicated to the MRU.  In this situation there's still space on
 * the MFU side, so the MRU side needs to be victimized.
 *
 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
 * MFU's resident set is consuming more space than it has been allotted.  In
 * this situation, we must victimize our own cache, the MFU, for this insertion.
 */
static void
arc_get_data_buf(arc_buf_t *buf)
{
	arc_state_t		*state = buf->b_hdr->b_state;
	uint64_t		size = buf->b_hdr->b_size;
	arc_buf_contents_t	type = buf->b_hdr->b_type;

	arc_adapt(size, state);

	/*
	 * We have not yet reached cache maximum size,
	 * just allocate a new buffer.
	 */
	if (!arc_evict_needed()) {
		if (type == ARC_BUFC_METADATA) {
			buf->b_data = zio_buf_alloc(size);
		} else {
			ASSERT(type == ARC_BUFC_DATA);
			buf->b_data = zio_data_buf_alloc(size);
		}
		atomic_add_64(&arc_size, size);
		goto out;
	}

	/*
	 * If we are prefetching from the mfu ghost list, this buffer
	 * will end up on the mru list; so steal space from there.
	 */
	if (state == arc_mfu_ghost)
		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
	else if (state == arc_mru_ghost)
		state = arc_mru;

	if (state == arc_mru || state == arc_anon) {
		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
		state = (arc_p > mru_used) ? arc_mfu : arc_mru;
	} else {
		/* MFU cases */
		uint64_t mfu_space = arc_c - arc_p;
		state =  (mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
	}
	if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) {
		if (type == ARC_BUFC_METADATA) {
			buf->b_data = zio_buf_alloc(size);
		} else {
			ASSERT(type == ARC_BUFC_DATA);
			buf->b_data = zio_data_buf_alloc(size);
		}
		atomic_add_64(&arc_size, size);
		ARCSTAT_BUMP(arcstat_recycle_miss);
	}
	ASSERT(buf->b_data != NULL);
out:
	/*
	 * Update the state size.  Note that ghost states have a
	 * "ghost size" and so don't need to be updated.
	 */
	if (!GHOST_STATE(buf->b_hdr->b_state)) {
		arc_buf_hdr_t *hdr = buf->b_hdr;

		atomic_add_64(&hdr->b_state->arcs_size, size);
		if (list_link_active(&hdr->b_arc_node)) {
			ASSERT(refcount_is_zero(&hdr->b_refcnt));
			atomic_add_64(&hdr->b_state->arcs_lsize, size);
		}
		/*
		 * If we are growing the cache, and we are adding anonymous
		 * data, and we have outgrown arc_p, update arc_p
		 */
		if (arc_size < arc_c && hdr->b_state == arc_anon &&
		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
			arc_p = MIN(arc_c, arc_p + size);
	}
}

/*
 * This routine is called whenever a buffer is accessed.
 * NOTE: the hash lock is dropped in this function.
 */
static void
arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
{
	ASSERT(MUTEX_HELD(hash_lock));

	if (buf->b_state == arc_anon) {
		/*
		 * This buffer is not in the cache, and does not
		 * appear in our "ghost" list.  Add the new buffer
		 * to the MRU state.
		 */

		ASSERT(buf->b_arc_access == 0);
		buf->b_arc_access = lbolt;
		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
		arc_change_state(arc_mru, buf, hash_lock);

	} else if (buf->b_state == arc_mru) {
		/*
		 * If this buffer is here because of a prefetch, then either:
		 * - clear the flag if this is a "referencing" read
		 *   (any subsequent access will bump this into the MFU state).
		 * or
		 * - move the buffer to the head of the list if this is
		 *   another prefetch (to make it less likely to be evicted).
		 */
		if ((buf->b_flags & ARC_PREFETCH) != 0) {
			if (refcount_count(&buf->b_refcnt) == 0) {
				ASSERT(list_link_active(&buf->b_arc_node));
				mutex_enter(&arc_mru->arcs_mtx);
				list_remove(&arc_mru->arcs_list, buf);
				list_insert_head(&arc_mru->arcs_list, buf);
				mutex_exit(&arc_mru->arcs_mtx);
			} else {
				buf->b_flags &= ~ARC_PREFETCH;
				ARCSTAT_BUMP(arcstat_mru_hits);
			}
			buf->b_arc_access = lbolt;
			return;
		}

		/*
		 * This buffer has been "accessed" only once so far,
		 * but it is still in the cache. Move it to the MFU
		 * state.
		 */
		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
			/*
			 * More than 125ms have passed since we
			 * instantiated this buffer.  Move it to the
			 * most frequently used state.
			 */
			buf->b_arc_access = lbolt;
			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
			arc_change_state(arc_mfu, buf, hash_lock);
		}
		ARCSTAT_BUMP(arcstat_mru_hits);
	} else if (buf->b_state == arc_mru_ghost) {
		arc_state_t	*new_state;
		/*
		 * This buffer has been "accessed" recently, but
		 * was evicted from the cache.  Move it to the
		 * MFU state.
		 */

		if (buf->b_flags & ARC_PREFETCH) {
			new_state = arc_mru;
			if (refcount_count(&buf->b_refcnt) > 0)
				buf->b_flags &= ~ARC_PREFETCH;
			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
		} else {
			new_state = arc_mfu;
			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
		}

		buf->b_arc_access = lbolt;
		arc_change_state(new_state, buf, hash_lock);

		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
	} else if (buf->b_state == arc_mfu) {
		/*
		 * This buffer has been accessed more than once and is
		 * still in the cache.  Keep it in the MFU state.
		 *
		 * NOTE: an add_reference() that occurred when we did
		 * the arc_read() will have kicked this off the list.
		 * If it was a prefetch, we will explicitly move it to
		 * the head of the list now.
		 */
		if ((buf->b_flags & ARC_PREFETCH) != 0) {
			ASSERT(refcount_count(&buf->b_refcnt) == 0);
			ASSERT(list_link_active(&buf->b_arc_node));
			mutex_enter(&arc_mfu->arcs_mtx);
			list_remove(&arc_mfu->arcs_list, buf);
			list_insert_head(&arc_mfu->arcs_list, buf);
			mutex_exit(&arc_mfu->arcs_mtx);
		}
		ARCSTAT_BUMP(arcstat_mfu_hits);
		buf->b_arc_access = lbolt;
	} else if (buf->b_state == arc_mfu_ghost) {
		arc_state_t	*new_state = arc_mfu;
		/*
		 * This buffer has been accessed more than once but has
		 * been evicted from the cache.  Move it back to the
		 * MFU state.
		 */

		if (buf->b_flags & ARC_PREFETCH) {
			/*
			 * This is a prefetch access...
			 * move this block back to the MRU state.
			 */
			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
			new_state = arc_mru;
		}

		buf->b_arc_access = lbolt;
		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
		arc_change_state(new_state, buf, hash_lock);

		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
	} else {
		ASSERT(!"invalid arc state");
	}
}

/* a generic arc_done_func_t which you can use */
/* ARGSUSED */
void
arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
{
	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
}

/* a generic arc_done_func_t which you can use */
void
arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
{
	arc_buf_t **bufp = arg;
	if (zio && zio->io_error) {
		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
		*bufp = NULL;
	} else {
		*bufp = buf;
	}
}

static void
arc_read_done(zio_t *zio)
{
	arc_buf_hdr_t	*hdr, *found;
	arc_buf_t	*buf;
	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
	kmutex_t	*hash_lock;
	arc_callback_t	*callback_list, *acb;
	int		freeable = FALSE;

	buf = zio->io_private;
	hdr = buf->b_hdr;

	/*
	 * The hdr was inserted into hash-table and removed from lists
	 * prior to starting I/O.  We should find this header, since
	 * it's in the hash table, and it should be legit since it's
	 * not possible to evict it during the I/O.  The only possible
	 * reason for it not to be found is if we were freed during the
	 * read.
	 */
	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
	    &hash_lock);

	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));

	/* byteswap if necessary */
	callback_list = hdr->b_acb;
	ASSERT(callback_list != NULL);
	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
		callback_list->acb_byteswap(buf->b_data, hdr->b_size);

	arc_cksum_compute(buf);

	/* create copies of the data buffer for the callers */
	abuf = buf;
	for (acb = callback_list; acb; acb = acb->acb_next) {
		if (acb->acb_done) {
			if (abuf == NULL)
				abuf = arc_buf_clone(buf);
			acb->acb_buf = abuf;
			abuf = NULL;
		}
	}
	hdr->b_acb = NULL;
	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
	ASSERT(!HDR_BUF_AVAILABLE(hdr));
	if (abuf == buf)
		hdr->b_flags |= ARC_BUF_AVAILABLE;

	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);

	if (zio->io_error != 0) {
		hdr->b_flags |= ARC_IO_ERROR;
		if (hdr->b_state != arc_anon)
			arc_change_state(arc_anon, hdr, hash_lock);
		if (HDR_IN_HASH_TABLE(hdr))
			buf_hash_remove(hdr);
		freeable = refcount_is_zero(&hdr->b_refcnt);
		/* convert checksum errors into IO errors */
		if (zio->io_error == ECKSUM)
			zio->io_error = EIO;
	}

	/*
	 * Broadcast before we drop the hash_lock to avoid the possibility
	 * that the hdr (and hence the cv) might be freed before we get to
	 * the cv_broadcast().
	 */
	cv_broadcast(&hdr->b_cv);

	if (hash_lock) {
		/*
		 * Only call arc_access on anonymous buffers.  This is because
		 * if we've issued an I/O for an evicted buffer, we've already
		 * called arc_access (to prevent any simultaneous readers from
		 * getting confused).
		 */
		if (zio->io_error == 0 && hdr->b_state == arc_anon)
			arc_access(hdr, hash_lock);
		mutex_exit(hash_lock);
	} else {
		/*
		 * This block was freed while we waited for the read to
		 * complete.  It has been removed from the hash table and
		 * moved to the anonymous state (so that it won't show up
		 * in the cache).
		 */
		ASSERT3P(hdr->b_state, ==, arc_anon);
		freeable = refcount_is_zero(&hdr->b_refcnt);
	}

	/* execute each callback and free its structure */
	while ((acb = callback_list) != NULL) {
		if (acb->acb_done)
			acb->acb_done(zio, acb->acb_buf, acb->acb_private);

		if (acb->acb_zio_dummy != NULL) {
			acb->acb_zio_dummy->io_error = zio->io_error;
			zio_nowait(acb->acb_zio_dummy);
		}

		callback_list = acb->acb_next;
		kmem_free(acb, sizeof (arc_callback_t));
	}

	if (freeable)
		arc_hdr_destroy(hdr);
}

/*
 * "Read" the block block at the specified DVA (in bp) via the
 * cache.  If the block is found in the cache, invoke the provided
 * callback immediately and return.  Note that the `zio' parameter
 * in the callback will be NULL in this case, since no IO was
 * required.  If the block is not in the cache pass the read request
 * on to the spa with a substitute callback function, so that the
 * requested block will be added to the cache.
 *
 * If a read request arrives for a block that has a read in-progress,
 * either wait for the in-progress read to complete (and return the
 * results); or, if this is a read with a "done" func, add a record
 * to the read to invoke the "done" func when the read completes,
 * and return; or just return.
 *
 * arc_read_done() will invoke all the requested "done" functions
 * for readers of this block.
 */
int
arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
    arc_done_func_t *done, void *private, int priority, int flags,
    uint32_t *arc_flags, zbookmark_t *zb)
{
	arc_buf_hdr_t *hdr;
	arc_buf_t *buf;
	kmutex_t *hash_lock;
	zio_t	*rzio;

top:
	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
	if (hdr && hdr->b_datacnt > 0) {

		*arc_flags |= ARC_CACHED;

		if (HDR_IO_IN_PROGRESS(hdr)) {

			if (*arc_flags & ARC_WAIT) {
				cv_wait(&hdr->b_cv, hash_lock);
				mutex_exit(hash_lock);
				goto top;
			}
			ASSERT(*arc_flags & ARC_NOWAIT);

			if (done) {
				arc_callback_t	*acb = NULL;

				acb = kmem_zalloc(sizeof (arc_callback_t),
				    KM_SLEEP);
				acb->acb_done = done;
				acb->acb_private = private;
				acb->acb_byteswap = swap;
				if (pio != NULL)
					acb->acb_zio_dummy = zio_null(pio,
					    spa, NULL, NULL, flags);

				ASSERT(acb->acb_done != NULL);
				acb->acb_next = hdr->b_acb;
				hdr->b_acb = acb;
				add_reference(hdr, hash_lock, private);
				mutex_exit(hash_lock);
				return (0);
			}
			mutex_exit(hash_lock);
			return (0);
		}

		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);

		if (done) {
			add_reference(hdr, hash_lock, private);
			/*
			 * If this block is already in use, create a new
			 * copy of the data so that we will be guaranteed
			 * that arc_release() will always succeed.
			 */
			buf = hdr->b_buf;
			ASSERT(buf);
			ASSERT(buf->b_data);
			if (HDR_BUF_AVAILABLE(hdr)) {
				ASSERT(buf->b_efunc == NULL);
				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
			} else {
				buf = arc_buf_clone(buf);
			}
		} else if (*arc_flags & ARC_PREFETCH &&
		    refcount_count(&hdr->b_refcnt) == 0) {
			hdr->b_flags |= ARC_PREFETCH;
		}
		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
		arc_access(hdr, hash_lock);
		mutex_exit(hash_lock);
		ARCSTAT_BUMP(arcstat_hits);
		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
		    data, metadata, hits);

		if (done)
			done(NULL, buf, private);
	} else {
		uint64_t size = BP_GET_LSIZE(bp);
		arc_callback_t	*acb;

		if (hdr == NULL) {
			/* this block is not in the cache */
			arc_buf_hdr_t	*exists;
			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
			buf = arc_buf_alloc(spa, size, private, type);
			hdr = buf->b_hdr;
			hdr->b_dva = *BP_IDENTITY(bp);
			hdr->b_birth = bp->blk_birth;
			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
			exists = buf_hash_insert(hdr, &hash_lock);
			if (exists) {
				/* somebody beat us to the hash insert */
				mutex_exit(hash_lock);
				bzero(&hdr->b_dva, sizeof (dva_t));
				hdr->b_birth = 0;
				hdr->b_cksum0 = 0;
				(void) arc_buf_remove_ref(buf, private);
				goto top; /* restart the IO request */
			}
			/* if this is a prefetch, we don't have a reference */
			if (*arc_flags & ARC_PREFETCH) {
				(void) remove_reference(hdr, hash_lock,
				    private);
				hdr->b_flags |= ARC_PREFETCH;
			}
			if (BP_GET_LEVEL(bp) > 0)
				hdr->b_flags |= ARC_INDIRECT;
		} else {
			/* this block is in the ghost cache */
			ASSERT(GHOST_STATE(hdr->b_state));
			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
			ASSERT(hdr->b_buf == NULL);

			/* if this is a prefetch, we don't have a reference */
			if (*arc_flags & ARC_PREFETCH)
				hdr->b_flags |= ARC_PREFETCH;
			else
				add_reference(hdr, hash_lock, private);
			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
			buf->b_hdr = hdr;
			buf->b_data = NULL;
			buf->b_efunc = NULL;
			buf->b_private = NULL;
			buf->b_next = NULL;
			hdr->b_buf = buf;
			arc_get_data_buf(buf);
			ASSERT(hdr->b_datacnt == 0);
			hdr->b_datacnt = 1;

		}

		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
		acb->acb_done = done;
		acb->acb_private = private;
		acb->acb_byteswap = swap;

		ASSERT(hdr->b_acb == NULL);
		hdr->b_acb = acb;
		hdr->b_flags |= ARC_IO_IN_PROGRESS;

		/*
		 * If the buffer has been evicted, migrate it to a present state
		 * before issuing the I/O.  Once we drop the hash-table lock,
		 * the header will be marked as I/O in progress and have an
		 * attached buffer.  At this point, anybody who finds this
		 * buffer ought to notice that it's legit but has a pending I/O.
		 */

		if (GHOST_STATE(hdr->b_state))
			arc_access(hdr, hash_lock);
		mutex_exit(hash_lock);

		ASSERT3U(hdr->b_size, ==, size);
		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
		    zbookmark_t *, zb);
		ARCSTAT_BUMP(arcstat_misses);
		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
		    data, metadata, misses);

		rzio = zio_read(pio, spa, bp, buf->b_data, size,
		    arc_read_done, buf, priority, flags, zb);

		if (*arc_flags & ARC_WAIT)
			return (zio_wait(rzio));

		ASSERT(*arc_flags & ARC_NOWAIT);
		zio_nowait(rzio);
	}
	return (0);
}

/*
 * arc_read() variant to support pool traversal.  If the block is already
 * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
 * The idea is that we don't want pool traversal filling up memory, but
 * if the ARC already has the data anyway, we shouldn't pay for the I/O.
 */
int
arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
{
	arc_buf_hdr_t *hdr;
	kmutex_t *hash_mtx;
	int rc = 0;

	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);

	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
		arc_buf_t *buf = hdr->b_buf;

		ASSERT(buf);
		while (buf->b_data == NULL) {
			buf = buf->b_next;
			ASSERT(buf);
		}
		bcopy(buf->b_data, data, hdr->b_size);
	} else {
		rc = ENOENT;
	}

	if (hash_mtx)
		mutex_exit(hash_mtx);

	return (rc);
}

void
arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
{
	ASSERT(buf->b_hdr != NULL);
	ASSERT(buf->b_hdr->b_state != arc_anon);
	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
	buf->b_efunc = func;
	buf->b_private = private;
}

/*
 * This is used by the DMU to let the ARC know that a buffer is
 * being evicted, so the ARC should clean up.  If this arc buf
 * is not yet in the evicted state, it will be put there.
 */
int
arc_buf_evict(arc_buf_t *buf)
{
	arc_buf_hdr_t *hdr;
	kmutex_t *hash_lock;
	arc_buf_t **bufp;

	mutex_enter(&arc_eviction_mtx);
	hdr = buf->b_hdr;
	if (hdr == NULL) {
		/*
		 * We are in arc_do_user_evicts().
		 */
		ASSERT(buf->b_data == NULL);
		mutex_exit(&arc_eviction_mtx);
		return (0);
	}
	hash_lock = HDR_LOCK(hdr);
	mutex_exit(&arc_eviction_mtx);

	mutex_enter(hash_lock);

	if (buf->b_data == NULL) {
		/*
		 * We are on the eviction list.
		 */
		mutex_exit(hash_lock);
		mutex_enter(&arc_eviction_mtx);
		if (buf->b_hdr == NULL) {
			/*
			 * We are already in arc_do_user_evicts().
			 */
			mutex_exit(&arc_eviction_mtx);
			return (0);
		} else {
			arc_buf_t copy = *buf; /* structure assignment */
			/*
			 * Process this buffer now
			 * but let arc_do_user_evicts() do the reaping.
			 */
			buf->b_efunc = NULL;
			mutex_exit(&arc_eviction_mtx);
			VERIFY(copy.b_efunc(&copy) == 0);
			return (1);
		}
	}

	ASSERT(buf->b_hdr == hdr);
	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);

	/*
	 * Pull this buffer off of the hdr
	 */
	bufp = &hdr->b_buf;
	while (*bufp != buf)
		bufp = &(*bufp)->b_next;
	*bufp = buf->b_next;

	ASSERT(buf->b_data != NULL);
	arc_buf_destroy(buf, FALSE, FALSE);

	if (hdr->b_datacnt == 0) {
		arc_state_t *old_state = hdr->b_state;
		arc_state_t *evicted_state;

		ASSERT(refcount_is_zero(&hdr->b_refcnt));

		evicted_state =
		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;

		mutex_enter(&old_state->arcs_mtx);
		mutex_enter(&evicted_state->arcs_mtx);

		arc_change_state(evicted_state, hdr, hash_lock);
		ASSERT(HDR_IN_HASH_TABLE(hdr));
		hdr->b_flags = ARC_IN_HASH_TABLE;

		mutex_exit(&evicted_state->arcs_mtx);
		mutex_exit(&old_state->arcs_mtx);
	}
	mutex_exit(hash_lock);

	VERIFY(buf->b_efunc(buf) == 0);
	buf->b_efunc = NULL;
	buf->b_private = NULL;
	buf->b_hdr = NULL;
	kmem_cache_free(buf_cache, buf);
	return (1);
}

/*
 * Release this buffer from the cache.  This must be done
 * after a read and prior to modifying the buffer contents.
 * If the buffer has more than one reference, we must make
 * make a new hdr for the buffer.
 */
void
arc_release(arc_buf_t *buf, void *tag)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;
	kmutex_t *hash_lock = HDR_LOCK(hdr);

	/* this buffer is not on any list */
	ASSERT(refcount_count(&hdr->b_refcnt) > 0);

	if (hdr->b_state == arc_anon) {
		/* this buffer is already released */
		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
		ASSERT(BUF_EMPTY(hdr));
		ASSERT(buf->b_efunc == NULL);
		arc_buf_thaw(buf);
		return;
	}

	mutex_enter(hash_lock);

	/*
	 * Do we have more than one buf?
	 */
	if (hdr->b_buf != buf || buf->b_next != NULL) {
		arc_buf_hdr_t *nhdr;
		arc_buf_t **bufp;
		uint64_t blksz = hdr->b_size;
		spa_t *spa = hdr->b_spa;
		arc_buf_contents_t type = hdr->b_type;

		ASSERT(hdr->b_datacnt > 1);
		/*
		 * Pull the data off of this buf and attach it to
		 * a new anonymous buf.
		 */
		(void) remove_reference(hdr, hash_lock, tag);
		bufp = &hdr->b_buf;
		while (*bufp != buf)
			bufp = &(*bufp)->b_next;
		*bufp = (*bufp)->b_next;
		buf->b_next = NULL;

		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
		if (refcount_is_zero(&hdr->b_refcnt)) {
			ASSERT3U(hdr->b_state->arcs_lsize, >=, hdr->b_size);
			atomic_add_64(&hdr->b_state->arcs_lsize, -hdr->b_size);
		}
		hdr->b_datacnt -= 1;
		arc_cksum_verify(buf);

		mutex_exit(hash_lock);

		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
		nhdr->b_size = blksz;
		nhdr->b_spa = spa;
		nhdr->b_type = type;
		nhdr->b_buf = buf;
		nhdr->b_state = arc_anon;
		nhdr->b_arc_access = 0;
		nhdr->b_flags = 0;
		nhdr->b_datacnt = 1;
		nhdr->b_freeze_cksum = NULL;
		(void) refcount_add(&nhdr->b_refcnt, tag);
		buf->b_hdr = nhdr;
		atomic_add_64(&arc_anon->arcs_size, blksz);

		hdr = nhdr;
	} else {
		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
		ASSERT(!list_link_active(&hdr->b_arc_node));
		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
		arc_change_state(arc_anon, hdr, hash_lock);
		hdr->b_arc_access = 0;
		mutex_exit(hash_lock);
		bzero(&hdr->b_dva, sizeof (dva_t));
		hdr->b_birth = 0;
		hdr->b_cksum0 = 0;
		arc_buf_thaw(buf);
	}
	buf->b_efunc = NULL;
	buf->b_private = NULL;
}

int
arc_released(arc_buf_t *buf)
{
	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
}

int
arc_has_callback(arc_buf_t *buf)
{
	return (buf->b_efunc != NULL);
}

#ifdef ZFS_DEBUG
int
arc_referenced(arc_buf_t *buf)
{
	return (refcount_count(&buf->b_hdr->b_refcnt));
}
#endif

static void
arc_write_ready(zio_t *zio)
{
	arc_write_callback_t *callback = zio->io_private;
	arc_buf_t *buf = callback->awcb_buf;

	if (callback->awcb_ready) {
		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
		callback->awcb_ready(zio, buf, callback->awcb_private);
	}
	arc_cksum_compute(buf);
}

static void
arc_write_done(zio_t *zio)
{
	arc_write_callback_t *callback = zio->io_private;
	arc_buf_t *buf = callback->awcb_buf;
	arc_buf_hdr_t *hdr = buf->b_hdr;

	hdr->b_acb = NULL;

	/* this buffer is on no lists and is not in the hash table */
	ASSERT3P(hdr->b_state, ==, arc_anon);

	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
	hdr->b_birth = zio->io_bp->blk_birth;
	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
	/*
	 * If the block to be written was all-zero, we may have
	 * compressed it away.  In this case no write was performed
	 * so there will be no dva/birth-date/checksum.  The buffer
	 * must therefor remain anonymous (and uncached).
	 */
	if (!BUF_EMPTY(hdr)) {
		arc_buf_hdr_t *exists;
		kmutex_t *hash_lock;

		arc_cksum_verify(buf);

		exists = buf_hash_insert(hdr, &hash_lock);
		if (exists) {
			/*
			 * This can only happen if we overwrite for
			 * sync-to-convergence, because we remove
			 * buffers from the hash table when we arc_free().
			 */
			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
			    BP_IDENTITY(zio->io_bp)));
			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
			    zio->io_bp->blk_birth);

			ASSERT(refcount_is_zero(&exists->b_refcnt));
			arc_change_state(arc_anon, exists, hash_lock);
			mutex_exit(hash_lock);
			arc_hdr_destroy(exists);
			exists = buf_hash_insert(hdr, &hash_lock);
			ASSERT3P(exists, ==, NULL);
		}
		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
		arc_access(hdr, hash_lock);
		mutex_exit(hash_lock);
	} else if (callback->awcb_done == NULL) {
		int destroy_hdr;
		/*
		 * This is an anonymous buffer with no user callback,
		 * destroy it if there are no active references.
		 */
		mutex_enter(&arc_eviction_mtx);
		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
		mutex_exit(&arc_eviction_mtx);
		if (destroy_hdr)
			arc_hdr_destroy(hdr);
	} else {
		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
	}

	if (callback->awcb_done) {
		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
		callback->awcb_done(zio, buf, callback->awcb_private);
	}

	kmem_free(callback, sizeof (arc_write_callback_t));
}

zio_t *
arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
    uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
    arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
    int flags, zbookmark_t *zb)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;
	arc_write_callback_t *callback;
	zio_t	*zio;

	/* this is a private buffer - no locking required */
	ASSERT3P(hdr->b_state, ==, arc_anon);
	ASSERT(BUF_EMPTY(hdr));
	ASSERT(!HDR_IO_ERROR(hdr));
	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
	ASSERT(hdr->b_acb == 0);
	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
	callback->awcb_ready = ready;
	callback->awcb_done = done;
	callback->awcb_private = private;
	callback->awcb_buf = buf;
	hdr->b_flags |= ARC_IO_IN_PROGRESS;
	zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
	    priority, flags, zb);

	return (zio);
}

int
arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
    zio_done_func_t *done, void *private, uint32_t arc_flags)
{
	arc_buf_hdr_t *ab;
	kmutex_t *hash_lock;
	zio_t	*zio;

	/*
	 * If this buffer is in the cache, release it, so it
	 * can be re-used.
	 */
	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
	if (ab != NULL) {
		/*
		 * The checksum of blocks to free is not always
		 * preserved (eg. on the deadlist).  However, if it is
		 * nonzero, it should match what we have in the cache.
		 */
		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
		if (ab->b_state != arc_anon)
			arc_change_state(arc_anon, ab, hash_lock);
		if (HDR_IO_IN_PROGRESS(ab)) {
			/*
			 * This should only happen when we prefetch.
			 */
			ASSERT(ab->b_flags & ARC_PREFETCH);
			ASSERT3U(ab->b_datacnt, ==, 1);
			ab->b_flags |= ARC_FREED_IN_READ;
			if (HDR_IN_HASH_TABLE(ab))
				buf_hash_remove(ab);
			ab->b_arc_access = 0;
			bzero(&ab->b_dva, sizeof (dva_t));
			ab->b_birth = 0;
			ab->b_cksum0 = 0;
			ab->b_buf->b_efunc = NULL;
			ab->b_buf->b_private = NULL;
			mutex_exit(hash_lock);
		} else if (refcount_is_zero(&ab->b_refcnt)) {
			mutex_exit(hash_lock);
			arc_hdr_destroy(ab);
			ARCSTAT_BUMP(arcstat_deleted);
		} else {
			/*
			 * We still have an active reference on this
			 * buffer.  This can happen, e.g., from
			 * dbuf_unoverride().
			 */
			ASSERT(!HDR_IN_HASH_TABLE(ab));
			ab->b_arc_access = 0;
			bzero(&ab->b_dva, sizeof (dva_t));
			ab->b_birth = 0;
			ab->b_cksum0 = 0;
			ab->b_buf->b_efunc = NULL;
			ab->b_buf->b_private = NULL;
			mutex_exit(hash_lock);
		}
	}

	zio = zio_free(pio, spa, txg, bp, done, private);

	if (arc_flags & ARC_WAIT)
		return (zio_wait(zio));

	ASSERT(arc_flags & ARC_NOWAIT);
	zio_nowait(zio);

	return (0);
}

void
arc_tempreserve_clear(uint64_t tempreserve)
{
	atomic_add_64(&arc_tempreserve, -tempreserve);
	ASSERT((int64_t)arc_tempreserve >= 0);
}

int
arc_tempreserve_space(uint64_t tempreserve)
{
#ifdef ZFS_DEBUG
	/*
	 * Once in a while, fail for no reason.  Everything should cope.
	 */
	if (spa_get_random(10000) == 0) {
		dprintf("forcing random failure\n");
		return (ERESTART);
	}
#endif
	if (tempreserve > arc_c/4 && !arc_no_grow)
		arc_c = MIN(arc_c_max, tempreserve * 4);
	if (tempreserve > arc_c)
		return (ENOMEM);

	/*
	 * Throttle writes when the amount of dirty data in the cache
	 * gets too large.  We try to keep the cache less than half full
	 * of dirty blocks so that our sync times don't grow too large.
	 * Note: if two requests come in concurrently, we might let them
	 * both succeed, when one of them should fail.  Not a huge deal.
	 *
	 * XXX The limit should be adjusted dynamically to keep the time
	 * to sync a dataset fixed (around 1-5 seconds?).
	 */

	if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
	    arc_tempreserve + arc_anon->arcs_size > arc_c / 4) {
		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
		    "tempreserve=%lluK arc_c=%lluK\n",
		    arc_tempreserve>>10, arc_anon->arcs_lsize>>10,
		    tempreserve>>10, arc_c>>10);
		return (ERESTART);
	}
	atomic_add_64(&arc_tempreserve, tempreserve);
	return (0);
}

#ifdef _KERNEL
static eventhandler_tag zfs_event_lowmem = NULL;

static void
zfs_lowmem(void *arg __unused, int howto __unused)
{

	zfs_needfree = 1;
	cv_signal(&arc_reclaim_thr_cv);
	while (zfs_needfree)
		tsleep(&zfs_needfree, 0, "zfs:lowmem", hz / 5);
}
#endif

void
arc_init(void)
{
	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);

	/* Convert seconds to clock ticks */
	arc_min_prefetch_lifespan = 1 * hz;

	/* Start out with 1/8 of all memory */
	arc_c = physmem * PAGESIZE / 8;
#if 0
#ifdef _KERNEL
	/*
	 * On architectures where the physical memory can be larger
	 * than the addressable space (intel in 32-bit mode), we may
	 * need to limit the cache to 1/8 of VM size.
	 */
	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
#endif
#endif
	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
	arc_c_min = MAX(arc_c / 4, 64<<20);
	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
	if (arc_c * 8 >= 1<<30)
		arc_c_max = (arc_c * 8) - (1<<30);
	else
		arc_c_max = arc_c_min;
	arc_c_max = MAX(arc_c * 6, arc_c_max);
#ifdef notyet
	/*
	 * Allow the tunables to override our calculations if they are
	 * reasonable (ie. over 64MB)
	 */
	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
		arc_c_max = zfs_arc_max;
	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
		arc_c_min = zfs_arc_min;
#endif
	arc_c = arc_c_max;
	arc_p = (arc_c >> 1);

	/* if kmem_flags are set, lets try to use less memory */
	if (kmem_debugging())
		arc_c = arc_c / 2;
	if (arc_c < arc_c_min)
		arc_c = arc_c_min;

	arc_anon = &ARC_anon;
	arc_mru = &ARC_mru;
	arc_mru_ghost = &ARC_mru_ghost;
	arc_mfu = &ARC_mfu;
	arc_mfu_ghost = &ARC_mfu_ghost;
	arc_size = 0;

	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);

	list_create(&arc_mru->arcs_list, sizeof (arc_buf_hdr_t),
	    offsetof(arc_buf_hdr_t, b_arc_node));
	list_create(&arc_mru_ghost->arcs_list, sizeof (arc_buf_hdr_t),
	    offsetof(arc_buf_hdr_t, b_arc_node));
	list_create(&arc_mfu->arcs_list, sizeof (arc_buf_hdr_t),
	    offsetof(arc_buf_hdr_t, b_arc_node));
	list_create(&arc_mfu_ghost->arcs_list, sizeof (arc_buf_hdr_t),
	    offsetof(arc_buf_hdr_t, b_arc_node));

	buf_init();

	arc_thread_exit = 0;
	arc_eviction_list = NULL;
	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));

	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);

	if (arc_ksp != NULL) {
		arc_ksp->ks_data = &arc_stats;
		kstat_install(arc_ksp);
	}

	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
	    TS_RUN, minclsyspri);

#ifdef _KERNEL
	zfs_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, zfs_lowmem, NULL,
	    EVENTHANDLER_PRI_FIRST);
#endif

	arc_dead = FALSE;
}

void
arc_fini(void)
{
	mutex_enter(&arc_reclaim_thr_lock);
	arc_thread_exit = 1;
	cv_signal(&arc_reclaim_thr_cv);
	while (arc_thread_exit != 0)
		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
	mutex_exit(&arc_reclaim_thr_lock);

	arc_flush();

	arc_dead = TRUE;

	if (arc_ksp != NULL) {
		kstat_delete(arc_ksp);
		arc_ksp = NULL;
	}

	mutex_destroy(&arc_eviction_mtx);
	mutex_destroy(&arc_reclaim_thr_lock);
	cv_destroy(&arc_reclaim_thr_cv);

	list_destroy(&arc_mru->arcs_list);
	list_destroy(&arc_mru_ghost->arcs_list);
	list_destroy(&arc_mfu->arcs_list);
	list_destroy(&arc_mfu_ghost->arcs_list);

	mutex_destroy(&arc_anon->arcs_mtx);
	mutex_destroy(&arc_mru->arcs_mtx);
	mutex_destroy(&arc_mru_ghost->arcs_mtx);
	mutex_destroy(&arc_mfu->arcs_mtx);
	mutex_destroy(&arc_mfu_ghost->arcs_mtx);

	buf_fini();

#ifdef _KERNEL
	if (zfs_event_lowmem != NULL)
		EVENTHANDLER_DEREGISTER(vm_lowmem, zfs_event_lowmem);
#endif
}
OpenPOWER on IntegriCloud