1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/* tree.h -- AVL trees (in the spirit of BSD's 'queue.h') -*- C -*- */
/* Copyright (c) 2005 Ian Piumarta
*
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the 'Software'), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, and/or sell copies of the
* Software, and to permit persons to whom the Software is furnished to do so,
* provided that the above copyright notice(s) and this permission notice appear
* in all copies of the Software and that both the above copyright notice(s) and
* this permission notice appear in supporting documentation.
*
* THE SOFTWARE IS PROVIDED 'AS IS'. USE ENTIRELY AT YOUR OWN RISK.
*/
/* This file defines an AVL balanced binary tree [Georgii M. Adelson-Velskii and
* Evgenii M. Landis, 'An algorithm for the organization of information',
* Doklady Akademii Nauk SSSR, 146:263-266, 1962 (Russian). Also in Myron
* J. Ricci (trans.), Soviet Math, 3:1259-1263, 1962 (English)].
*
* An AVL tree is headed by pointers to the root node and to a function defining
* the ordering relation between nodes. Each node contains an arbitrary payload
* plus three fields per tree entry: the depth of the subtree for which it forms
* the root and two pointers to child nodes (singly-linked for minimum space, at
* the expense of direct access to the parent node given a pointer to one of the
* children). The tree is rebalanced after every insertion or removal. The
* tree may be traversed in two directions: forward (in-order left-to-right) and
* reverse (in-order, right-to-left).
*
* Because of the recursive nature of many of the operations on trees it is
* necessary to define a number of helper functions for each type of tree node.
* The macro TREE_DEFINE(node_tag, entry_name) defines these functions with
* unique names according to the node_tag. This macro should be invoked,
* thereby defining the necessary functions, once per node tag in the program.
*
* For details on the use of these macros, see the tree(3) manual page.
*/
#ifndef __tree_h
#define __tree_h
#define TREE_DELTA_MAX 1
#define TREE_ENTRY(type) \
struct { \
struct type *avl_left; \
struct type *avl_right; \
int avl_height; \
}
#define TREE_HEAD(name, type) \
struct name { \
struct type *th_root; \
int (*th_cmp)(struct type *lhs, struct type *rhs); \
}
#define TREE_INITIALIZER(cmp) { 0, cmp }
#define TREE_DELTA(self, field) \
(( (((self)->field.avl_left) ? (self)->field.avl_left->field.avl_height : 0)) \
- (((self)->field.avl_right) ? (self)->field.avl_right->field.avl_height : 0))
/* Recursion prevents the following from being defined as macros. */
#define TREE_DEFINE(node, field) \
\
struct node *TREE_BALANCE_##node##_##field(struct node *); \
\
struct node *TREE_ROTL_##node##_##field(struct node *self) \
{ \
struct node *r= self->field.avl_right; \
self->field.avl_right= r->field.avl_left; \
r->field.avl_left= TREE_BALANCE_##node##_##field(self); \
return TREE_BALANCE_##node##_##field(r); \
} \
\
struct node *TREE_ROTR_##node##_##field(struct node *self) \
{ \
struct node *l= self->field.avl_left; \
self->field.avl_left= l->field.avl_right; \
l->field.avl_right= TREE_BALANCE_##node##_##field(self); \
return TREE_BALANCE_##node##_##field(l); \
} \
\
struct node *TREE_BALANCE_##node##_##field(struct node *self) \
{ \
int delta= TREE_DELTA(self, field); \
\
if (delta < -TREE_DELTA_MAX) \
{ \
if (TREE_DELTA(self->field.avl_right, field) > 0) \
self->field.avl_right= TREE_ROTR_##node##_##field(self->field.avl_right); \
return TREE_ROTL_##node##_##field(self); \
} \
else if (delta > TREE_DELTA_MAX) \
{ \
if (TREE_DELTA(self->field.avl_left, field) < 0) \
self->field.avl_left= TREE_ROTL_##node##_##field(self->field.avl_left); \
return TREE_ROTR_##node##_##field(self); \
} \
self->field.avl_height= 0; \
if (self->field.avl_left && (self->field.avl_left->field.avl_height > self->field.avl_height)) \
self->field.avl_height= self->field.avl_left->field.avl_height; \
if (self->field.avl_right && (self->field.avl_right->field.avl_height > self->field.avl_height)) \
self->field.avl_height= self->field.avl_right->field.avl_height; \
self->field.avl_height += 1; \
return self; \
} \
\
struct node *TREE_INSERT_##node##_##field \
(struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \
{ \
if (!self) \
return elm; \
if (compare(elm, self) < 0) \
self->field.avl_left= TREE_INSERT_##node##_##field(self->field.avl_left, elm, compare); \
else \
self->field.avl_right= TREE_INSERT_##node##_##field(self->field.avl_right, elm, compare); \
return TREE_BALANCE_##node##_##field(self); \
} \
\
struct node *TREE_FIND_##node##_##field \
(struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \
{ \
if (!self) \
return 0; \
if (compare(elm, self) == 0) \
return self; \
if (compare(elm, self) < 0) \
return TREE_FIND_##node##_##field(self->field.avl_left, elm, compare); \
else \
return TREE_FIND_##node##_##field(self->field.avl_right, elm, compare); \
} \
\
struct node *TREE_MOVE_RIGHT(struct node *self, struct node *rhs) \
{ \
if (!self) \
return rhs; \
self->field.avl_right= TREE_MOVE_RIGHT(self->field.avl_right, rhs); \
return TREE_BALANCE_##node##_##field(self); \
} \
\
struct node *TREE_REMOVE_##node##_##field \
(struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \
{ \
if (!self) return 0; \
\
if (compare(elm, self) == 0) \
{ \
struct node *tmp= TREE_MOVE_RIGHT(self->field.avl_left, self->field.avl_right); \
self->field.avl_left= 0; \
self->field.avl_right= 0; \
return tmp; \
} \
if (compare(elm, self) < 0) \
self->field.avl_left= TREE_REMOVE_##node##_##field(self->field.avl_left, elm, compare); \
else \
self->field.avl_right= TREE_REMOVE_##node##_##field(self->field.avl_right, elm, compare); \
return TREE_BALANCE_##node##_##field(self); \
} \
\
void TREE_FORWARD_APPLY_ALL_##node##_##field \
(struct node *self, void (*function)(struct node *node, void *data), void *data) \
{ \
if (self) \
{ \
TREE_FORWARD_APPLY_ALL_##node##_##field(self->field.avl_left, function, data); \
function(self, data); \
TREE_FORWARD_APPLY_ALL_##node##_##field(self->field.avl_right, function, data); \
} \
} \
\
void TREE_REVERSE_APPLY_ALL_##node##_##field \
(struct node *self, void (*function)(struct node *node, void *data), void *data) \
{ \
if (self) \
{ \
TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_right, function, data); \
function(self, data); \
TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_left, function, data); \
} \
}
#define TREE_INSERT(head, node, field, elm) \
((head)->th_root= TREE_INSERT_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
#define TREE_FIND(head, node, field, elm) \
(TREE_FIND_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
#define TREE_REMOVE(head, node, field, elm) \
((head)->th_root= TREE_REMOVE_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
#define TREE_DEPTH(head, field) \
((head)->th_root->field.avl_height)
#define TREE_FORWARD_APPLY(head, node, field, function, data) \
TREE_FORWARD_APPLY_ALL_##node##_##field((head)->th_root, function, data)
#define TREE_REVERSE_APPLY(head, node, field, function, data) \
TREE_REVERSE_APPLY_ALL_##node##_##field((head)->th_root, function, data)
#define TREE_INIT(head, cmp) do { \
(head)->th_root= 0; \
(head)->th_cmp= (cmp); \
} while (0)
#endif /* __tree_h */
|