1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
.\" $NetBSD: ctxsw.9,v 1.2 1996/12/02 00:11:31 tls Exp $
.\"
.\" Copyright (c) 1996 The NetBSD Foundation, Inc.
.\" All rights reserved.
.\"
.\" This code is derived from software contributed to The NetBSD Foundation
.\" by Paul Kranenburg.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. All advertising materials mentioning features or use of this software
.\" must display the following acknowledgement:
.\" This product includes software developed by the NetBSD
.\" Foundation, Inc. and its contributors.
.\" 4. Neither the name of The NetBSD Foundation nor the names of its
.\" contributors may be used to endorse or promote products derived
.\" from this software without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
.\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
.\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
.\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
.\" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd November 24, 1996
.Dt MI_SWITCH 9
.Os
.Sh NAME
.Nm mi_switch ,
.Nm cpu_switch ,
.Nm cpu_throw
.Nd switch to another process context
.Sh SYNOPSIS
.Fd #include <sys/param.h>
.Fd #include <sys/proc.h>
.Ft void
.Fn mi_switch "void"
.Ft void
.Fn cpu_switch "void"
.Ft void
.Fn cpu_throw "void"
.Sh DESCRIPTION
The
.Fn mi_switch
function implements the machine independent prelude to a process context
switch.
It is called from only a few distinguished places in the kernel
code as a result of the principle of non-preemtable kernel mode execution.
The three major uses of
.Nm
can be enumerated as follows:
.Bl -enum -offset indent
.It
from within
.Xr sleep 9
and
.Xr tsleep 9
when the current process
voluntarily relinquishes the CPU to wait for some resource to become
available.
.It
after handling a trap
(e.g. a system call, device interrupt)
when the kernel prepares a return to user-mode execution.
This case is
typically handled by machine dependent trap-handling code after detection
of a change in the signal disposition of the current process, or when a
higher priority process might be available to run.
The latter event is
communicated by the machine independent scheduling routines by calling
the machine defined
.Fn need_resched .
.It
in the signal handling code
(see
.Xr issignal 9 )
if a signal is delivered that causes a process to stop.
.El
.Pp
.Fn mi_switch
records the amount of time the current process has been running in the
process structure and checks this value against the CPU time limits
allocated to the process
(see
.Xr getrlimit 2 ) .
Exceeding the soft limit results in a
.Dv SIGXCPU
signal to be posted to the process, while exceeding the hard limit will
cause a
.Dv SIGKILL .
After these administrative tasks are done,
.Fn mi_switch
hands over control to the machine dependent routine
.Fn cpu_switch ,
which will perform the actual process context switch.
.Pp
.Fn cpu_switch
first saves the context of the current process.
Next, it calls
.Fn chooseproc
to determine which process to run next.
Finally, it reads in the saved context of the new process and starts to
execute the new process.
.Pp
.Fn cpu_throw
is similar to
.Fn cpu_switch
except that it does not save the context of the old process.
This function is useful when the kernel does not have an old process
context to save, such as when CPUs other than the boot CPU perform their
first task switch, or when the kernel does not care about the state of the
old process, such as in
.Fn cpu_exit
when the kernel terminates the current process and switches into a new
process.
.Pp
To protect the
.Xr runqueue 9 ,
all of these functions must be called with the
.Va sched_lock
mutex held.
.Sh SEE ALSO
.Xr issignal 9 ,
.Xr mutex 9 ,
.Xr runqueue 9 ,
.Xr tsleep 9 ,
.Xr wakeup 9
|