summaryrefslogtreecommitdiffstats
path: root/share/man/man4/hwpmc.4
blob: b0c393049cc06a874b1085b9f0c4993e7ffb2462 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
.\" Copyright (c) 2003-2008 Joseph Koshy
.\" Copyright (c) 2007 The FreeBSD Foundation
.\" All rights reserved.
.\"
.\" Portions of this software were developed by A. Joseph Koshy under
.\" sponsorship from the FreeBSD Foundation and Google, Inc.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" $FreeBSD$
.\"
.Dd November 2, 2012
.Dt HWPMC 4
.Os
.Sh NAME
.Nm hwpmc
.Nd "Hardware Performance Monitoring Counter support"
.Sh SYNOPSIS
.Cd "options HWPMC_HOOKS"
.Cd "device hwpmc"
.Pp
Additionally, for i386 systems:
.Cd "device apic"
.Sh DESCRIPTION
The
.Nm
driver virtualizes the hardware performance monitoring facilities in
modern CPUs and provides support for using these facilities from
user level processes.
.Pp
The driver supports multi-processor systems.
.Pp
PMCs are allocated using the
.Dv PMC_OP_PMCALLOCATE
request.
A successful
.Dv PMC_OP_PMCALLOCATE
request will return a handle to the requesting process.
Subsequent operations on the allocated PMC use this handle to denote
the specific PMC.
A process that has successfully allocated a PMC is termed an
.Dq "owner process" .
.Pp
PMCs may be allocated with process or system scope.
.Bl -tag -width ".Em Process-scope"
.It Em "Process-scope"
The PMC is active only when a thread belonging
to a process it is attached to is scheduled on a CPU.
.It Em "System-scope"
The PMC operates independently of processes and
measures hardware events for the system as a whole.
.El
.Pp
PMCs may be allocated for counting or for sampling:
.Bl -tag -width ".Em Counting"
.It Em Counting
In counting modes, the PMCs count hardware events.
These counts are retrievable using the
.Dv PMC_OP_PMCREAD
system call on all architectures.
Some architectures offer faster methods of reading these counts.
.It Em Sampling
In sampling modes, the PMCs are configured to sample the CPU
instruction pointer (and optionally to capture the call chain leading
up to the sampled instruction pointer) after a configurable number of
hardware events have been observed.
Instruction pointer samples and call chain records are usually
directed to a log file for subsequent analysis.
.El
.Pp
Scope and operational mode are orthogonal; a PMC may thus be
configured to operate in one of the following four modes:
.Bl -tag -width indent
.It Process-scope, counting
These PMCs count hardware events whenever a thread in their attached process is
scheduled on a CPU.
These PMCs normally count from zero, but the initial count may be
set using the
.Dv PMC_OP_SETCOUNT
operation.
Applications can read the value of the PMC anytime using the
.Dv PMC_OP_PMCRW
operation.
.It Process-scope, sampling
These PMCs sample the target processes instruction pointer after they
have seen the configured number of hardware events.
The PMCs only count events when a thread belonging to their attached
process is active.
The desired frequency of sampling is set using the
.Dv PMC_OP_SETCOUNT
operation prior to starting the PMC.
Log files are configured using the
.Dv PMC_OP_CONFIGURELOG
operation.
.It System-scope, counting
These PMCs count hardware events seen by them independent of the
processes that are executing.
The current count on these PMCs can be read using the
.Dv PMC_OP_PMCRW
request.
These PMCs normally count from zero, but the initial count may be
set using the
.Dv PMC_OP_SETCOUNT
operation.
.It System-scope, sampling
These PMCs will periodically sample the instruction pointer of the CPU
they are allocated on, and will write the sample to a log for further
processing.
The desired frequency of sampling is set using the
.Dv PMC_OP_SETCOUNT
operation prior to starting the PMC.
Log files are configured using the
.Dv PMC_OP_CONFIGURELOG
operation.
.Pp
System-wide statistical sampling can only be enabled by a process with
super-user privileges.
.El
.Pp
Processes are allowed to allocate as many PMCs as the hardware and
current operating conditions permit.
Processes may mix allocations of system-wide and process-private
PMCs.
Multiple processes may be using PMCs simultaneously.
.Pp
Allocated PMCs are started using the
.Dv PMC_OP_PMCSTART
operation, and stopped using the
.Dv PMC_OP_PMCSTOP
operation.
Stopping and starting a PMC is permitted at any time the owner process
has a valid handle to the PMC.
.Pp
Process-private PMCs need to be attached to a target process before
they can be used.
Attaching a process to a PMC is done using the
.Dv PMC_OP_PMCATTACH
operation.
An already attached PMC may be detached from its target process
using the converse
.Dv PMC_OP_PMCDETACH
operation.
Issuing a
.Dv PMC_OP_PMCSTART
operation on an as yet unattached PMC will cause it to be attached
to its owner process.
The following rules determine whether a given process may attach
a PMC to another target process:
.Bl -bullet -compact
.It
A non-jailed process with super-user privileges is allowed to attach
to any other process in the system.
.It
Other processes are only allowed to attach to targets that they would
be able to attach to for debugging (as determined by
.Xr p_candebug 9 ) .
.El
.Pp
PMCs are released using
.Dv PMC_OP_PMCRELEASE .
After a successful
.Dv PMC_OP_PMCRELEASE
operation the handle to the PMC will become invalid.
.Ss Modifier Flags
The
.Dv PMC_OP_PMCALLOCATE
operation supports the following flags that modify the behavior
of an allocated PMC:
.Bl -tag -width indent
.It Dv PMC_F_CALLCHAIN
This modifier informs sampling PMCs to record a callchain when
capturing a sample.
The maximum depth to which call chains are recorded is specified
by the
.Va "kern.hwpmc.callchaindepth"
kernel tunable.
.It Dv PMC_F_DESCENDANTS
This modifier is valid only for a PMC being allocated in process-private
mode.
It signifies that the PMC will track hardware events for its
target process and the target's current and future descendants.
.It Dv PMC_F_KGMON
This modifier is valid only for a PMC being allocated in system-wide
sampling mode.
It signifies that the PMC's sampling interrupt is to be used to drive
kernel profiling via
.Xr kgmon 8 .
This functionality is currently unimplemented.
.It Dv PMC_F_LOG_PROCCSW
This modifier is valid only for a PMC being allocated in process-private
mode.
When this modifier is present, at every context switch,
.Nm
will log a record containing the number of hardware events
seen by the target process when it was scheduled on the CPU.
.It Dv PMC_F_LOG_PROCEXIT
This modifier is valid only for a PMC being allocated in process-private
mode.
With this modifier present,
.Nm
will maintain per-process counts for each target process attached to
a PMC.
At process exit time, a record containing the target process' PID and
the accumulated per-process count for that process will be written to the
configured log file.
.El
.Pp
Modifiers
.Dv PMC_F_LOG_PROCEXIT
and
.Dv PMC_F_LOG_PROCCSW
may be used in combination with modifier
.Dv PMC_F_DESCENDANTS
to track the behavior of complex pipelines of processes.
PMCs with modifiers
.Dv PMC_F_LOG_PROCEXIT
and
.Dv PMC_F_LOG_PROCCSW
cannot be started until their owner process has configured a log file.
.Ss Signals
The
.Nm
driver may deliver signals to processes that have allocated PMCs:
.Bl -tag -width ".Dv SIGBUS"
.It Dv SIGIO
A
.Dv PMC_OP_PMCRW
operation was attempted on a process-private PMC that does not have
attached target processes.
.It Dv SIGBUS
The
.Nm
driver is being unloaded from the kernel.
.El
.Ss PMC ROW DISPOSITIONS
A PMC row is defined as the set of PMC resources at the same hardware
address in the CPUs in a system.
Since process scope PMCs need to move between CPUs following their
target threads, allocation of a process scope PMC reserves all PMCs in
a PMC row for use only with process scope PMCs.
Accordingly a PMC row will be in one of the following dispositions:
.Bl -tag -width ".Dv PMC_DISP_STANDALONE" -compact
.It Dv PMC_DISP_FREE
Hardware counters in this row are free and may be use to satisfy
either of system scope or process scope allocation requests.
.It Dv PMC_DISP_THREAD
Hardware counters in this row are in use by process scope PMCs
and are only available for process scope allocation requests.
.It Dv PMC_DISP_STANDALONE
Some hardware counters in this row have been administratively
disabled or are in use by system scope PMCs.
Non-disabled hardware counters in such a row may be used
for satisfying system scope allocation requests.
No process scope PMCs will use hardware counters in this row.
.El
.Sh PROGRAMMING API
The recommended way for application programs to use the facilities of
the
.Nm
driver is using the API provided by the
.Xr pmc 3
library.
.Pp
The
.Nm
driver operates using a system call number that is dynamically
allotted to it when it is loaded into the kernel.
.Pp
The
.Nm
driver supports the following operations:
.Bl -tag -width indent
.It Dv PMC_OP_CONFIGURELOG
Configure a log file for PMCs that require a log file.
The
.Nm
driver will write log data to this file asynchronously.
If it encounters an error, logging will be stopped and the error code
encountered will be saved for subsequent retrieval by a
.Dv PMC_OP_FLUSHLOG
request.
.It Dv PMC_OP_FLUSHLOG
Transfer buffered log data inside
.Nm
to a configured output file.
This operation returns to the caller after the write operation
has returned.
The returned error code reflects any pending error state inside
.Nm .
.It Dv PMC_OP_GETCPUINFO
Retrieve information about the highest possible CPU number for the system,
and the number of hardware performance monitoring counters available per CPU.
.It Dv PMC_OP_GETDRIVERSTATS
Retrieve module statistics (for analyzing the behavior of
.Nm
itself).
.It Dv PMC_OP_GETMODULEVERSION
Retrieve the version number of API.
.It Dv PMC_OP_GETPMCINFO
Retrieve information about the current state of the PMCs on a
given CPU.
.It Dv PMC_OP_PMCADMIN
Set the administrative state (i.e., whether enabled or disabled) for
the hardware PMCs managed by the
.Nm
driver.
The invoking process needs to possess the
.Dv PRIV_PMC_MANAGE
privilege.
.It Dv PMC_OP_PMCALLOCATE
Allocate and configure a PMC.
On successful allocation, a handle to the PMC (a 32 bit value)
is returned.
.It Dv PMC_OP_PMCATTACH
Attach a process mode PMC to a target process.
The PMC will be active whenever a thread in the target process is
scheduled on a CPU.
.Pp
If the
.Dv PMC_F_DESCENDANTS
flag had been specified at PMC allocation time, then the PMC is
attached to all current and future descendants of the target process.
.It Dv PMC_OP_PMCDETACH
Detach a PMC from its target process.
.It Dv PMC_OP_PMCRELEASE
Release a PMC.
.It Dv PMC_OP_PMCRW
Read and write a PMC.
This operation is valid only for PMCs configured in counting modes.
.It Dv PMC_OP_SETCOUNT
Set the initial count (for counting mode PMCs) or the desired sampling
rate (for sampling mode PMCs).
.It Dv PMC_OP_PMCSTART
Start a PMC.
.It Dv PMC_OP_PMCSTOP
Stop a PMC.
.It Dv PMC_OP_WRITELOG
Insert a timestamped user record into the log file.
.El
.Ss i386 Specific API
Some i386 family CPUs support the RDPMC instruction which allows a
user process to read a PMC value without needing to invoke a
.Dv PMC_OP_PMCRW
operation.
On such CPUs, the machine address associated with an allocated PMC is
retrievable using the
.Dv PMC_OP_PMCX86GETMSR
system call.
.Bl -tag -width indent
.It Dv PMC_OP_PMCX86GETMSR
Retrieve the MSR (machine specific register) number associated with
the given PMC handle.
.Pp
The PMC needs to be in process-private mode and allocated without the
.Dv PMC_F_DESCENDANTS
modifier flag, and should be attached only to its owner process at the
time of the call.
.El
.Ss amd64 Specific API
AMD64 CPUs support the RDPMC instruction which allows a
user process to read a PMC value without needing to invoke a
.Dv PMC_OP_PMCRW
operation.
The machine address associated with an allocated PMC is
retrievable using the
.Dv PMC_OP_PMCX86GETMSR
system call.
.Bl -tag -width indent
.It Dv PMC_OP_PMCX86GETMSR
Retrieve the MSR (machine specific register) number associated with
the given PMC handle.
.Pp
The PMC needs to be in process-private mode and allocated without the
.Dv PMC_F_DESCENDANTS
modifier flag, and should be attached only to its owner process at the
time of the call.
.El
.Sh SYSCTL VARIABLES AND LOADER TUNABLES
The behavior of
.Nm
is influenced by the following
.Xr sysctl 8
and
.Xr loader 8
tunables:
.Bl -tag -width indent
.It Va kern.hwpmc.callchaindepth Pq integer, read-only
The maximum number of call chain records to capture per sample.
The default is 8.
.It Va kern.hwpmc.debugflags Pq string, read-write
(Only available if the
.Nm
driver was compiled with
.Fl DDEBUG . )
Control the verbosity of debug messages from the
.Nm
driver.
.It Va kern.hwpmc.hashsize Pq integer, read-only
The number of rows in the hash tables used to keep track of owner and
target processes.
The default is 16.
.It Va kern.hwpmc.logbuffersize Pq integer, read-only
The size in kilobytes of each log buffer used by
.Nm Ns 's
logging function.
The default buffer size is 4KB.
.It Va kern.hwpmc.mtxpoolsize Pq integer, read-only
The size of the spin mutex pool used by the PMC driver.
The default is 32.
.It Va kern.hwpmc.nbuffers Pq integer, read-only
The number of log buffers used by
.Nm
for logging.
The default is 64.
.It Va kern.hwpmc.nsamples Pq integer, read-only
The number of entries in the per-CPU ring buffer used during sampling.
The default is 512.
.It Va security.bsd.unprivileged_syspmcs Pq boolean, read-write
If set to non-zero, allow unprivileged processes to allocate system-wide
PMCs.
The default value is 0.
.It Va security.bsd.unprivileged_proc_debug Pq boolean, read-write
If set to 0, the
.Nm
driver will only allow privileged processes to attach PMCs to other
processes.
.El
.Pp
These variables may be set in the kernel environment using
.Xr kenv 1
before
.Nm
is loaded.
.Sh IMPLEMENTATION NOTES
.Ss SMP Symmetry
The kernel driver requires all physical CPUs in an SMP system to have
identical performance monitoring counter hardware.
.Ss Sparse CPU Numbering
On platforms that sparsely number CPUs and which support hot-plugging
of CPUs, requests that specify non-existent or disabled CPUs will fail
with an error.
Applications allocating system-scope PMCs need to be aware of
the possibility of such transient failures.
.Ss x86 TSC Handling
Historically, on the x86 architecture,
.Fx
has permitted user processes running at a processor CPL of 3 to
read the TSC using the RDTSC instruction.
The
.Nm
driver preserves this behavior.
.Ss Intel P4/HTT Handling
On CPUs with HTT support, Intel P4 PMCs are capable of qualifying
only a subset of hardware events on a per-logical CPU basis.
Consequently, if HTT is enabled on a system with Intel Pentium P4
PMCs, then the
.Nm
driver will reject allocation requests for process-private PMCs that
request counting of hardware events that cannot be counted separately
for each logical CPU.
.Ss Intel Pentium-Pro Handling
Writing a value to the PMC MSRs found in Intel Pentium-Pro style PMCs
(found in
.Tn "Intel Pentium Pro" ,
.Tn "Pentium II" ,
.Tn "Pentium III" ,
.Tn "Pentium M"
and
.Tn "Celeron"
processors) will replicate bit 31 of the
value being written into the upper 8 bits of the MSR,
bringing down the usable width of these PMCs to 31 bits.
For process-virtual PMCs, the
.Nm
driver implements a workaround in software and makes the corrected 64
bit count available via the
.Dv PMC_OP_RW
operation.
Processes that intend to use RDPMC instructions directly or
that intend to write values larger than 2^31 into these PMCs with
.Dv PMC_OP_RW
need to be aware of this hardware limitation.
.Sh DIAGNOSTICS
.Bl -diag
.It "hwpmc: [class/npmc/capabilities]..."
Announce the presence of
.Va npmc
PMCs of class
.Va class ,
with capabilities described by bit string
.Va capabilities .
.It "hwpmc: kernel version (0x%x) does not match module version (0x%x)."
The module loading process failed because a version mismatch was detected
between the currently executing kernel and the module being loaded.
.It "hwpmc: this kernel has not been compiled with 'options HWPMC_HOOKS'."
The module loading process failed because the currently executing kernel
was not configured with the required configuration option
.Dv HWPMC_HOOKS .
.It "hwpmc: tunable hashsize=%d must be greater than zero."
A negative value was supplied for tunable
.Va kern.hwpmc.hashsize .
.It "hwpmc: tunable logbuffersize=%d must be greater than zero."
A negative value was supplied for tunable
.Va kern.hwpmc.logbuffersize .
.It "hwpmc: tunable nlogbuffers=%d must be greater than zero."
A negative value was supplied for tunable
.Va kern.hwpmc.nlogbuffers .
.It "hwpmc: tunable nsamples=%d out of range."
The value for tunable
.Va kern.hwpmc.nsamples
was negative or greater than 65535.
.El
.Sh COMPATIBILITY
The
.Nm
driver is
.Ud
The API and ABI documented in this manual page may change in
the future.
The recommended method of accessing this driver is using the
.Xr pmc 3
API.
.Sh ERRORS
A command issued to the
.Nm
driver may fail with the following errors:
.Bl -tag -width Er
.It Bq Er EAGAIN
Helper process creation failed for a
.Dv PMC_OP_CONFIGURELOG
request due to a temporary resource shortage in the kernel.
.It Bq Er EBUSY
A
.Dv PMC_OP_CONFIGURELOG
operation was requested while an existing log was active.
.It Bq Er EBUSY
A DISABLE operation was requested using the
.Dv PMC_OP_PMCADMIN
request for a set of hardware resources currently in use for
process-private PMCs.
.It Bq Er EBUSY
A
.Dv PMC_OP_PMCADMIN
operation was requested on an active system mode PMC.
.It Bq Er EBUSY
A
.Dv PMC_OP_PMCATTACH
operation was requested for a target process that already had another
PMC using the same hardware resources attached to it.
.It Bq Er EBUSY
A
.Dv PMC_OP_PMCRW
request writing a new value was issued on a PMC that was active.
.It Bq Er EBUSY
A
.Dv PMC_OP_PMCSETCOUNT
request was issued on a PMC that was active.
.It Bq Er EDOOFUS
A
.Dv PMC_OP_PMCSTART
operation was requested without a log file being configured for a
PMC allocated with
.Dv PMC_F_LOG_PROCCSW
and
.Dv PMC_F_LOG_PROCEXIT
modifiers.
.It Bq Er EDOOFUS
A
.Dv PMC_OP_PMCSTART
operation was requested on a system-wide sampling PMC without a log
file being configured.
.It Bq Er EEXIST
A
.Dv PMC_OP_PMCATTACH
request was reissued for a target process that already is the target
of this PMC.
.It Bq Er EFAULT
A bad address was passed in to the driver.
.It Bq Er EINVAL
An invalid PMC handle was specified.
.It Bq Er EINVAL
An invalid CPU number was passed in for a
.Dv PMC_OP_GETPMCINFO
operation.
.It Bq Er EINVAL
A
.Dv PMC_OP_CONFIGURELOG
request to de-configure a log file was issued without a log file
being configured.
.It Bq Er EINVAL
A
.Dv PMC_OP_FLUSHLOG
request was issued without a log file being configured.
.It Bq Er EINVAL
An invalid CPU number was passed in for a
.Dv PMC_OP_PMCADMIN
operation.
.It Bq Er EINVAL
An invalid operation request was passed in for a
.Dv PMC_OP_PMCADMIN
operation.
.It Bq Er EINVAL
An invalid PMC ID was passed in for a
.Dv PMC_OP_PMCADMIN
operation.
.It Bq Er EINVAL
A suitable PMC matching the parameters passed in to a
.Dv PMC_OP_PMCALLOCATE
request could not be allocated.
.It Bq Er EINVAL
An invalid PMC mode was requested during a
.Dv PMC_OP_PMCALLOCATE
request.
.It Bq Er EINVAL
An invalid CPU number was specified during a
.Dv PMC_OP_PMCALLOCATE
request.
.It Bq Er EINVAL
A CPU other than
.Dv PMC_CPU_ANY
was specified in a
.Dv PMC_OP_PMCALLOCATE
request for a process-private PMC.
.It Bq Er EINVAL
A CPU number of
.Dv PMC_CPU_ANY
was specified in a
.Dv PMC_OP_PMCALLOCATE
request for a system-wide PMC.
.It Bq Er EINVAL
The
.Ar pm_flags
argument to an
.Dv PMC_OP_PMCALLOCATE
request contained unknown flags.
.It Bq Er EINVAL
(On Intel Pentium 4 CPUs with HTT support)
A
.Dv PMC_OP_PMCALLOCATE
request for a process-private PMC was issued for an event that does
not support counting on a per-logical CPU basis.
.It Bq Er EINVAL
A PMC allocated for system-wide operation was specified with a
.Dv PMC_OP_PMCATTACH
or
.Dv PMC_OP_PMCDETACH
request.
.It Bq Er EINVAL
The
.Ar pm_pid
argument to a
.Dv PMC_OP_PMCATTACH
or
.Dv PMC_OP_PMCDETACH
request specified an illegal process ID.
.It Bq Er EINVAL
A
.Dv PMC_OP_PMCDETACH
request was issued for a PMC not attached to the target process.
.It Bq Er EINVAL
Argument
.Ar pm_flags
to a
.Dv PMC_OP_PMCRW
request contained illegal flags.
.It Bq Er EINVAL
A
.Dv PMC_OP_PMCX86GETMSR
operation was requested for a PMC not in process-virtual mode, or
for a PMC that is not solely attached to its owner process, or for
a PMC that was allocated with flag
.Dv PMC_F_DESCENDANTS .
.It Bq Er EINVAL
A
.Dv PMC_OP_WRITELOG
request was issued for an owner process without a log file
configured.
.It Bq Er ENOMEM
The system was not able to allocate kernel memory.
.It Bq Er ENOSYS
(On i386 and amd64 architectures)
A
.Dv PMC_OP_PMCX86GETMSR
operation was requested for hardware that does not support reading
PMCs directly with the RDPMC instruction.
.It Bq Er ENXIO
A
.Dv PMC_OP_GETPMCINFO
operation was requested for an absent or disabled CPU.
.It Bq Er ENXIO
A
.Dv PMC_OP_PMCALLOCATE
operation specified allocation of a system-wide PMC on an absent or
disabled CPU.
.It Bq Er ENXIO
A
.Dv PMC_OP_PMCSTART
or
.Dv PMC_OP_PMCSTOP
request was issued for a system-wide PMC that was allocated on a CPU
that is currently absent or disabled.
.It Bq Er EOPNOTSUPP
A
.Dv PMC_OP_PMCALLOCATE
request was issued for PMC capabilities not supported
by the specified PMC class.
.It Bq Er EOPNOTSUPP
(i386 architectures)
A sampling mode PMC was requested on a CPU lacking an APIC.
.It Bq Er EPERM
A
.Dv PMC_OP_PMCADMIN
request was issued by a process without super-user
privilege or by a jailed super-user process.
.It Bq Er EPERM
A
.Dv PMC_OP_PMCATTACH
operation was issued for a target process that the current process
does not have permission to attach to.
.It Bq Er EPERM
(i386 and amd64 architectures)
A
.Dv PMC_OP_PMCATTACH
operation was issued on a PMC whose MSR has been retrieved using
.Dv PMC_OP_PMCX86GETMSR .
.It Bq Er ESRCH
A process issued a PMC operation request without having allocated any
PMCs.
.It Bq Er ESRCH
A process issued a PMC operation request after the PMC was detached
from all of its target processes.
.It Bq Er ESRCH
A
.Dv PMC_OP_PMCATTACH
or
.Dv PMC_OP_PMCDETACH
request specified a non-existent process ID.
.It Bq Er ESRCH
The target process for a
.Dv PMC_OP_PMCDETACH
operation is not being monitored by
.Nm .
.El
.Sh SEE ALSO
.Xr kenv 1 ,
.Xr pmc 3 ,
.Xr pmclog 3 ,
.Xr kgmon 8 ,
.Xr kldload 8 ,
.Xr pmccontrol 8 ,
.Xr pmcstat 8 ,
.Xr sysctl 8 ,
.Xr kproc_create 9 ,
.Xr p_candebug 9
.Sh HISTORY
The
.Nm
driver first appeared in
.Fx 6.0 .
.Sh AUTHORS
The
.Nm
driver was written by
.An "Joseph Koshy"
.Aq jkoshy@FreeBSD.org .
.Sh BUGS
The driver samples the state of the kernel's logical processor support
at the time of initialization (i.e., at module load time).
On CPUs supporting logical processors, the driver could misbehave if
logical processors are subsequently enabled or disabled while the
driver is active.
.Pp
On the i386 architecture, the driver requires that the local APIC on the
CPU be enabled for sampling mode to be supported.
Many single-processor motherboards keep the APIC disabled in BIOS; on
such systems
.Nm
will not support sampling PMCs.
.Sh SECURITY CONSIDERATIONS
PMCs may be used to monitor the actual behavior of the system on hardware.
In situations where this constitutes an undesirable information leak,
the following options are available:
.Bl -enum
.It
Set the
.Xr sysctl 8
tunable
.Va security.bsd.unprivileged_syspmcs
to 0.
This ensures that unprivileged processes cannot allocate system-wide
PMCs and thus cannot observe the hardware behavior of the system
as a whole.
This tunable may also be set at boot time using
.Xr loader 8 ,
or with
.Xr kenv 1
prior to loading the
.Nm
driver into the kernel.
.It
Set the
.Xr sysctl 8
tunable
.Va security.bsd.unprivileged_proc_debug
to 0.
This will ensure that an unprivileged process cannot attach a PMC
to any process other than itself and thus cannot observe the hardware
behavior of other processes with the same credentials.
.El
.Pp
System administrators should note that on IA-32 platforms
.Fx
makes the content of the IA-32 TSC counter available to all processes
via the RDTSC instruction.
OpenPOWER on IntegriCloud