summaryrefslogtreecommitdiffstats
path: root/secure/usr.sbin/xntpd/lib/authdes.c
blob: d6d8d1bb6622b92b7ed1cd09fe92c6025756cb1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/*
 * authdes.c - an implementation of the DES cipher algorithm for NTP
 */
#include <sys/types.h>

#include <netinet/in.h>

#if BYTE_ORDER == BIG_ENDIAN
#define XNTP_BIG_ENDIAN
#endif
#if BYTE_ORDER == LITTLE_ENDIAN
#define XNTP_LITTLE_ENDIAN
#endif

/*
 * There are two entries in here.  auth_subkeys() called to
 * compute the encryption and decryption key schedules, while
 * auth_des() is called to do the actual encryption/decryption
 */

/*
 * Byte order woes.  The DES code is sensitive to byte order.  This
 * used to be resolved by calling ntohl() and htonl() to swap things
 * around, but this turned out to be quite costly on Vaxes where those
 * things are actual functions.  The code now straightens out byte
 * order troubles on its own, with no performance penalty for little
 * end first machines, but at great expense to cleanliness.
 */
#if !defined(XNTP_BIG_ENDIAN) && !defined(XNTP_LITTLE_ENDIAN)
	/*
	 * Pick one or the other.
	 */
	BYTE_ORDER_NOT_DEFINED_FOR_AUTHENTICATION
#endif

/*
 * Key setup.  Here we entirely permute a key, saving the results
 * for both the encryption and decryption.  Note that while the
 * decryption subkeys are simply the encryption keys reordered,
 * we save both so that a common cipher routine may be used.
 */

/*
 * Permuted choice 1 tables.  These are used to extract bits
 * from the left and right parts of the key to form Ci and Di.
 * The code that uses these tables knows which bits from which
 * part of each key are used to form Ci and Di.
 */
static u_long PC1_CL[8] = {
	0x00000000, 0x00000010, 0x00001000, 0x00001010,
	0x00100000, 0x00100010, 0x00101000, 0x00101010
};

static u_long PC1_DL[16] = {
	0x00000000, 0x00100000, 0x00001000, 0x00101000,
	0x00000010, 0x00100010, 0x00001010, 0x00101010,
	0x00000001, 0x00100001, 0x00001001, 0x00101001,
	0x00000011, 0x00100011, 0x00001011, 0x00101011
};

static u_long PC1_CR[16] = {
	0x00000000, 0x00000001, 0x00000100, 0x00000101,
	0x00010000, 0x00010001, 0x00010100, 0x00010101,
	0x01000000, 0x01000001, 0x01000100, 0x01000101,
	0x01010000, 0x01010001, 0x01010100, 0x01010101
};

static u_long PC1_DR[8] = {
	0x00000000, 0x01000000, 0x00010000, 0x01010000,
	0x00000100, 0x01000100, 0x00010100, 0x01010100
};


/*
 * At the start of some iterations of the key schedule we do
 * a circular left shift by one place, while for others we do a shift by
 * two places.  This has bits set for the iterations where we do 2 bit
 * shifts, starting at the low order bit.
 */
#define	TWO_BIT_SHIFTS	0x7efc

/*
 * Permuted choice 2 tables.  The first actually produces the low order
 * 24 bits of the subkey Ki from the 28 bit value of Ci.  The second produces
 * the high order 24 bits from Di.  The tables are indexed by six bit
 * segments of Ci and Di respectively.  The code is handcrafted to compute
 * the appropriate 6 bit chunks.
 *
 * Note that for ease of computation, the 24 bit values are produced with
 * six bits going into each byte.
 */
static u_long PC2_C[4][64] = {
	0x00000000, 0x00040000, 0x01000000, 0x01040000,
	0x00000400, 0x00040400, 0x01000400, 0x01040400,
	0x00200000, 0x00240000, 0x01200000, 0x01240000,
	0x00200400, 0x00240400, 0x01200400, 0x01240400,
	0x00000001, 0x00040001, 0x01000001, 0x01040001,
	0x00000401, 0x00040401, 0x01000401, 0x01040401,
	0x00200001, 0x00240001, 0x01200001, 0x01240001,
	0x00200401, 0x00240401, 0x01200401, 0x01240401,
	0x02000000, 0x02040000, 0x03000000, 0x03040000,
	0x02000400, 0x02040400, 0x03000400, 0x03040400,
	0x02200000, 0x02240000, 0x03200000, 0x03240000,
	0x02200400, 0x02240400, 0x03200400, 0x03240400,
	0x02000001, 0x02040001, 0x03000001, 0x03040001,
	0x02000401, 0x02040401, 0x03000401, 0x03040401,
	0x02200001, 0x02240001, 0x03200001, 0x03240001,
	0x02200401, 0x02240401, 0x03200401, 0x03240401,

	0x00000000, 0x00000002, 0x00000800, 0x00000802,
	0x08000000, 0x08000002, 0x08000800, 0x08000802,
	0x00010000, 0x00010002, 0x00010800, 0x00010802,
	0x08010000, 0x08010002, 0x08010800, 0x08010802,
	0x00000100, 0x00000102, 0x00000900, 0x00000902,
	0x08000100, 0x08000102, 0x08000900, 0x08000902,
	0x00010100, 0x00010102, 0x00010900, 0x00010902,
	0x08010100, 0x08010102, 0x08010900, 0x08010902,
	0x00000010, 0x00000012, 0x00000810, 0x00000812,
	0x08000010, 0x08000012, 0x08000810, 0x08000812,
	0x00010010, 0x00010012, 0x00010810, 0x00010812,
	0x08010010, 0x08010012, 0x08010810, 0x08010812,
	0x00000110, 0x00000112, 0x00000910, 0x00000912,
	0x08000110, 0x08000112, 0x08000910, 0x08000912,
	0x00010110, 0x00010112, 0x00010910, 0x00010912,
	0x08010110, 0x08010112, 0x08010910, 0x08010912,

	0x00000000, 0x04000000, 0x00002000, 0x04002000,
	0x10000000, 0x14000000, 0x10002000, 0x14002000,
	0x00000020, 0x04000020, 0x00002020, 0x04002020,
	0x10000020, 0x14000020, 0x10002020, 0x14002020,
	0x00080000, 0x04080000, 0x00082000, 0x04082000,
	0x10080000, 0x14080000, 0x10082000, 0x14082000,
	0x00080020, 0x04080020, 0x00082020, 0x04082020,
	0x10080020, 0x14080020, 0x10082020, 0x14082020,
	0x20000000, 0x24000000, 0x20002000, 0x24002000,
	0x30000000, 0x34000000, 0x30002000, 0x34002000,
	0x20000020, 0x24000020, 0x20002020, 0x24002020,
	0x30000020, 0x34000020, 0x30002020, 0x34002020,
	0x20080000, 0x24080000, 0x20082000, 0x24082000,
	0x30080000, 0x34080000, 0x30082000, 0x34082000,
	0x20080020, 0x24080020, 0x20082020, 0x24082020,
	0x30080020, 0x34080020, 0x30082020, 0x34082020,

	0x00000000, 0x00100000, 0x00000008, 0x00100008,
	0x00000200, 0x00100200, 0x00000208, 0x00100208,
	0x00020000, 0x00120000, 0x00020008, 0x00120008,
	0x00020200, 0x00120200, 0x00020208, 0x00120208,
	0x00000004, 0x00100004, 0x0000000c, 0x0010000c,
	0x00000204, 0x00100204, 0x0000020c, 0x0010020c,
	0x00020004, 0x00120004, 0x0002000c, 0x0012000c,
	0x00020204, 0x00120204, 0x0002020c, 0x0012020c,
	0x00001000, 0x00101000, 0x00001008, 0x00101008,
	0x00001200, 0x00101200, 0x00001208, 0x00101208,
	0x00021000, 0x00121000, 0x00021008, 0x00121008,
	0x00021200, 0x00121200, 0x00021208, 0x00121208,
	0x00001004, 0x00101004, 0x0000100c, 0x0010100c,
	0x00001204, 0x00101204, 0x0000120c, 0x0010120c,
	0x00021004, 0x00121004, 0x0002100c, 0x0012100c,
	0x00021204, 0x00121204, 0x0002120c, 0x0012120c
};

static u_long PC2_D[4][64] = {
	0x00000000, 0x00000200, 0x00020000, 0x00020200,
	0x00000001, 0x00000201, 0x00020001, 0x00020201,
	0x08000000, 0x08000200, 0x08020000, 0x08020200,
	0x08000001, 0x08000201, 0x08020001, 0x08020201,
	0x00200000, 0x00200200, 0x00220000, 0x00220200,
	0x00200001, 0x00200201, 0x00220001, 0x00220201,
	0x08200000, 0x08200200, 0x08220000, 0x08220200,
	0x08200001, 0x08200201, 0x08220001, 0x08220201,
	0x00000002, 0x00000202, 0x00020002, 0x00020202,
	0x00000003, 0x00000203, 0x00020003, 0x00020203,
	0x08000002, 0x08000202, 0x08020002, 0x08020202,
	0x08000003, 0x08000203, 0x08020003, 0x08020203,
	0x00200002, 0x00200202, 0x00220002, 0x00220202,
	0x00200003, 0x00200203, 0x00220003, 0x00220203,
	0x08200002, 0x08200202, 0x08220002, 0x08220202,
	0x08200003, 0x08200203, 0x08220003, 0x08220203,

	0x00000000, 0x00000010, 0x20000000, 0x20000010,
	0x00100000, 0x00100010, 0x20100000, 0x20100010,
	0x00000800, 0x00000810, 0x20000800, 0x20000810,
	0x00100800, 0x00100810, 0x20100800, 0x20100810,
	0x04000000, 0x04000010, 0x24000000, 0x24000010,
	0x04100000, 0x04100010, 0x24100000, 0x24100010,
	0x04000800, 0x04000810, 0x24000800, 0x24000810,
	0x04100800, 0x04100810, 0x24100800, 0x24100810,
	0x00000004, 0x00000014, 0x20000004, 0x20000014,
	0x00100004, 0x00100014, 0x20100004, 0x20100014,
	0x00000804, 0x00000814, 0x20000804, 0x20000814,
	0x00100804, 0x00100814, 0x20100804, 0x20100814,
	0x04000004, 0x04000014, 0x24000004, 0x24000014,
	0x04100004, 0x04100014, 0x24100004, 0x24100014,
	0x04000804, 0x04000814, 0x24000804, 0x24000814,
	0x04100804, 0x04100814, 0x24100804, 0x24100814,

	0x00000000, 0x00001000, 0x00010000, 0x00011000,
	0x02000000, 0x02001000, 0x02010000, 0x02011000,
	0x00000020, 0x00001020, 0x00010020, 0x00011020,
	0x02000020, 0x02001020, 0x02010020, 0x02011020,
	0x00040000, 0x00041000, 0x00050000, 0x00051000,
	0x02040000, 0x02041000, 0x02050000, 0x02051000,
	0x00040020, 0x00041020, 0x00050020, 0x00051020,
	0x02040020, 0x02041020, 0x02050020, 0x02051020,
	0x00002000, 0x00003000, 0x00012000, 0x00013000,
	0x02002000, 0x02003000, 0x02012000, 0x02013000,
	0x00002020, 0x00003020, 0x00012020, 0x00013020,
	0x02002020, 0x02003020, 0x02012020, 0x02013020,
	0x00042000, 0x00043000, 0x00052000, 0x00053000,
	0x02042000, 0x02043000, 0x02052000, 0x02053000,
	0x00042020, 0x00043020, 0x00052020, 0x00053020,
	0x02042020, 0x02043020, 0x02052020, 0x02053020,

	0x00000000, 0x00000400, 0x01000000, 0x01000400,
	0x00000100, 0x00000500, 0x01000100, 0x01000500,
	0x10000000, 0x10000400, 0x11000000, 0x11000400,
	0x10000100, 0x10000500, 0x11000100, 0x11000500,
	0x00080000, 0x00080400, 0x01080000, 0x01080400,
	0x00080100, 0x00080500, 0x01080100, 0x01080500,
	0x10080000, 0x10080400, 0x11080000, 0x11080400,
	0x10080100, 0x10080500, 0x11080100, 0x11080500,
	0x00000008, 0x00000408, 0x01000008, 0x01000408,
	0x00000108, 0x00000508, 0x01000108, 0x01000508,
	0x10000008, 0x10000408, 0x11000008, 0x11000408,
	0x10000108, 0x10000508, 0x11000108, 0x11000508,
	0x00080008, 0x00080408, 0x01080008, 0x01080408,
	0x00080108, 0x00080508, 0x01080108, 0x01080508,
	0x10080008, 0x10080408, 0x11080008, 0x11080408,
	0x10080108, 0x10080508, 0x11080108, 0x11080508
};



/*
 * Permute the key to give us our key schedule.
 */
void
DESauth_subkeys(key, encryptkeys, decryptkeys)
	u_long *key;
	u_char *encryptkeys;
	u_char *decryptkeys;
{
	register u_long tmp;
	register u_long c, d;
	register u_char *ek, *dk;
	register int two_bit_shifts;
	register int i;

	/*
	 * The first permutted choice gives us the 28 bits for C0 and
	 * 28 for D0.  C0 gets 12 bits from the left key and 16 from
	 * the right, while D0 gets 16 from the left and 12 from the
	 * right.  The code knows which bits go where.
	 */
	tmp = *key;	/* left part of key */
	c =  PC1_CL[(tmp >> 29) & 0x7]
	  | (PC1_CL[(tmp >> 21) & 0x7] << 1)
	  | (PC1_CL[(tmp >> 13) & 0x7] << 2)
	  | (PC1_CL[(tmp >>  5) & 0x7] << 3);
	d =  PC1_DL[(tmp >> 25) & 0xf]
	  | (PC1_DL[(tmp >> 17) & 0xf] << 1)
	  | (PC1_DL[(tmp >>  9) & 0xf] << 2)
	  | (PC1_DL[(tmp >>  1) & 0xf] << 3);

	tmp = *(key+1);	/* right part of key */
	c |= PC1_CR[(tmp >> 28) & 0xf]
	  | (PC1_CR[(tmp >> 20) & 0xf] << 1)
	  | (PC1_CR[(tmp >> 12) & 0xf] << 2)
	  | (PC1_CR[(tmp >>  4) & 0xf] << 3);
	d |= PC1_DR[(tmp >> 25) & 0x7]
	  | (PC1_DR[(tmp >> 17) & 0x7] << 1)
	  | (PC1_DR[(tmp >>  9) & 0x7] << 2)
	  | (PC1_DR[(tmp >>  1) & 0x7] << 3);

	/*
	 * Now iterate to compute the key schedule.  Note that we
	 * record the entire set of subkeys in 6 bit chunks since
	 * they are used that way.  At 6 bits/char, we need
	 * 48/6 char's/subkey * 16 subkeys/encryption == 128 chars.
	 * encryptkeys and decryptkeys must be this big.
	 */
	ek = encryptkeys;
	dk = decryptkeys + (8 * 15);
	two_bit_shifts = TWO_BIT_SHIFTS;
	for (i = 16; i > 0; i--) {
		/*
		 * Do the rotation.  One bit and two bit rotations
		 * are done separately.  Note C and D are 28 bits.
		 */
		if (two_bit_shifts & 0x1) {
			c = ((c << 2) & 0xffffffc) | (c >> 26);
			d = ((d << 2) & 0xffffffc) | (d >> 26);
		} else {
			c = ((c << 1) & 0xffffffe) | (c >> 27);
			d = ((d << 1) & 0xffffffe) | (d >> 27);
		}
		two_bit_shifts >>= 1;

		/*
		 * Apply permutted choice 2 to C to get the first
		 * 24 bits worth of keys.  Note that bits 9, 18, 22
		 * and 25 (using DES numbering) in C are unused.  The
		 * shift-mask stuff is done to delete these bits from
		 * the indices, since this cuts the table size in half.
		 */
		tmp = PC2_C[0][((c >> 22) & 0x3f)]
		    | PC2_C[1][((c >> 15) & 0xf) | ((c >> 16) & 0x30)]
		    | PC2_C[2][((c >>  4) & 0x3) | ((c >>  9) & 0x3c)]
		    | PC2_C[3][((c      ) & 0x7) | ((c >>  4) & 0x38)];
		*ek++ = *dk++ = (u_char)(tmp >> 24);
		*ek++ = *dk++ = (u_char)(tmp >> 16);
		*ek++ = *dk++ = (u_char)(tmp >>  8);
		*ek++ = *dk++ = (u_char)tmp;

		/*
		 * Apply permutted choice 2 to D to get the other half.
		 * Here, bits 7, 10, 15 and 26 go unused.  The sqeezing
		 * actually turns out to be cheaper here.
		 */
		tmp = PC2_D[0][((d >> 22) & 0x3f)]
		    | PC2_D[1][((d >> 14) & 0xf) | ((d >> 15) & 0x30)]
		    | PC2_D[2][((d >>  7) & 0x3f)]
		    | PC2_D[3][((d      ) & 0x3) | ((d >>  1) & 0x3c)];
		*ek++ = *dk++ = (u_char)(tmp >> 24);
		*ek++ = *dk++ = (u_char)(tmp >> 16);
		*ek++ = *dk++ = (u_char)(tmp >>  8);
		*ek++ = *dk++ = (u_char)tmp;

		/*
		 * We are filling in the decryption subkeys from the end.
		 * Space it back 16 elements to get to the start of the
		 * next set.
		 */
		dk -= 16;
	}
}

/*
 * The DES algorithm.  This is intended to be fairly speedy at the
 * expense of some memory.
 *
 * This uses all the standard hacks.  The S boxes and the P permutation
 * are precomputed into one table.  The E box never actually appears
 * explicitly since it is easy to apply this algorithmically.  The
 * initial permutation and final (inverse initial) permuation are
 * computed from tables designed to permute four bits at a time.  This
 * should run pretty fast on machines with 32 bit words and
 * bit field/multiple bit shift instructions which are fast.
 */

/*
 * The initial permutation array.  This is used to compute both the
 * left and the right halves of the initial permutation using bytes
 * from words made from the following operations:
 *
 * ((left & 0x55555555) << 1) | (right & 0x55555555)  for left half
 * (left & 0xaaaaaaaa) | ((right & 0xaaaaaaaa) >> 1)  for right half
 *
 * The scheme is that we index into the table using each byte.  The
 * result from the high order byte is or'd with the result from the
 * next byte shifted left once is or'd with the result from the next
 * byte shifted left twice if or'd with the result from the low order
 * byte shifted left by three.  Clear?
 */
static u_long IP[256] = {
	0x00000000, 0x00000010, 0x00000001, 0x00000011,
	0x00001000, 0x00001010, 0x00001001, 0x00001011,
	0x00000100, 0x00000110, 0x00000101, 0x00000111,
	0x00001100, 0x00001110, 0x00001101, 0x00001111,
	0x00100000, 0x00100010, 0x00100001, 0x00100011,
	0x00101000, 0x00101010, 0x00101001, 0x00101011,
	0x00100100, 0x00100110, 0x00100101, 0x00100111,
	0x00101100, 0x00101110, 0x00101101, 0x00101111,
	0x00010000, 0x00010010, 0x00010001, 0x00010011,
	0x00011000, 0x00011010, 0x00011001, 0x00011011,
	0x00010100, 0x00010110, 0x00010101, 0x00010111,
	0x00011100, 0x00011110, 0x00011101, 0x00011111,
	0x00110000, 0x00110010, 0x00110001, 0x00110011,
	0x00111000, 0x00111010, 0x00111001, 0x00111011,
	0x00110100, 0x00110110, 0x00110101, 0x00110111,
	0x00111100, 0x00111110, 0x00111101, 0x00111111,
	0x10000000, 0x10000010, 0x10000001, 0x10000011,
	0x10001000, 0x10001010, 0x10001001, 0x10001011,
	0x10000100, 0x10000110, 0x10000101, 0x10000111,
	0x10001100, 0x10001110, 0x10001101, 0x10001111,
	0x10100000, 0x10100010, 0x10100001, 0x10100011,
	0x10101000, 0x10101010, 0x10101001, 0x10101011,
	0x10100100, 0x10100110, 0x10100101, 0x10100111,
	0x10101100, 0x10101110, 0x10101101, 0x10101111,
	0x10010000, 0x10010010, 0x10010001, 0x10010011,
	0x10011000, 0x10011010, 0x10011001, 0x10011011,
	0x10010100, 0x10010110, 0x10010101, 0x10010111,
	0x10011100, 0x10011110, 0x10011101, 0x10011111,
	0x10110000, 0x10110010, 0x10110001, 0x10110011,
	0x10111000, 0x10111010, 0x10111001, 0x10111011,
	0x10110100, 0x10110110, 0x10110101, 0x10110111,
	0x10111100, 0x10111110, 0x10111101, 0x10111111,
	0x01000000, 0x01000010, 0x01000001, 0x01000011,
	0x01001000, 0x01001010, 0x01001001, 0x01001011,
	0x01000100, 0x01000110, 0x01000101, 0x01000111,
	0x01001100, 0x01001110, 0x01001101, 0x01001111,
	0x01100000, 0x01100010, 0x01100001, 0x01100011,
	0x01101000, 0x01101010, 0x01101001, 0x01101011,
	0x01100100, 0x01100110, 0x01100101, 0x01100111,
	0x01101100, 0x01101110, 0x01101101, 0x01101111,
	0x01010000, 0x01010010, 0x01010001, 0x01010011,
	0x01011000, 0x01011010, 0x01011001, 0x01011011,
	0x01010100, 0x01010110, 0x01010101, 0x01010111,
	0x01011100, 0x01011110, 0x01011101, 0x01011111,
	0x01110000, 0x01110010, 0x01110001, 0x01110011,
	0x01111000, 0x01111010, 0x01111001, 0x01111011,
	0x01110100, 0x01110110, 0x01110101, 0x01110111,
	0x01111100, 0x01111110, 0x01111101, 0x01111111,
	0x11000000, 0x11000010, 0x11000001, 0x11000011,
	0x11001000, 0x11001010, 0x11001001, 0x11001011,
	0x11000100, 0x11000110, 0x11000101, 0x11000111,
	0x11001100, 0x11001110, 0x11001101, 0x11001111,
	0x11100000, 0x11100010, 0x11100001, 0x11100011,
	0x11101000, 0x11101010, 0x11101001, 0x11101011,
	0x11100100, 0x11100110, 0x11100101, 0x11100111,
	0x11101100, 0x11101110, 0x11101101, 0x11101111,
	0x11010000, 0x11010010, 0x11010001, 0x11010011,
	0x11011000, 0x11011010, 0x11011001, 0x11011011,
	0x11010100, 0x11010110, 0x11010101, 0x11010111,
	0x11011100, 0x11011110, 0x11011101, 0x11011111,
	0x11110000, 0x11110010, 0x11110001, 0x11110011,
	0x11111000, 0x11111010, 0x11111001, 0x11111011,
	0x11110100, 0x11110110, 0x11110101, 0x11110111,
	0x11111100, 0x11111110, 0x11111101, 0x11111111
};

/*
 * The final permutation array.  Like the IP array, used
 * to compute both the left and right results from the nibbles
 * of words computed from:
 *
 * ((left & 0x0f0f0f0f) << 4) | (right & 0x0f0f0f0f)  for left result
 * (left & 0xf0f0f0f0) | ((right & 0xf0f0f0f0) >> 4)  for right result
 *
 * The result from the high order byte is shifted left 6 bits and
 * or'd with the result from the next byte shifted left 4 bits, which
 * is or'd with the result from the next byte shifted left 2 bits,
 * which is or'd with the result from the low byte.
 *
 * There is one of these for big end machines (the natural order for
 * DES) and a second for little end machines.  One is a byte swapped
 * version of the other.
 */
#ifndef XNTP_LITTLE_ENDIAN
	/*
	 * Big end version
	 */
static u_long FP[256] = {
	0x00000000, 0x02000000, 0x00020000, 0x02020000,
	0x00000200, 0x02000200, 0x00020200, 0x02020200,
	0x00000002, 0x02000002, 0x00020002, 0x02020002,
	0x00000202, 0x02000202, 0x00020202, 0x02020202,
	0x01000000, 0x03000000, 0x01020000, 0x03020000,
	0x01000200, 0x03000200, 0x01020200, 0x03020200,
	0x01000002, 0x03000002, 0x01020002, 0x03020002,
	0x01000202, 0x03000202, 0x01020202, 0x03020202,
	0x00010000, 0x02010000, 0x00030000, 0x02030000,
	0x00010200, 0x02010200, 0x00030200, 0x02030200,
	0x00010002, 0x02010002, 0x00030002, 0x02030002,
	0x00010202, 0x02010202, 0x00030202, 0x02030202,
	0x01010000, 0x03010000, 0x01030000, 0x03030000,
	0x01010200, 0x03010200, 0x01030200, 0x03030200,
	0x01010002, 0x03010002, 0x01030002, 0x03030002,
	0x01010202, 0x03010202, 0x01030202, 0x03030202,
	0x00000100, 0x02000100, 0x00020100, 0x02020100,
	0x00000300, 0x02000300, 0x00020300, 0x02020300,
	0x00000102, 0x02000102, 0x00020102, 0x02020102,
	0x00000302, 0x02000302, 0x00020302, 0x02020302,
	0x01000100, 0x03000100, 0x01020100, 0x03020100,
	0x01000300, 0x03000300, 0x01020300, 0x03020300,
	0x01000102, 0x03000102, 0x01020102, 0x03020102,
	0x01000302, 0x03000302, 0x01020302, 0x03020302,
	0x00010100, 0x02010100, 0x00030100, 0x02030100,
	0x00010300, 0x02010300, 0x00030300, 0x02030300,
	0x00010102, 0x02010102, 0x00030102, 0x02030102,
	0x00010302, 0x02010302, 0x00030302, 0x02030302,
	0x01010100, 0x03010100, 0x01030100, 0x03030100,
	0x01010300, 0x03010300, 0x01030300, 0x03030300,
	0x01010102, 0x03010102, 0x01030102, 0x03030102,
	0x01010302, 0x03010302, 0x01030302, 0x03030302,
	0x00000001, 0x02000001, 0x00020001, 0x02020001,
	0x00000201, 0x02000201, 0x00020201, 0x02020201,
	0x00000003, 0x02000003, 0x00020003, 0x02020003,
	0x00000203, 0x02000203, 0x00020203, 0x02020203,
	0x01000001, 0x03000001, 0x01020001, 0x03020001,
	0x01000201, 0x03000201, 0x01020201, 0x03020201,
	0x01000003, 0x03000003, 0x01020003, 0x03020003,
	0x01000203, 0x03000203, 0x01020203, 0x03020203,
	0x00010001, 0x02010001, 0x00030001, 0x02030001,
	0x00010201, 0x02010201, 0x00030201, 0x02030201,
	0x00010003, 0x02010003, 0x00030003, 0x02030003,
	0x00010203, 0x02010203, 0x00030203, 0x02030203,
	0x01010001, 0x03010001, 0x01030001, 0x03030001,
	0x01010201, 0x03010201, 0x01030201, 0x03030201,
	0x01010003, 0x03010003, 0x01030003, 0x03030003,
	0x01010203, 0x03010203, 0x01030203, 0x03030203,
	0x00000101, 0x02000101, 0x00020101, 0x02020101,
	0x00000301, 0x02000301, 0x00020301, 0x02020301,
	0x00000103, 0x02000103, 0x00020103, 0x02020103,
	0x00000303, 0x02000303, 0x00020303, 0x02020303,
	0x01000101, 0x03000101, 0x01020101, 0x03020101,
	0x01000301, 0x03000301, 0x01020301, 0x03020301,
	0x01000103, 0x03000103, 0x01020103, 0x03020103,
	0x01000303, 0x03000303, 0x01020303, 0x03020303,
	0x00010101, 0x02010101, 0x00030101, 0x02030101,
	0x00010301, 0x02010301, 0x00030301, 0x02030301,
	0x00010103, 0x02010103, 0x00030103, 0x02030103,
	0x00010303, 0x02010303, 0x00030303, 0x02030303,
	0x01010101, 0x03010101, 0x01030101, 0x03030101,
	0x01010301, 0x03010301, 0x01030301, 0x03030301,
	0x01010103, 0x03010103, 0x01030103, 0x03030103,
	0x01010303, 0x03010303, 0x01030303, 0x03030303
};
#else
	/*
	 * Byte swapped for little end machines.
	 */
static u_long FP[256] = {
	0x00000000, 0x00000002, 0x00000200, 0x00000202,
	0x00020000, 0x00020002, 0x00020200, 0x00020202,
	0x02000000, 0x02000002, 0x02000200, 0x02000202,
	0x02020000, 0x02020002, 0x02020200, 0x02020202,
	0x00000001, 0x00000003, 0x00000201, 0x00000203,
	0x00020001, 0x00020003, 0x00020201, 0x00020203,
	0x02000001, 0x02000003, 0x02000201, 0x02000203,
	0x02020001, 0x02020003, 0x02020201, 0x02020203,
	0x00000100, 0x00000102, 0x00000300, 0x00000302,
	0x00020100, 0x00020102, 0x00020300, 0x00020302,
	0x02000100, 0x02000102, 0x02000300, 0x02000302,
	0x02020100, 0x02020102, 0x02020300, 0x02020302,
	0x00000101, 0x00000103, 0x00000301, 0x00000303,
	0x00020101, 0x00020103, 0x00020301, 0x00020303,
	0x02000101, 0x02000103, 0x02000301, 0x02000303,
	0x02020101, 0x02020103, 0x02020301, 0x02020303,
	0x00010000, 0x00010002, 0x00010200, 0x00010202,
	0x00030000, 0x00030002, 0x00030200, 0x00030202,
	0x02010000, 0x02010002, 0x02010200, 0x02010202,
	0x02030000, 0x02030002, 0x02030200, 0x02030202,
	0x00010001, 0x00010003, 0x00010201, 0x00010203,
	0x00030001, 0x00030003, 0x00030201, 0x00030203,
	0x02010001, 0x02010003, 0x02010201, 0x02010203,
	0x02030001, 0x02030003, 0x02030201, 0x02030203,
	0x00010100, 0x00010102, 0x00010300, 0x00010302,
	0x00030100, 0x00030102, 0x00030300, 0x00030302,
	0x02010100, 0x02010102, 0x02010300, 0x02010302,
	0x02030100, 0x02030102, 0x02030300, 0x02030302,
	0x00010101, 0x00010103, 0x00010301, 0x00010303,
	0x00030101, 0x00030103, 0x00030301, 0x00030303,
	0x02010101, 0x02010103, 0x02010301, 0x02010303,
	0x02030101, 0x02030103, 0x02030301, 0x02030303,
	0x01000000, 0x01000002, 0x01000200, 0x01000202,
	0x01020000, 0x01020002, 0x01020200, 0x01020202,
	0x03000000, 0x03000002, 0x03000200, 0x03000202,
	0x03020000, 0x03020002, 0x03020200, 0x03020202,
	0x01000001, 0x01000003, 0x01000201, 0x01000203,
	0x01020001, 0x01020003, 0x01020201, 0x01020203,
	0x03000001, 0x03000003, 0x03000201, 0x03000203,
	0x03020001, 0x03020003, 0x03020201, 0x03020203,
	0x01000100, 0x01000102, 0x01000300, 0x01000302,
	0x01020100, 0x01020102, 0x01020300, 0x01020302,
	0x03000100, 0x03000102, 0x03000300, 0x03000302,
	0x03020100, 0x03020102, 0x03020300, 0x03020302,
	0x01000101, 0x01000103, 0x01000301, 0x01000303,
	0x01020101, 0x01020103, 0x01020301, 0x01020303,
	0x03000101, 0x03000103, 0x03000301, 0x03000303,
	0x03020101, 0x03020103, 0x03020301, 0x03020303,
	0x01010000, 0x01010002, 0x01010200, 0x01010202,
	0x01030000, 0x01030002, 0x01030200, 0x01030202,
	0x03010000, 0x03010002, 0x03010200, 0x03010202,
	0x03030000, 0x03030002, 0x03030200, 0x03030202,
	0x01010001, 0x01010003, 0x01010201, 0x01010203,
	0x01030001, 0x01030003, 0x01030201, 0x01030203,
	0x03010001, 0x03010003, 0x03010201, 0x03010203,
	0x03030001, 0x03030003, 0x03030201, 0x03030203,
	0x01010100, 0x01010102, 0x01010300, 0x01010302,
	0x01030100, 0x01030102, 0x01030300, 0x01030302,
	0x03010100, 0x03010102, 0x03010300, 0x03010302,
	0x03030100, 0x03030102, 0x03030300, 0x03030302,
	0x01010101, 0x01010103, 0x01010301, 0x01010303,
	0x01030101, 0x01030103, 0x01030301, 0x01030303,
	0x03010101, 0x03010103, 0x03010301, 0x03010303,
	0x03030101, 0x03030103, 0x03030301, 0x03030303
};
#endif


/*
 * The SP table is actually the S boxes and the P permutation
 * table combined.
 */
static u_long SP[8][64] = {
	0x00808200, 0x00000000, 0x00008000, 0x00808202,
	0x00808002, 0x00008202, 0x00000002, 0x00008000,
	0x00000200, 0x00808200, 0x00808202, 0x00000200,
	0x00800202, 0x00808002, 0x00800000, 0x00000002,
	0x00000202, 0x00800200, 0x00800200, 0x00008200,
	0x00008200, 0x00808000, 0x00808000, 0x00800202,
	0x00008002, 0x00800002, 0x00800002, 0x00008002,
	0x00000000, 0x00000202, 0x00008202, 0x00800000,
	0x00008000, 0x00808202, 0x00000002, 0x00808000,
	0x00808200, 0x00800000, 0x00800000, 0x00000200,
	0x00808002, 0x00008000, 0x00008200, 0x00800002,
	0x00000200, 0x00000002, 0x00800202, 0x00008202,
	0x00808202, 0x00008002, 0x00808000, 0x00800202,
	0x00800002, 0x00000202, 0x00008202, 0x00808200,
	0x00000202, 0x00800200, 0x00800200, 0x00000000,
	0x00008002, 0x00008200, 0x00000000, 0x00808002,

	0x40084010, 0x40004000, 0x00004000, 0x00084010,
	0x00080000, 0x00000010, 0x40080010, 0x40004010,
	0x40000010, 0x40084010, 0x40084000, 0x40000000,
	0x40004000, 0x00080000, 0x00000010, 0x40080010,
	0x00084000, 0x00080010, 0x40004010, 0x00000000,
	0x40000000, 0x00004000, 0x00084010, 0x40080000,
	0x00080010, 0x40000010, 0x00000000, 0x00084000,
	0x00004010, 0x40084000, 0x40080000, 0x00004010,
	0x00000000, 0x00084010, 0x40080010, 0x00080000,
	0x40004010, 0x40080000, 0x40084000, 0x00004000,
	0x40080000, 0x40004000, 0x00000010, 0x40084010,
	0x00084010, 0x00000010, 0x00004000, 0x40000000,
	0x00004010, 0x40084000, 0x00080000, 0x40000010,
	0x00080010, 0x40004010, 0x40000010, 0x00080010,
	0x00084000, 0x00000000, 0x40004000, 0x00004010,
	0x40000000, 0x40080010, 0x40084010, 0x00084000,

	0x00000104, 0x04010100, 0x00000000, 0x04010004,
	0x04000100, 0x00000000, 0x00010104, 0x04000100,
	0x00010004, 0x04000004, 0x04000004, 0x00010000,
	0x04010104, 0x00010004, 0x04010000, 0x00000104,
	0x04000000, 0x00000004, 0x04010100, 0x00000100,
	0x00010100, 0x04010000, 0x04010004, 0x00010104,
	0x04000104, 0x00010100, 0x00010000, 0x04000104,
	0x00000004, 0x04010104, 0x00000100, 0x04000000,
	0x04010100, 0x04000000, 0x00010004, 0x00000104,
	0x00010000, 0x04010100, 0x04000100, 0x00000000,
	0x00000100, 0x00010004, 0x04010104, 0x04000100,
	0x04000004, 0x00000100, 0x00000000, 0x04010004,
	0x04000104, 0x00010000, 0x04000000, 0x04010104,
	0x00000004, 0x00010104, 0x00010100, 0x04000004,
	0x04010000, 0x04000104, 0x00000104, 0x04010000,
	0x00010104, 0x00000004, 0x04010004, 0x00010100,

	0x80401000, 0x80001040, 0x80001040, 0x00000040,
	0x00401040, 0x80400040, 0x80400000, 0x80001000,
	0x00000000, 0x00401000, 0x00401000, 0x80401040,
	0x80000040, 0x00000000, 0x00400040, 0x80400000,
	0x80000000, 0x00001000, 0x00400000, 0x80401000,
	0x00000040, 0x00400000, 0x80001000, 0x00001040,
	0x80400040, 0x80000000, 0x00001040, 0x00400040,
	0x00001000, 0x00401040, 0x80401040, 0x80000040,
	0x00400040, 0x80400000, 0x00401000, 0x80401040,
	0x80000040, 0x00000000, 0x00000000, 0x00401000,
	0x00001040, 0x00400040, 0x80400040, 0x80000000,
	0x80401000, 0x80001040, 0x80001040, 0x00000040,
	0x80401040, 0x80000040, 0x80000000, 0x00001000,
	0x80400000, 0x80001000, 0x00401040, 0x80400040,
	0x80001000, 0x00001040, 0x00400000, 0x80401000,
	0x00000040, 0x00400000, 0x00001000, 0x00401040,

	0x00000080, 0x01040080, 0x01040000, 0x21000080,
	0x00040000, 0x00000080, 0x20000000, 0x01040000,
	0x20040080, 0x00040000, 0x01000080, 0x20040080,
	0x21000080, 0x21040000, 0x00040080, 0x20000000,
	0x01000000, 0x20040000, 0x20040000, 0x00000000,
	0x20000080, 0x21040080, 0x21040080, 0x01000080,
	0x21040000, 0x20000080, 0x00000000, 0x21000000,
	0x01040080, 0x01000000, 0x21000000, 0x00040080,
	0x00040000, 0x21000080, 0x00000080, 0x01000000,
	0x20000000, 0x01040000, 0x21000080, 0x20040080,
	0x01000080, 0x20000000, 0x21040000, 0x01040080,
	0x20040080, 0x00000080, 0x01000000, 0x21040000,
	0x21040080, 0x00040080, 0x21000000, 0x21040080,
	0x01040000, 0x00000000, 0x20040000, 0x21000000,
	0x00040080, 0x01000080, 0x20000080, 0x00040000,
	0x00000000, 0x20040000, 0x01040080, 0x20000080,

	0x10000008, 0x10200000, 0x00002000, 0x10202008,
	0x10200000, 0x00000008, 0x10202008, 0x00200000,
	0x10002000, 0x00202008, 0x00200000, 0x10000008,
	0x00200008, 0x10002000, 0x10000000, 0x00002008,
	0x00000000, 0x00200008, 0x10002008, 0x00002000,
	0x00202000, 0x10002008, 0x00000008, 0x10200008,
	0x10200008, 0x00000000, 0x00202008, 0x10202000,
	0x00002008, 0x00202000, 0x10202000, 0x10000000,
	0x10002000, 0x00000008, 0x10200008, 0x00202000,
	0x10202008, 0x00200000, 0x00002008, 0x10000008,
	0x00200000, 0x10002000, 0x10000000, 0x00002008,
	0x10000008, 0x10202008, 0x00202000, 0x10200000,
	0x00202008, 0x10202000, 0x00000000, 0x10200008,
	0x00000008, 0x00002000, 0x10200000, 0x00202008,
	0x00002000, 0x00200008, 0x10002008, 0x00000000,
	0x10202000, 0x10000000, 0x00200008, 0x10002008,

	0x00100000, 0x02100001, 0x02000401, 0x00000000,
	0x00000400, 0x02000401, 0x00100401, 0x02100400,
	0x02100401, 0x00100000, 0x00000000, 0x02000001,
	0x00000001, 0x02000000, 0x02100001, 0x00000401,
	0x02000400, 0x00100401, 0x00100001, 0x02000400,
	0x02000001, 0x02100000, 0x02100400, 0x00100001,
	0x02100000, 0x00000400, 0x00000401, 0x02100401,
	0x00100400, 0x00000001, 0x02000000, 0x00100400,
	0x02000000, 0x00100400, 0x00100000, 0x02000401,
	0x02000401, 0x02100001, 0x02100001, 0x00000001,
	0x00100001, 0x02000000, 0x02000400, 0x00100000,
	0x02100400, 0x00000401, 0x00100401, 0x02100400,
	0x00000401, 0x02000001, 0x02100401, 0x02100000,
	0x00100400, 0x00000000, 0x00000001, 0x02100401,
	0x00000000, 0x00100401, 0x02100000, 0x00000400,
	0x02000001, 0x02000400, 0x00000400, 0x00100001,

	0x08000820, 0x00000800, 0x00020000, 0x08020820,
	0x08000000, 0x08000820, 0x00000020, 0x08000000,
	0x00020020, 0x08020000, 0x08020820, 0x00020800,
	0x08020800, 0x00020820, 0x00000800, 0x00000020,
	0x08020000, 0x08000020, 0x08000800, 0x00000820,
	0x00020800, 0x00020020, 0x08020020, 0x08020800,
	0x00000820, 0x00000000, 0x00000000, 0x08020020,
	0x08000020, 0x08000800, 0x00020820, 0x00020000,
	0x00020820, 0x00020000, 0x08020800, 0x00000800,
	0x00000020, 0x08020020, 0x00000800, 0x00020820,
	0x08000800, 0x00000020, 0x08000020, 0x08020000,
	0x08020020, 0x08000000, 0x00020000, 0x08000820,
	0x00000000, 0x08020820, 0x00020020, 0x08000020,
	0x08020000, 0x08000800, 0x08000820, 0x00000000,
	0x08020820, 0x00020800, 0x00020800, 0x00000820,
	0x00000820, 0x00020020, 0x08000000, 0x08020800
};



/*
 * DESauth_des - perform an in place DES encryption on 64 bits
 *
 * Note that the `data' argument is always in big-end-first
 * byte order, i.e. *(char *)data is the high order byte of
 * the 8 byte data word.  We modify the initial and final
 * permutation computations for little-end-first machines to
 * swap bytes into the natural host order at the beginning and
 * back to big-end order at the end.  This is unclean but avoids
 * a byte swapping performance penalty on Vaxes (which are slow already).
 */
void
DESauth_des(data, subkeys)
	u_long *data;
	u_char *subkeys;
{
	register u_long left, right;
	register u_long temp;
	register u_char *kp;
	register int i;

	/*
	 * Do the initial permutation.  The first operation gets
	 * all the bits which are used to form the left half of the
	 * permutted result in one word, which is then used to
	 * index the appropriate table a byte at a time.
	 */
	temp = ((*data & 0x55555555) << 1) | (*(data+1) & 0x55555555);
#ifdef XNTP_LITTLE_ENDIAN
	/*
	 * Modify the computation to use the opposite set of bytes.
	 */
	left = (IP[(temp >> 24) & 0xff] << 3)
	     | (IP[(temp >> 16) & 0xff] << 2)
	     | (IP[(temp >>  8) & 0xff] << 1)
	     | IP[temp & 0xff];
#else
	left = IP[(temp >> 24) & 0xff]
	     | (IP[(temp >> 16) & 0xff] << 1)
	     | (IP[(temp >>  8) & 0xff] << 2)
	     | (IP[temp & 0xff] << 3);
#endif

	/*
	 * Same thing again except for the right half.
	 */
	temp = (*data & 0xaaaaaaaa) | ((*(data+1) & 0xaaaaaaaa) >> 1);
#ifdef XNTP_LITTLE_ENDIAN
	right = (IP[(temp >> 24) & 0xff] << 3)
	      | (IP[(temp >> 16) & 0xff] << 2)
	      | (IP[(temp >>  8) & 0xff] << 1)
	      | IP[temp & 0xff];
#else
	right = IP[(temp >> 24) & 0xff]
	      | (IP[(temp >> 16) & 0xff] << 1)
	      | (IP[(temp >>  8) & 0xff] << 2)
	      | (IP[temp & 0xff] << 3);
#endif

	/*
	 * Do the 16 rounds through the cipher function.  We actually
	 * do two at a time, one on the left half and one on the right
	 * half.
	 */
	kp = subkeys;
	for (i = 0; i < 8; i++) {
		/*
		 * The E expansion is easy to compute algorithmically.
		 * Take a look at its form and compare it to
		 * everything involving temp below.  Note that
		 * since SP[0-7] don't have any bits in common set
		 * it is okay to do the successive xor's.
		 */
		temp = (right >> 1) | ((right & 1) ? 0x80000000 : 0);
		left ^= SP[0][((temp >> 26) & 0x3f) ^ *kp++];
		left ^= SP[1][((temp >> 22) & 0x3f) ^ *kp++];
		left ^= SP[2][((temp >> 18) & 0x3f) ^ *kp++];
		left ^= SP[3][((temp >> 14) & 0x3f) ^ *kp++];
		left ^= SP[4][((temp >> 10) & 0x3f) ^ *kp++];
		left ^= SP[5][((temp >>  6) & 0x3f) ^ *kp++];
		left ^= SP[6][((temp >>  2) & 0x3f) ^ *kp++];
		left ^= SP[7][(((right << 1) | ((right & 0x80000000)?1:0))
				& 0x3f) ^ *kp++];

		/*
		 * Careful here.  Right now `right' is actually the
		 * left side and `left' is the right side.  Do the
		 * same thing again, except swap `left' and `right'
		 */
		temp = (left >> 1) | ((left & 1) ? 0x80000000 : 0);
		right ^= SP[0][((temp >> 26) & 0x3f) ^ *kp++];
		right ^= SP[1][((temp >> 22) & 0x3f) ^ *kp++];
		right ^= SP[2][((temp >> 18) & 0x3f) ^ *kp++];
		right ^= SP[3][((temp >> 14) & 0x3f) ^ *kp++];
		right ^= SP[4][((temp >> 10) & 0x3f) ^ *kp++];
		right ^= SP[5][((temp >>  6) & 0x3f) ^ *kp++];
		right ^= SP[6][((temp >>  2) & 0x3f) ^ *kp++];
		right ^= SP[7][(((left << 1) | ((left & 0x80000000)?1:0))
				& 0x3f) ^ *kp++];

		/*
		 * By the time we get here, all is straightened out
		 * again.  `left' is left and `right' is right.
		 */
	}

	/*
	 * Now the final permutation.  Note this is like the IP above
	 * except that the data is computed from
	 *
 	 * ((left & 0x0f0f0f0f) << 4) | (right & 0x0f0f0f0f)  for left result
 	 * (left & 0xf0f0f0f0) | ((right & 0xf0f0f0f0) >> 4)  for right result
	 *
	 * Just to confuse things more, we're supposed to swap the right
	 * and the left halves before doing this.  Instead, we'll just
	 * switch which goes where when computing the temporary.
	 *
	 * This operation also byte swaps stuff back into big end byte
	 * order.  This is accomplished by modifying the FP table for
	 * little end machines, however, so we don't have to worry about
	 * it here.
	 */
	temp = ((right & 0x0f0f0f0f) << 4) | (left & 0x0f0f0f0f);
	*data = (FP[(temp >> 24) & 0xff] << 6)
	      | (FP[(temp >> 16) & 0xff] << 4)
	      | (FP[(temp >>  8) & 0xff] << 2)
	      |  FP[temp & 0xff];

	temp = (right & 0xf0f0f0f0) | ((left & 0xf0f0f0f0) >> 4);
	*(data+1) = (FP[(temp >> 24) & 0xff] << 6)
		  | (FP[(temp >> 16) & 0xff] << 4)
		  | (FP[(temp >>  8) & 0xff] << 2)
		  |  FP[temp & 0xff];
};
OpenPOWER on IntegriCloud