summaryrefslogtreecommitdiffstats
path: root/secure/lib/libcrypto/man/EC_GFp_simple_method.3
blob: b5b2da49717f38942520f6e90dbaa50483bbd406 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.30)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings.  \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote.  \*(C+ will
.\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
.\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
.    ds -- \(*W-
.    ds PI pi
.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
.    ds L" ""
.    ds R" ""
.    ds C` ""
.    ds C' ""
'br\}
.el\{\
.    ds -- \|\(em\|
.    ds PI \(*p
.    ds L" ``
.    ds R" ''
.    ds C`
.    ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el       .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD.  Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{
.    if \nF \{
.        de IX
.        tm Index:\\$1\t\\n%\t"\\$2"
..
.        if !\nF==2 \{
.            nr % 0
.            nr F 2
.        \}
.    \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
.    \" fudge factors for nroff and troff
.if n \{\
.    ds #H 0
.    ds #V .8m
.    ds #F .3m
.    ds #[ \f1
.    ds #] \fP
.\}
.if t \{\
.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
.    ds #V .6m
.    ds #F 0
.    ds #[ \&
.    ds #] \&
.\}
.    \" simple accents for nroff and troff
.if n \{\
.    ds ' \&
.    ds ` \&
.    ds ^ \&
.    ds , \&
.    ds ~ ~
.    ds /
.\}
.if t \{\
.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
.    \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.    \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
.    \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
.    ds : e
.    ds 8 ss
.    ds o a
.    ds d- d\h'-1'\(ga
.    ds D- D\h'-1'\(hy
.    ds th \o'bp'
.    ds Th \o'LP'
.    ds ae ae
.    ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "EC_GFp_simple_method 3"
.TH EC_GFp_simple_method 3 "2016-05-03" "1.0.2h" "OpenSSL"
.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
EC_GFp_simple_method, EC_GFp_mont_method, EC_GFp_nist_method, EC_GFp_nistp224_method, EC_GFp_nistp256_method, EC_GFp_nistp521_method, EC_GF2m_simple_method, EC_METHOD_get_field_type \- Functions for obtaining EC_METHOD objects.
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/ec.h>
\&
\& const EC_METHOD *EC_GFp_simple_method(void);
\& const EC_METHOD *EC_GFp_mont_method(void);
\& const EC_METHOD *EC_GFp_nist_method(void);
\& const EC_METHOD *EC_GFp_nistp224_method(void);
\& const EC_METHOD *EC_GFp_nistp256_method(void);
\& const EC_METHOD *EC_GFp_nistp521_method(void);
\&
\& const EC_METHOD *EC_GF2m_simple_method(void);
\&
\& int EC_METHOD_get_field_type(const EC_METHOD *meth);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
The Elliptic Curve library provides a number of different implementations through a single common interface.
When constructing a curve using EC_GROUP_new (see \fIEC_GROUP_new\fR\|(3)) an
implementation method must be provided. The functions described here all return a const pointer to an
\&\fB\s-1EC_METHOD\s0\fR structure that can be passed to \s-1EC_GROUP_NEW.\s0 It is important that the correct implementation
type for the form of curve selected is used.
.PP
For F2^m curves there is only one implementation choice, i.e. EC_GF2_simple_method.
.PP
For Fp curves the lowest common denominator implementation is the EC_GFp_simple_method implementation. All
other implementations are based on this one. EC_GFp_mont_method builds on EC_GFp_simple_method but adds the
use of montgomery multiplication (see \fIBN_mod_mul_montgomery\fR\|(3)). EC_GFp_nist_method
offers an implementation optimised for use with \s-1NIST\s0 recommended curves (\s-1NIST\s0 curves are available through
EC_GROUP_new_by_curve_name as described in \fIEC_GROUP_new\fR\|(3)).
.PP
The functions EC_GFp_nistp224_method, EC_GFp_nistp256_method and EC_GFp_nistp521_method offer 64 bit
optimised implementations for the \s-1NIST P224, P256\s0 and P521 curves respectively. Note, however, that these
implementations are not available on all platforms.
.PP
EC_METHOD_get_field_type identifies what type of field the \s-1EC_METHOD\s0 structure supports, which will be either
F2^m or Fp. If the field type is Fp then the value \fBNID_X9_62_prime_field\fR is returned. If the field type is
F2^m then the value \fBNID_X9_62_characteristic_two_field\fR is returned. These values are defined in the
obj_mac.h header file.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
All EC_GFp* functions and EC_GF2m_simple_method always return a const pointer to an \s-1EC_METHOD\s0 structure.
.PP
EC_METHOD_get_field_type returns an integer that identifies the type of field the \s-1EC_METHOD\s0 structure supports.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIcrypto\fR\|(3), \fIec\fR\|(3), \fIEC_GROUP_new\fR\|(3), \fIEC_GROUP_copy\fR\|(3),
\&\fIEC_POINT_new\fR\|(3), \fIEC_POINT_add\fR\|(3), \fIEC_KEY_new\fR\|(3),
\&\fId2i_ECPKParameters\fR\|(3),
\&\fIBN_mod_mul_montgomery\fR\|(3)
OpenPOWER on IntegriCloud