1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
.\" expand to `' in nroff, nothing in troff, for use with C<>.
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "BN_generate_prime 3"
.TH BN_generate_prime 3 "2006-10-01" "0.9.8d" "OpenSSL"
.SH "NAME"
BN_generate_prime, BN_is_prime, BN_is_prime_fasttest \- generate primes and test for primality
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/bn.h>
.Ve
.PP
.Vb 2
\& BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
\& BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);
.Ve
.PP
.Vb 2
\& int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int,
\& void *), BN_CTX *ctx, void *cb_arg);
.Ve
.PP
.Vb 3
\& int BN_is_prime_fasttest(const BIGNUM *a, int checks,
\& void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
\& int do_trial_division);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fIBN_generate_prime()\fR generates a pseudo-random prime number of \fBnum\fR
bits.
If \fBret\fR is not \fB\s-1NULL\s0\fR, it will be used to store the number.
.PP
If \fBcallback\fR is not \fB\s-1NULL\s0\fR, it is called as follows:
.IP "\(bu" 4
\&\fBcallback(0, i, cb_arg)\fR is called after generating the i\-th
potential prime number.
.IP "\(bu" 4
While the number is being tested for primality, \fBcallback(1, j,
cb_arg)\fR is called as described below.
.IP "\(bu" 4
When a prime has been found, \fBcallback(2, i, cb_arg)\fR is called.
.PP
The prime may have to fulfill additional requirements for use in
Diffie-Hellman key exchange:
.PP
If \fBadd\fR is not \fB\s-1NULL\s0\fR, the prime will fulfill the condition p % \fBadd\fR
== \fBrem\fR (p % \fBadd\fR == 1 if \fBrem\fR == \fB\s-1NULL\s0\fR) in order to suit a given
generator.
.PP
If \fBsafe\fR is true, it will be a safe prime (i.e. a prime p so
that (p\-1)/2 is also prime).
.PP
The \s-1PRNG\s0 must be seeded prior to calling \fIBN_generate_prime()\fR.
The prime number generation has a negligible error probability.
.PP
\&\fIBN_is_prime()\fR and \fIBN_is_prime_fasttest()\fR test if the number \fBa\fR is
prime. The following tests are performed until one of them shows that
\&\fBa\fR is composite; if \fBa\fR passes all these tests, it is considered
prime.
.PP
\&\fIBN_is_prime_fasttest()\fR, when called with \fBdo_trial_division == 1\fR,
first attempts trial division by a number of small primes;
if no divisors are found by this test and \fBcallback\fR is not \fB\s-1NULL\s0\fR,
\&\fBcallback(1, \-1, cb_arg)\fR is called.
If \fBdo_trial_division == 0\fR, this test is skipped.
.PP
Both \fIBN_is_prime()\fR and \fIBN_is_prime_fasttest()\fR perform a Miller-Rabin
probabilistic primality test with \fBchecks\fR iterations. If
\&\fBchecks == BN_prime_checks\fR, a number of iterations is used that
yields a false positive rate of at most 2^\-80 for random input.
.PP
If \fBcallback\fR is not \fB\s-1NULL\s0\fR, \fBcallback(1, j, cb_arg)\fR is called
after the j\-th iteration (j = 0, 1, ...). \fBctx\fR is a
pre-allocated \fB\s-1BN_CTX\s0\fR (to save the overhead of allocating and
freeing the structure in a loop), or \fB\s-1NULL\s0\fR.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
\&\fIBN_generate_prime()\fR returns the prime number on success, \fB\s-1NULL\s0\fR otherwise.
.PP
\&\fIBN_is_prime()\fR returns 0 if the number is composite, 1 if it is
prime with an error probability of less than 0.25^\fBchecks\fR, and
\&\-1 on error.
.PP
The error codes can be obtained by \fIERR_get_error\fR\|(3).
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIbn\fR\|(3), \fIERR_get_error\fR\|(3), \fIrand\fR\|(3)
.SH "HISTORY"
.IX Header "HISTORY"
The \fBcb_arg\fR arguments to \fIBN_generate_prime()\fR and to \fIBN_is_prime()\fR
were added in SSLeay 0.9.0. The \fBret\fR argument to \fIBN_generate_prime()\fR
was added in SSLeay 0.9.1.
\&\fIBN_is_prime_fasttest()\fR was added in OpenSSL 0.9.5.
|