1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{
. if \nF \{
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "BIO_s_mem 3"
.TH BIO_s_mem 3 "2016-09-22" "1.0.1u" "OpenSSL"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf,
BIO_get_mem_ptr, BIO_new_mem_buf \- memory BIO
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/bio.h>
\&
\& BIO_METHOD * BIO_s_mem(void);
\&
\& BIO_set_mem_eof_return(BIO *b,int v)
\& long BIO_get_mem_data(BIO *b, char **pp)
\& BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
\& BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)
\&
\& BIO *BIO_new_mem_buf(void *buf, int len);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fIBIO_s_mem()\fR return the memory \s-1BIO\s0 method function.
.PP
A memory \s-1BIO\s0 is a source/sink \s-1BIO\s0 which uses memory for its I/O. Data
written to a memory \s-1BIO\s0 is stored in a \s-1BUF_MEM\s0 structure which is extended
as appropriate to accommodate the stored data.
.PP
Any data written to a memory \s-1BIO\s0 can be recalled by reading from it.
Unless the memory \s-1BIO\s0 is read only any data read from it is deleted from
the \s-1BIO.\s0
.PP
Memory BIOs support \fIBIO_gets()\fR and \fIBIO_puts()\fR.
.PP
If the \s-1BIO_CLOSE\s0 flag is set when a memory \s-1BIO\s0 is freed then the underlying
\&\s-1BUF_MEM\s0 structure is also freed.
.PP
Calling \fIBIO_reset()\fR on a read write memory \s-1BIO\s0 clears any data in it. On a
read only \s-1BIO\s0 it restores the \s-1BIO\s0 to its original state and the read only
data can be read again.
.PP
\&\fIBIO_eof()\fR is true if no data is in the \s-1BIO.\s0
.PP
\&\fIBIO_ctrl_pending()\fR returns the number of bytes currently stored.
.PP
\&\fIBIO_set_mem_eof_return()\fR sets the behaviour of memory \s-1BIO \s0\fBb\fR when it is
empty. If the \fBv\fR is zero then an empty memory \s-1BIO\s0 will return \s-1EOF \s0(that is
it will return zero and BIO_should_retry(b) will be false. If \fBv\fR is non
zero then it will return \fBv\fR when it is empty and it will set the read retry
flag (that is BIO_read_retry(b) is true). To avoid ambiguity with a normal
positive return value \fBv\fR should be set to a negative value, typically \-1.
.PP
\&\fIBIO_get_mem_data()\fR sets \fBpp\fR to a pointer to the start of the memory BIOs data
and returns the total amount of data available. It is implemented as a macro.
.PP
\&\fIBIO_set_mem_buf()\fR sets the internal \s-1BUF_MEM\s0 structure to \fBbm\fR and sets the
close flag to \fBc\fR, that is \fBc\fR should be either \s-1BIO_CLOSE\s0 or \s-1BIO_NOCLOSE.\s0
It is a macro.
.PP
\&\fIBIO_get_mem_ptr()\fR places the underlying \s-1BUF_MEM\s0 structure in \fBpp\fR. It is
a macro.
.PP
\&\fIBIO_new_mem_buf()\fR creates a memory \s-1BIO\s0 using \fBlen\fR bytes of data at \fBbuf\fR,
if \fBlen\fR is \-1 then the \fBbuf\fR is assumed to be null terminated and its
length is determined by \fBstrlen\fR. The \s-1BIO\s0 is set to a read only state and
as a result cannot be written to. This is useful when some data needs to be
made available from a static area of memory in the form of a \s-1BIO.\s0 The
supplied data is read directly from the supplied buffer: it is \fBnot\fR copied
first, so the supplied area of memory must be unchanged until the \s-1BIO\s0 is freed.
.SH "NOTES"
.IX Header "NOTES"
Writes to memory BIOs will always succeed if memory is available: that is
their size can grow indefinitely.
.PP
Every read from a read write memory \s-1BIO\s0 will remove the data just read with
an internal copy operation, if a \s-1BIO\s0 contains a lot of data and it is
read in small chunks the operation can be very slow. The use of a read only
memory \s-1BIO\s0 avoids this problem. If the \s-1BIO\s0 must be read write then adding
a buffering \s-1BIO\s0 to the chain will speed up the process.
.SH "BUGS"
.IX Header "BUGS"
There should be an option to set the maximum size of a memory \s-1BIO.\s0
.PP
There should be a way to \*(L"rewind\*(R" a read write \s-1BIO\s0 without destroying
its contents.
.PP
The copying operation should not occur after every small read of a large \s-1BIO\s0
to improve efficiency.
.SH "EXAMPLE"
.IX Header "EXAMPLE"
Create a memory \s-1BIO\s0 and write some data to it:
.PP
.Vb 2
\& BIO *mem = BIO_new(BIO_s_mem());
\& BIO_puts(mem, "Hello World\en");
.Ve
.PP
Create a read only memory \s-1BIO:\s0
.PP
.Vb 3
\& char data[] = "Hello World";
\& BIO *mem;
\& mem = BIO_new_mem_buf(data, \-1);
.Ve
.PP
Extract the \s-1BUF_MEM\s0 structure from a memory \s-1BIO\s0 and then free up the \s-1BIO:\s0
.PP
.Vb 4
\& BUF_MEM *bptr;
\& BIO_get_mem_ptr(mem, &bptr);
\& BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
\& BIO_free(mem);
.Ve
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\s-1TBA\s0
|