summaryrefslogtreecommitdiffstats
path: root/sbin/vinum/vinum.8
blob: 1f6e319910b2543ac32a194ba952e5f97568c89c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
.\"  Hey, Emacs, edit this file in -*- nroff-fill -*- mode
.\"-
.\" Copyright (c) 1997, 1998
.\"	Nan Yang Computer Services Limited.  All rights reserved.
.\"
.\"  This software is distributed under the so-called ``Berkeley
.\"  License'':
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\" 3. All advertising materials mentioning features or use of this software
.\"    must display the following acknowledgement:
.\"	This product includes software developed by Nan Yang Computer
.\"      Services Limited.
.\" 4. Neither the name of the Company nor the names of its contributors
.\"    may be used to endorse or promote products derived from this software
.\"    without specific prior written permission.
.\"
.\" This software is provided ``as is'', and any express or implied
.\" warranties, including, but not limited to, the implied warranties of
.\" merchantability and fitness for a particular purpose are disclaimed.
.\" In no event shall the company or contributors be liable for any
.\" direct, indirect, incidental, special, exemplary, or consequential
.\" damages (including, but not limited to, procurement of substitute
.\" goods or services; loss of use, data, or profits; or business
.\" interruption) however caused and on any theory of liability, whether
.\" in contract, strict liability, or tort (including negligence or
.\" otherwise) arising in any way out of the use of this software, even if
.\" advised of the possibility of such damage.
.\"
.\" $Id: vinum.8,v 1.15 2001/05/14 01:10:37 grog Exp grog $
.\" $FreeBSD$
.\"
.Dd December 20, 2000
.Dt VINUM 8
.Os
.Sh NAME
.Nm vinum
.Nd Logical Volume Manager control program
.Sh SYNOPSIS
.Nm
.Op Ar command
.Op Fl options
.Sh COMMANDS
.Bl -tag -width indent
.It Ic attach Ar plex volume Op Cm rename
.It Xo
.Ic attach Ar subdisk plex
.Op Ar offset
.Op Cm rename
.Xc
Attach a plex to a volume, or a subdisk to a plex.
.It Xo
.Ic checkparity Ar plex
.Op Fl f
.Op Fl v
.Xc
Check the parity blocks of a RAID-4 or RAID-5 plex.
.It Xo
.Ic concat
.Op Fl f
.Op Fl n Ar name
.Op Fl v
.Ar drives
.Xc
Create a concatenated volume from the specified drives.
.It Xo
.Ic create
.Op Fl f
.Ar description-file
.Xc
Create a volume as described in
.Ar description-file .
.It Ic debug
Cause the volume manager to enter the kernel debugger.
.It Ic debug Ar flags
Set debugging flags.
.It Xo
.Ic detach
.Op Fl f
.Op Ar plex | subdisk
.Xc
Detach a plex or subdisk from the volume or plex to which it is attached.
.It Ic dumpconfig Op Ar drive ...
List the configuration information stored on the specified drives, or all drives
in the system if no drive names are specified.
.It Xo
.Ic info
.Op Fl v
.Op Fl V
.Xc
List information about volume manager state.
.It Xo
.Ic init
.Op Fl S Ar size
.Op Fl w
.Ar plex | subdisk
.Xc
.\" XXX
Initialize the contents of a subdisk or all the subdisks of a plex to all zeros.
.It Ic label Ar volume
Create a volume label.
.It Xo
.Ic l | list
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar volume | plex | subdisk
.Xc
List information about specified objects.
.It Xo
.Ic ld
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar volume
.Xc
List information about drives.
.It Xo
.Ic ls
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar subdisk
.Xc
List information about subdisks.
.It Xo
.Ic lp
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar plex
.Xc
List information about plexes.
.It Xo
.Ic lv
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar volume
.Xc
List information about volumes.
.It Ic makedev
Remake the device nodes in
.Pa /dev/vinum .
.It Xo
.Ic mirror
.Op Fl f
.Op Fl n Ar name
.Op Fl s
.Op Fl v
.Ar drives
.Xc
Create a mirrored volume from the specified drives.
.It Xo
.Ic move | mv
.Fl f
.Ar drive object ...
.Xc
Move the object(s) to the specified drive.
.It Ic printconfig Op Ar file
Write a copy of the current configuration to
.Ar file .
.It Ic quit
Exit the
.Nm
program when running in interactive mode.  Normally this would be done by
entering the
.Dv EOF
character.
.It Ic read Ar disk ...
Read the
.Nm
configuration from the specified disks.
.It Xo
.Ic rename Op Fl r
.Op Ar drive | subdisk | plex | volume
.Ar newname
.Xc
Change the name of the specified object.
.\" XXX
.\".It Ic replace Ar drive newdrive
.\"Move all the subdisks from the specified drive onto the new drive.
.It Xo
.Ic rebuildparity Ar plex Op Fl f
.Op Fl v
.Op Fl V
.Xc
Rebuild the parity blocks of a RAID-4 or RAID-5 plex.
.It Ic resetconfig
Reset the complete
.Nm
configuration.
.It Xo
.Ic resetstats
.Op Fl r
.Op Ar volume | plex | subdisk
.Xc
Reset statistisc counters for the specified objects, or for all objects if none
are specified.
.It Xo
.Ic rm
.Op Fl f
.Op Fl r
.Ar volume | plex | subdisk
.Xc
Remove an object.
.It Ic saveconfig
Save
.Nm
configuration to disk after configuration failures.
.\" XXX
.\".It Xo
.\".Ic set
.\".Op Fl f
.\".Ar state
.\".Ar volume | plex | subdisk | disk
.\".Xc
.\"Set the state of the object to
.\".Ar state .
.It Ic setdaemon Op Ar value
Set daemon configuration.
.It Xo
.Ic setstate
.Ar state
.Op Ar volume | plex | subdisk | drive
.Xc
Set state without influencing other objects, for diagnostic purposes only.
.It Ic start
Read configuration from all vinum drives.
.It Xo
.Ic start
.Op Fl i Ar interval
.Op Fl S Ar size
.Op Fl w
.Ar volume | plex | subdisk
.Xc
Allow the system to access the objects.
.It Xo
.Ic stop
.Op Fl f
.Op Ar volume | plex | subdisk
.Xc
Terminate access to the objects, or stop
.Nm
if no parameters are specified.
.It Xo
.Ic stripe
.Op Fl f
.Op Fl n Ar name
.Op Fl v
.Ar drives
.Xc
Create a striped volume from the specified drives.
.El
.Sh DESCRIPTION
.Nm
is a utility program to communicate with the kernel component of the Vinum
logical volume manager.
.Nm
is designed either for interactive use, when started without command line
arguments, or to execute a single command if the command is supplied on the
command line.  In interactive mode,
.Nm
maintains a command line history.
.Sh OPTIONS
.Nm
commands may optionally be followed by an option.  Any of the following options
may be specified with any command, but in some cases the options are ignored.
For example, the
.Ic stop
command ignores the
.Fl v
and
.Fl V
options.
.Bl -tag -width indent
.It Fl f
The
.Fl f
.Pq Dq force
option overrides safety checks.  Use with extreme care.  This option is for
emergency use only.  For example, the command
.Pp
.Dl rm -f myvolume
.Pp
removes
.Ar myvolume
even if it is open.  Any subsequent access to the volume will almost certainly
cause a panic.
.It Fl i Ar millisecs
When performing the
.Ic init
and
.Ic start
commands, wait
.Ar millisecs
milliseconds between copying each block.  This lowers the load on the system.
.It Fl n Ar name
Use the
.Fl n
option to specify a volume name to the simplified configuration commands
.Ic concat , mirror
and
.Ic stripe .
.It Fl r
The
.Fl r
.Pq Dq recursive
option is used by the list commands to display information not
only about the specified objects, but also about subordinate objects.  For
example, in conjunction with the
.Ic lv
command, the
.Fl r
option will also show information about the plexes and subdisks belonging to the
volume.
.It Fl s
The
.Fl s
.Pq Dq statistics
option is used by the list commands to display statistical information.  The
.Ic mirror
command also uses this option to specify that it should create striped plexes.
.It Fl S Ar size
The
.Fl S
option specifies the transfer size for the
.Ic init
and
.Ic start
commands.
.It Fl v
The
.Fl v
.Pq Dq verbose
option can be used to request more detailed information.
.It Fl V
The
.Fl V
.Pq Dq Very verbose
option can be used to request more detailed information than the
.Fl v
option provides.
.It Fl w
The
.Fl w
.Pq Dq wait
option tells
.Nm
to wait for completion of commands which normally run in the background, such as
.Ic init .
.El
.Sh COMMANDS IN DETAIL
.Nm
commands perform the following functions:
.Pp
.Bl -tag -width indent -compact
.It Ic attach Ar plex volume Op Cm rename
.It Xo
.Ic attach Ar subdisk plex
.Op Ar offset
.Op Cm rename
.Xc
.Nm Ic attach
inserts the specified plex or subdisk in a volume or plex.  In the case of a
subdisk, an offset in the plex may be specified.  If it is not, the subdisk will
be attached at the first possible location.  After attaching a plex to a
non-empty volume,
.Nm
reintegrates the plex.
.Pp
If the keyword
.Cm rename
is specified,
.Nm
renames the object (and in the case of a plex, any subordinate subdisks) to fit
in with the default
.Nm
naming convention.  To rename the object to any other name, use the
.Ic rename
command.
.Pp
A number of considerations apply to attaching subdisks:
.Bl -bullet
.It
Subdisks can normally only be attached to concatenated plexes.
.It
If a striped or RAID-5 plex is missing a subdisk (for example after drive
failure), it should be replaced by a subdisk of the same size only.
.It
In order to add further subdisks to a striped or RAID-5 plex, use the
.Fl f
(force) option.  This will corrupt the data in the plex.
.\"No other attachment of
.\"subdisks is currently allowed for striped and RAID-5 plexes.
.It
For concatenated plexes, the
.Ar offset
parameter specifies the offset in blocks from the beginning of the plex.  For
striped and RAID-5 plexes, it specifies the offset of the first block of the
subdisk: in other words, the offset is the numerical position of the subdisk
multiplied by the stripe size.  For example, in a plex with stripe size 271k,
the first subdisk will have offset 0, the second offset 271k, the third 542k,
etc.  This calculation ignores parity blocks in RAID-5 plexes.
.El
.Pp
.It Xo
.Ic checkparity
.Ar plex
.Op Fl f
.Op Fl v
.Xc
Check the parity blocks on the specified RAID-4 or RAID-5 plex.  This operation
maintains a pointer in the plex, so it can be stopped and later restarted from
the same position if desired.  In addition, this pointer is used by the
.Ic rebuildparity
command, so rebuilding the parity blocks need only start at the location where
the first parity problem has been detected.
.Pp
If the
.Fl f
flag is specified,
.Ic checkparity
starts checking at the beginning of the plex.  If the
.Fl v
flag is specified,
.Ic checkparity
prints a running progress report.
.Pp
.It Xo
.Ic concat
.Op Fl f
.Op Fl n Ar name
.Op Fl v
.Ar drives
.Xc
The
.Ic concat
command provides a simplified alternative to the
.Ic create
command for creating volumes with a single concatenated plex.  The largest
contiguous space available on each drive is used to create the subdisks for the
plexes.
.Pp
Normally, the
.Ic concat
command creates an arbitrary name for the volume and its components.  The name
is composed of the text
.Dq Li vinum
and a small integer, for example
.Dq Li vinum3 .
You can override this with the
.Fl n Ar name
option, which assigns the name specified to the volume.  The plexes and subdisks
are named after the volume in the default manner.
.Pp
There is no choice of name for the drives.  If the drives have already been
initialized as
.Nm
drives, the name remains.  Otherwise the drives are given names starting with
the text
.Dq Li vinumdrive
and a small integer, for example
.Dq Li vinumdrive7 .
As with the
.Ic create
command, the
.Fl f
option can be used to specify that a previous name should be overwritten.  The
.Fl v
is used to specify verbose output.
.Pp
See the section
.Sx SIMPLIFIED CONFIGURATION
below for some examples of this
command.
.Pp
.It Xo
.Ic create
.Op Fl f
.Ar description-file
.Xc
.Nm Ic create
is used to create any object.  In view of the relatively complicated
relationship and the potential dangers involved in creating a
.Nm
object, there is no interactive interface to this function.  If you do not
specify a file name,
.Nm
starts an editor on a temporary file.  If the environment variable
.Ev EDITOR
is set,
.Nm
starts this editor.  If not, it defaults to
.Nm vi .
See the section
.Sx CONFIGURATION FILE
below for more information on the format of
this file.
.Pp
Note that the
.Nm Ic create
function is additive: if you run it multiple times, you will create multiple
copies of all unnamed objects.
.Pp
Normally the
.Ic create
command will not change the names of existing
.Nm
drives, in order to avoid accidentally erasing them.  The correct way to dispose
of no longer wanted
.Nm
drives is to reset the configuration with the
.Ic resetconfig
command.  In some cases, however, it may be necessary to create new data on
.Nm
drives which can no longer be started.  In this case, use the
.Ic create Fl f
command.
.Pp
.It Ic debug
.Nm Ic debug ,
without any arguments, is used to enter the remote kernel debugger.  It is only
activated if
.Nm
is built with the
.Dv VINUMDEBUG
option.  This option will stop the execution of the operating system until the
kernel debugger is exited.  If remote debugging is set and there is no remote
connection for a kernel debugger, it will be necessary to reset the system and
reboot in order to leave the debugger.
.Pp
.It Ic debug Ar flags
Set a bit mask of internal debugging flags.  These will change without warning
as the product matures; to be certain, read the header file
.Aq Pa sys/dev/vinumvar.h .
The bit mask is composed of the following values:
.Bl -tag -width indent
.It Dv DEBUG_ADDRESSES Pq No 1
Show buffer information during requests
.\".It Dv DEBUG_NUMOUTPUT Pq No 2
.\"Show the value of
.\".Va vp->v_numoutput .
.It Dv DEBUG_RESID Pq No 4
Go into debugger in
.Fn complete_rqe .
.It Dv DEBUG_LASTREQS Pq No 8
Keep a circular buffer of last requests.
.It Dv DEBUG_REVIVECONFLICT Pq No 16
Print info about revive conflicts.
.It Dv DEBUG_EOFINFO Pq No 32
Print information about internal state when returning an
.Dv EOF
on a striped plex.
.It Dv DEBUG_MEMFREE Pq No 64
Maintain a circular list of the last memory areas freed by the memory allocator.
.It Dv DEBUG_REMOTEGDB Pq No 256
Go into remote
.Nm gdb
when the
.Ic debug
command is issued.
.It Dv DEBUG_WARNINGS Pq No 512
Print some warnings about minor problems in the implementation.
.El
.Pp
.It Ic detach Oo Fl f Oc Ar plex
.It Ic detach Oo Fl f Oc Ar subdisk
.Nm Ic detach
removes the specified plex or subdisk from the volume or plex to which it is
attached.  If removing the object would impair the data integrity of the volume,
the operation will fail unless the
.Fl f
option is specified.  If the object is named after the object above it (for
example, subdisk
.Li vol1.p7.s0
attached to plex
.Li vol1.p7 ) ,
the name will be changed
by prepending the text
.Dq Li ex-
(for example,
.Li ex-vol1.p7.s0 ) .
If necessary, the name will be truncated in the
process.
.Pp
.Ic detach
does not reduce the number of subdisks in a striped or RAID-5 plex.  Instead,
the subdisk is marked absent, and can later be replaced with the
.Ic attach
command.
.Pp
.It Ic dumpconfig Op Ar drive ...
.Pp
.Nm Ic dumpconfig
shows the configuration information stored on the specified drives.  If no drive
names are specified,
.Ic dumpconfig
searches all drives on the system for Vinum partitions and dumps the
information.  If configuration updates are disabled, it is possible that this
information is not the same as the information returned by the
.Ic list
command.  This command is used primarily for maintenance and debugging.
.Pp
.It Ic info
.Nm Ic info
displays information about
.Nm
memory usage.  This is intended primarily for debugging.  With the
.Fl v
option, it will give detailed information about the memory areas in use.
.Pp
With the
.Fl V
option,
.Ic info
displays information about the last up to 64 I/O requests handled by the
.Nm
driver.  This information is only collected if debug flag 8 is set.  The format
looks like:
.Bd -literal
vinum -> info -V
Flags: 0x200    1 opens
Total of 38 blocks malloced, total memory: 16460
Maximum allocs:       56, malloc table at 0xf0f72dbc

Time             Event       Buf        Dev     Offset          Bytes   SD      SDoff   Doffset Goffset

14:40:00.637758 1VS Write 0xf2361f40    91.3  0x10            16384
14:40:00.639280 2LR Write 0xf2361f40    91.3  0x10            16384
14:40:00.639294 3RQ Read  0xf2361f40    4.39   0x104109        8192    19      0       0       0
14:40:00.639455 3RQ Read  0xf2361f40    4.23   0xd2109         8192    17      0       0       0
14:40:00.639529 3RQ Read  0xf2361f40    4.15   0x6e109         8192    16      0       0       0
14:40:00.652978 4DN Read  0xf2361f40    4.39   0x104109        8192    19      0       0       0
14:40:00.667040 4DN Read  0xf2361f40    4.15   0x6e109         8192    16      0       0       0
14:40:00.668556 4DN Read  0xf2361f40    4.23   0xd2109         8192    17      0       0       0
14:40:00.669777 6RP Write 0xf2361f40    4.39   0x104109        8192    19      0       0       0
14:40:00.685547 4DN Write 0xf2361f40    4.39   0x104109        8192    19      0       0       0
11:11:14.975184 Lock      0xc2374210    2      0x1f8001
11:11:15.018400 7VS Write 0xc2374210           0x7c0           32768   10
11:11:15.018456 8LR Write 0xc2374210    13.39  0xcc0c9         32768
11:11:15.046229 Unlock    0xc2374210    2      0x1f8001
.Ed
.Pp
The
.Ar Buf
field always contains the address of the user buffer header.  This can be used
to identify the requests associated with a user request, though this is not 100%
reliable: theoretically two requests in sequence could use the same buffer
header, though this is not common.  The beginning of a request can be identified
by the event
.Ar 1VS
or
.Ar 7VS .
The first example above shows the requests involved in a user request.  The
second is a subdisk I/O request with locking.
.Pp
The
.Ar Event
field contains information related to the sequence of events in the request
chain.  The digit
.Ar 1
to
.Ar 6
indicates the approximate sequence of events, and the two-letter abbreviation is
a mnemonic for the location:
.Bl -tag -width Lockwait
.It 1VS
(vinumstrategy) shows information about the user request on entry to
.Fn vinumstrategy .
The device number is the
.Nm
device, and offset and length are the user parameters.  This is always the
beginning of a request sequence.
.It 2LR
(launch_requests) shows the user request just prior to launching the low-level
.Nm
requests in the function
.Fn launch_requests .
The parameters should be the same as in the
.Ar 1VS
information.
.El
.Pp
In the following requests,
.Ar Dev
is the device number of the associated disk partition,
.Ar Offset
is the offset from the beginning of the partition,
.Ar SD
is the subdisk index in
.Va vinum_conf ,
.Ar SDoff
is the offset from the beginning of the subdisk,
.Ar Doffset
is the offset of the associated data request, and
.Ar Goffset
is the offset of the associated group request, where applicable.
.Bl -tag -width Lockwait
.It 3RQ
(request) shows one of possibly several low-level
.Nm
requests which are launched to satisfy the high-level request.  This information
is also logged in
.Fn launch_requests .
.It 4DN
(done) is called from
.Fn complete_rqe ,
showing the completion of a request.  This completion should match a request
launched either at stage
.Ar 4DN
from
.Fn launch_requests ,
or from
.Fn complete_raid5_write
at stage
.Ar 5RD
or
.Ar 6RP .
.It 5RD
(RAID-5 data) is called from
.Fn complete_raid5_write
and represents the data written to a RAID-5 data stripe after calculating
parity.
.It 6RP
(RAID-5 parity) is called from
.Fn complete_raid5_write
and represents the data written to a RAID-5 parity stripe after calculating
parity.
.It 7VS
shows a subdisk I/O request.  These requests are usually internal to
.Nm
for operations like initialization or rebuilding plexes.
.It 8LR
shows the low-level operation generated for a subdisk I/O request.
.It Lockwait
specifies that the process is waiting for a range lock.  The parameters are the
buffer header associated with the request, the plex number and the block number.
For internal reasons the block number is one higher than the address of the
beginning of the stripe.
.It Lock
specifies that a range lock has been obtained.  The parameters are the same as
for the range lock.
.It Unlock
specifies that a range lock has been released.  The parameters are the same as
for the range lock.
.El
.\" XXX
.Pp
.It Xo
.Ic init
.Op Fl S Ar size
.Op Fl w
.Ar plex | subdisk
.Xc
.Nm Ic init
initializes a subdisk by writing zeroes to it.  You can initialize all subdisks
in a plex by specifying the plex name.  This is the only way to ensure
consistent data in a plex.  You must perform this initialization before using a
RAID-5 plex.  It is also recommended for other new plexes.
.Nm
initializes all subdisks of a plex in parallel.  Since this operation can take a
long time, it is normally performed in the background.  If you want to wait for
completion of the command, use the
.Fl w
(wait) option.
.Pp
Specify the
.Fl S
option if you want to write blocks of a different size from the default value of
16 kB.
.Nm
prints a console message when the initialization is complete.
.Pp
.It Ic label Ar volume
The
.Ic label
command writes a
.Em ufs
style volume label on a volume.  It is a simple alternative to an appropriate
call to
.Ic disklabel .
This is needed because some
.Em ufs
commands still read the disk to find the label instead of using the correct
.Xr ioctl 2
call to access it.
.Nm
maintains a volume label separately from the volume data, so this command is not
needed for
.Xr newfs 8 .
This command is deprecated.
.Pp
.It Xo
.Ic list
.Op Fl r
.Op Fl V
.Op Ar volume | plex | subdisk
.Xc
.It Xo
.Ic l
.Op Fl r
.Op Fl V
.Op Ar volume | plex | subdisk
.Xc
.It Xo
.Ic ld
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar volume
.Xc
.It Xo
.Ic ls
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar subdisk
.Xc
.It Xo
.Ic lp
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar plex
.Xc
.It Xo
.Ic lv
.Op Fl r
.Op Fl s
.Op Fl v
.Op Fl V
.Op Ar volume
.Xc
.Ic list
is used to show information about the specified object.  If the argument is
omitted, information is shown about all objects known to
.Nm .
The
.Ic l
command is a synonym for
.Ic list .
.Pp
The
.Fl r
option relates to volumes and plexes: if specified, it recursively lists
information for the subdisks and (for a volume) plexes subordinate to the
objects.  The commands
.Ic lv , lp , ls
and
.Ic ld
list only volumes, plexes, subdisks and drives respectively.  This is
particularly useful when used without parameters.
.Pp
The
.Fl s
option causes
.Nm
to output device statistics, the
.Fl v
(verbose) option causes some additional information to be output, and the
.Fl V
causes considerable additional information to be output.
.Pp
.It Ic makedev
The
.Ic makedev
command removes the directory
.Pa /dev/vinum
and recreates it with device nodes
which reflect the current configuration.  This command is not intended for
general use, and is provided for emergency use only.
.Pp
.It Xo
.Ic mirror
.Op Fl f
.Op Fl n Ar name
.Op Fl s
.Op Fl v
.Ar drives
.Xc
The
.Ic mirror
command provides a simplified alternative to the
.Ic create
command for creating mirrored volumes.  Without any options, it creates a RAID-1
(mirrored) volume with two concatenated plexes.  The largest contiguous space
available on each drive is used to create the subdisks for the plexes.  The
first plex is built from the odd-numbered drives in the list, and the second
plex is built from the even-numbered drives.  If the drives are of different
sizes, the plexes will be of different sizes.
.Pp
If the
.Fl s
option is provided,
.Ic mirror
builds striped plexes with a stripe size of 279 kB.  The size of the subdisks in
each plex is the size of the smallest contiguous storage available on any of the
drives which form the plex.  Again, the plexes may differ in size.
.Pp
Normally, the
.Ic mirror
command creates an arbitrary name for the volume and its components.  The name
is composed of the text
.Dq Li vinum
and a small integer, for example
.Dq Li vinum3 .
You can override this with the
.Fl n Ar name
option, which assigns the name specified to the volume.  The plexes and subdisks
are named after the volume in the default manner.
.Pp
There is no choice of name for the drives.  If the drives have already been
initialized as
.Nm
drives, the name remains.  Otherwise the drives are given names starting with
the text
.Dq Li vinumdrive
and a small integer, for example
.Dq Li vinumdrive7 .
As with the
.Ic create
command, the
.Fl f
option can be used to specify that a previous name should be overwritten.  The
.Fl v
is used to specify verbose output.
.Pp
See the section
.Sx SIMPLIFIED CONFIGURATION
below for some examples of this
command.
.Pp
.It Ic mv Fl f Ar drive object ...
.It Ic move Fl f Ar drive object ...
Move all the subdisks from the specified objects onto the new drive.  The
objects may be subdisks, drives or plexes.  When drives or plexes are specified,
all subdisks associated with the object are moved.
.Pp
The
.Fl f
option is required for this function, since it currently does not preserve the
data in the subdisk.  This functionality will be added at a later date.  In this
form, however, it is suited to recovering a failed disk drive.
.Pp
.It Ic printconfig Op Ar file
Write a copy of the current configuration to
.Ar file
in a format that can be used to recreate the
.Nm
configuration.  Unlike the configuration saved on disk, it includes definitions
of the drives.  If you omit
.Ar file ,
.Nm
writes the list to
.Dv stdout .
.Pp
.It Ic quit
Exit the
.Nm
program when running in interactive mode.  Normally this would be done by
entering the
.Dv EOF
character.
.Pp
.It Ic read Ar disk ...
The
.Ic read
command scans the specified disks for
.Nm
partitions containing previously created configuration information.  It reads
the configuration in order from the most recently updated to least recently
updated configuration.
.Nm
maintains an up-to-date copy of all configuration information on each disk
partition.  You must specify all of the slices in a configuration as the
parameter to this command.
.Pp
The
.Ic read
command is intended to selectively load a
.Nm
configuration on a system which has other
.Nm
partitions.  If you want to start all partitions on the system, it is easier to
use the
.Ic start
command.
.Pp
If
.Nm
encounters any errors during this command, it will turn off automatic
configuration update to avoid corrupting the copies on disk.  This will also
happen if the configuration on disk indicates a configuration error (for
example, subdisks which do not have a valid space specification).  You can turn
the updates on again with the
.Ic setdaemon
and
.Ic saveconfig
commands.  Reset bit 2 (numerical value 4) of the daemon options mask to
re-enable configuration saves.
.Pp
.It Xo
.Ic rebuildparity
.Ar plex
.Op Fl f
.Op Fl v
.Op Fl V
.Xc
Rebuild the parity blocks on the specified RAID-4 or RAID-5 plex.  This
operation maintains a pointer in the plex, so it can be stopped and later
restarted from the same position if desired.  In addition, this pointer is used
by the
.Ic checkparity
command, so rebuilding the parity blocks need only start at the location where
the first parity problem has been detected.
.Pp
If the
.Fl f
flag is specified,
.Ic rebuildparity
starts rebuilding at the beginning of the plex.  If the
.Fl v
flag is specified,
.Ic rebuildparity
first checks the existing parity blocks prints information about those found to
be incorrect before rebuilding.  If the
.Fl V
flag is specified,
.Ic rebuildparity
prints a running progress report.
.Pp
.It Xo
.Ic rename
.Op Fl r
.Op Ar drive | subdisk | plex | volume
.Ar newname
.Xc
Change the name of the specified object.  If the
.Fl r
option is specified, subordinate objects will be named by the default rules:
plex names will be formed by appending
.Li .p Ns Ar number
to the volume name, and
subdisk names will be formed by appending
.Li .s Ns Ar number
to the plex name.
.\".Pp
.\".It Xo
.\".Ic replace
.\".Ar drive newdrive
.\"Move all the subdisks from the specified drive onto the new drive.  This will
.\"attempt to recover those subdisks that can be recovered, and create the others
.\"from scratch.  If the new drive lacks the space for this operation, as many
.\"subdisks as possible will be fitted onto the drive, and the rest will be left on
.\"the original drive.
.Pp
.It Ic resetconfig
The
.Ic resetconfig
command completely obliterates the
.Nm
configuration on a system.  Use this command only when you want to completely
delete the configuration.
.Nm
will ask for confirmation; you must type in the words
.Li "NO FUTURE"
exactly as shown:
.Bd -unfilled -offset indent
.No # Nm Ic resetconfig

WARNING!  This command will completely wipe out your vinum
configuration.  All data will be lost.  If you really want
to do this, enter the text

NO FUTURE
.No "Enter text ->" Sy "NO FUTURE"
Vinum configuration obliterated
.Ed
.Pp
As the message suggests, this is a last-ditch command.  Don't use it unless you
have an existing configuration which you never want to see again.
.Pp
.It Xo
.Ic resetstats
.Op Fl r
.Op Ar volume | plex | subdisk
.Xc
.Nm
maintains a number of statistical counters for each object.  See the header file
.Aq Pa sys/dev/vinumvar.h
for more information.
.\" XXX put it in here when it's finalized
Use the
.Ic resetstats
command to reset these counters.  In conjunction with the
.Fl r
option,
.Nm
also resets the counters of subordinate objects.
.Pp
.It Xo
.Ic rm
.Op Fl f
.Op Fl r
.Ar volume | plex | subdisk
.Xc
.Ic rm
removes an object from the
.Nm
configuration.  Once an object has been removed, there is no way to recover it.
Normally
.Nm
performs a large amount of consistency checking before removing an object.  The
.Fl f
option tells
.Nm
to omit this checking and remove the object anyway.  Use this option with great
care: it can result in total loss of data on a volume.
.Pp
Normally,
.Nm
refuses to remove a volume or plex if it has subordinate plexes or subdisks
respectively.  You can tell
.Nm
to remove the object anyway by using the
.Fl f
option, or you can cause
.Nm
to remove the subordinate objects as well by using the
.Fl r
(recursive) option.  If you remove a volume with the
.Fl r
option, it will remove both the plexes and the subdisks which belong to the
plexes.
.Pp
.It Ic saveconfig
Save the current configuration to disk.  Normally this is not necessary, since
.Nm
automatically saves any change in configuration.  If an error occurs on startup,
updates will be disabled.  When you reenable them with the
.Ic setdaemon
command,
.Nm
does not automatically save the configuration to disk.  Use this command to save
the configuration.
.\".Pp
.\".It Xo
.\".Ic set
.\".Op Fl f
.\".Ar state
.\".Ar volume | plex | subdisk | disk
.\".Xc
.\".Ic set
.\"sets the state of the specified object to one of the valid states (see
.\".Sx OBJECT STATES
.\"below).  Normally
.\".Nm
.\"performs a large amount of consistency checking before making the change.  The
.\".Fl f
.\"option tells
.\".Nm
.\"to omit this checking and perform the change anyway.  Use this option with great
.\"care: it can result in total loss of data on a volume.
.Pp
.It Ic setdaemon Op Ar value
.Ic setdaemon
sets a variable bitmask for the
.Nm
daemon.  This command is temporary and will be replaced.  Currently, the bit mask
may contain the bits 1 (log every action to syslog) and 4 (don't update
configuration).  Option bit 4 can be useful for error recovery.
.Pp
.It Xo
.Ic setstate Ar state
.Op Ar volume | plex | subdisk | drive
.Xc
.Ic setstate
sets the state of the specified objects to the specified state.  This bypasses
the usual consistency mechanism of
.Nm
and should be used only for recovery purposes.  It is possible to crash the
system by incorrect use of this command.
.Pp
.It Xo
.Ic start
.Op Fl i Ar interval
.Op Fl S Ar size
.Op Fl w
.Op Ar plex | subdisk
.Xc
.Ic start
starts (brings into to the
.Em up
state) one or more
.Nm
objects.
.Pp
If no object names are specified,
.Nm
scans the disks known to the system for
.Nm
drives and then reads in the configuration as described under the
.Ic read
commands.  The
.Nm
drive contains a header with all information about the data stored on the drive,
including the names of the other drives which are required in order to represent
plexes and volumes.
.Pp
If
.Nm
encounters any errors during this command, it will turn off automatic
configuration update to avoid corrupting the copies on disk.  This will also
happen if the configuration on disk indicates a configuration error (for
example, subdisks which do not have a valid space specification).  You can turn
the updates on again with the
.Ic setdaemon
and
.Ic saveconfig
command.  Reset bit 4 of the daemon options mask to re-enable configuration
saves.
.Pp
If object names are specified,
.Nm
starts them.  Normally this operation is only of use with subdisks.  The action
depends on the current state of the object:
.Bl -bullet
.It
If the object is already in the
.Em up
state,
.Nm
does nothing.
.It
If the object is a subdisk in the
.Em down
or
.Em reborn
states,
.Nm
changes it to the
.Em up
state.
.It
If the object is a subdisk in the
.Em empty
state, the change depends on the subdisk.  If it is part of a plex which is part
of a volume which contains other plexes,
.Nm
places the subdisk in the
.Em reviving
state and attempts to copy the data from the volume.  When the operation
completes, the subdisk is set into the
.Em up
state.  If it is part of a plex which is part of a volume which contains no
other plexes, or if it is not part of a plex,
.Nm
brings it into the
.Em up
state immediately.
.It
If the object is a subdisk in the
.Em reviving
state,
.Nm
continues the revive
operation offline.  When the operation completes, the subdisk is set into the
.Em up
state.
.El
.Pp
When a subdisk comes into the
.Em up
state,
.Nm
automatically checks the state of any plex and volume to which it may belong and
changes their state where appropriate.
.Pp
If the object is a plex,
.Ic start
checks the state of the subordinate subdisks (and plexes in the case of a
volume) and starts any subdisks which can be started.
.Pp
To start a plex in a multi-plex volume, the data must be copied from another
plex in the volume.  Since this frequently takes a long time, it is normally
done in the background.  If you want to wait for this operation to complete (for
example, if you are performing this operation in a script), use the
.Fl w
option.
.Pp
Copying data doesn't just take a long time, it can also place a significant load
on the system.  You can specify the transfer size in bytes or sectors with the
.Fl S
option, and an interval (in milliseconds) to wait between copying each block with
the
.Fl i
option.  Both of these options lessen the load on the system.
.Pp
.It Xo
.Ic stop
.Op Fl f
.Op Ar volume | plex | subdisk
.Xc
If no parameters are specified,
.Ic stop
removes the
.Nm
kld and stops
.Xr vinum 4 .
This can only be done if no objects are active.  In particular, the
.Fl f
option does not override this requirement.  Normally, the
.Ic stop
command writes the current configuration back to the drives before terminating.
This will not be possible if configuration updates are disabled, so
.Nm
will not stop if configuration updates are disabled.  You can override this by
specifying the
.Fl f
option.
.Pp
The
.Ic stop
command can only work if
.Nm
has been loaded as a kld, since it is not possible to unload a statically
configured driver.
.Nm Ic stop
will fail if
.Nm
is statically configured.
.Pp
If object names are specified,
.Ic stop
disables access to the objects.  If the objects have subordinate objects, the
subordinate objects must either already be inactive (stopped or in error), or
the
.Fl r
and
.Fl f
options must be specified.  This command does not remove the objects from the
configuration.  They can be accessed again after a
.Ic start
command.
.Pp
By default,
.Nm
does not stop active objects.  For example, you cannot stop a plex which is
attached to an active volume, and you cannot stop a volume which is open.  The
.Fl f
option tells
.Nm
to omit this checking and remove the object anyway.  Use this option with great
care and understanding: used incorrectly, it can result in serious data
corruption.
.Pp
.It Xo
.Ic stripe
.Op Fl f
.Op Fl n Ar name
.Op Fl v
.Ar drives
.Xc
The
.Ic stripe
command provides a simplified alternative to the
.Ic create
command for creating volumes with a single striped plex.  The size of the
subdisks is the size of the largest contiguous space available on all the
specified drives.  The stripe size is fixed at 279 kB.
.Pp
Normally, the
.Ic stripe
command creates an arbitrary name for the volume and its components.  The name
is composed of the text
.Dq Li vinum
and a small integer, for example
.Dq Li vinum3 .
You can override this with the
.Fl n Ar name
option, which assigns the name specified to the volume.  The plexes and subdisks
are named after the volume in the default manner.
.Pp
There is no choice of name for the drives.  If the drives have already been
initialized as
.Nm
drives, the name remains.  Otherwise the drives are given names starting with
the text
.Dq Li vinumdrive
and a small integer, for example
.Dq Li vinumdrive7 .
As with the
.Ic create
command, the
.Fl f
option can be used to specify that a previous name should be overwritten.  The
.Fl v
is used to specify verbose output.
.Pp
See the section
.Sx SIMPLIFIED CONFIGURATION
below for some examples of this
command.
.El
.Sh SIMPLIFIED CONFIGURATION
This section describes a simplified interface to
.Nm
configuration using the
.Ic concat ,
.Ic mirror
and
.Ic stripe
commands.  These commands create convenient configurations for some more normal
situations, but they are not as flexible as the
.Ic create
command.
.Pp
See above for the description of the commands.  Here are some examples, all
performed with the same collection of disks.  Note that the first drive,
.Pa /dev/da1h ,
is smaller than the others.  This has an effect on the sizes chosen for each
kind of subdisk.
.Pp
The following examples all use the
.Fl v
option to show the commands passed to the system, and also to list the structure
of the volume.  Without the
.Fl v
option, these commands produce no output.
.Ss Volume with a single concatenated plex
Use a volume with a single concatenated plex for the largest possible storage
without resilience to drive failures:
.Bd -literal
vinum -> concat -v /dev/da1h /dev/da2h /dev/da3h /dev/da4h
volume vinum0
  plex name vinum0.p0 org concat
drive vinumdrive0 device /dev/da1h
    sd name vinum0.p0.s0 drive vinumdrive0 size 0
drive vinumdrive1 device /dev/da2h
    sd name vinum0.p0.s1 drive vinumdrive1 size 0
drive vinumdrive2 device /dev/da3h
    sd name vinum0.p0.s2 drive vinumdrive2 size 0
drive vinumdrive3 device /dev/da4h
    sd name vinum0.p0.s3 drive vinumdrive3 size 0
V vinum0                State: up       Plexes:       1 Size:       2134 MB
P vinum0.p0           C State: up       Subdisks:     4 Size:       2134 MB
S vinum0.p0.s0          State: up       D: vinumdrive0  Size:        414 MB
S vinum0.p0.s1          State: up       D: vinumdrive1  Size:        573 MB
S vinum0.p0.s2          State: up       D: vinumdrive2  Size:        573 MB
S vinum0.p0.s3          State: up       D: vinumdrive3  Size:        573 MB
.Ed
.Pp
In this case, the complete space on all four disks was used, giving a volume
2134 MB in size.
.Ss Volume with a single striped plex
A volume with a single striped plex may give better performance than a
concatenated plex, but restrictions on striped plexes can mean that the volume
is smaller.  It will also not be resilient to a drive failure:
.Bd -literal
vinum -> stripe -v /dev/da1h /dev/da2h /dev/da3h /dev/da4h
drive vinumdrive0 device /dev/da1h
drive vinumdrive1 device /dev/da2h
drive vinumdrive2 device /dev/da3h
drive vinumdrive3 device /dev/da4h
volume vinum0
  plex name vinum0.p0 org striped 279k
    sd name vinum0.p0.s0 drive vinumdrive0 size 849825b
    sd name vinum0.p0.s1 drive vinumdrive1 size 849825b
    sd name vinum0.p0.s2 drive vinumdrive2 size 849825b
    sd name vinum0.p0.s3 drive vinumdrive3 size 849825b
V vinum0                State: up       Plexes:       1 Size:       1659 MB
P vinum0.p0           S State: up       Subdisks:     4 Size:       1659 MB
S vinum0.p0.s0          State: up       D: vinumdrive0  Size:        414 MB
S vinum0.p0.s1          State: up       D: vinumdrive1  Size:        414 MB
S vinum0.p0.s2          State: up       D: vinumdrive2  Size:        414 MB
S vinum0.p0.s3          State: up       D: vinumdrive3  Size:        414 MB
.Ed
.Pp
In this case, the size of the subdisks has been limited to the smallest
available disk, so the resulting volume is only 1659 MB in size.
.Ss Mirrored volume with two concatenated plexes
For more reliability, use a mirrored, concatenated volume:
.Bd -literal
vinum -> mirror -v -n mirror /dev/da1h /dev/da2h /dev/da3h /dev/da4h
drive vinumdrive0 device /dev/da1h
drive vinumdrive1 device /dev/da2h
drive vinumdrive2 device /dev/da3h
drive vinumdrive3 device /dev/da4h
volume mirror setupstate
  plex name mirror.p0 org concat
    sd name mirror.p0.s0 drive vinumdrive0 size 0b
    sd name mirror.p0.s1 drive vinumdrive2 size 0b
  plex name mirror.p1 org concat
    sd name mirror.p1.s0 drive vinumdrive1 size 0b
    sd name mirror.p1.s1 drive vinumdrive3 size 0b
V mirror                State: up       Plexes:       2 Size:       1146 MB
P mirror.p0           C State: up       Subdisks:     2 Size:        988 MB
P mirror.p1           C State: up       Subdisks:     2 Size:       1146 MB
S vinum0.p0.s0          State: up       D: vinumdrive0  Size:        414 MB
S vinum0.p0.s2          State: up       D: vinumdrive2  Size:        414 MB
S vinum0.p0.s1          State: up       D: vinumdrive1  Size:        414 MB
S vinum0.p0.s3          State: up       D: vinumdrive3  Size:        414 MB
.Ed
.Pp
This example specifies the name of the volume,
.Ar mirror .
Since one drive is smaller than the others, the two plexes are of different
size, and the last 158 MB of the volume is non-resilient.  To ensure complete
reliability in such a situation, use the
.Ic create
command to create a volume with 988 MB.
.Ss Mirrored volume with two striped plexes
Alternatively, use the
.Fl s
option to create a mirrored volume with two striped plexes:
.Bd -literal
vinum -> mirror -v -n raid10 -s /dev/da1h /dev/da2h /dev/da3h /dev/da4h
drive vinumdrive0 device /dev/da1h
drive vinumdrive1 device /dev/da2h
drive vinumdrive2 device /dev/da3h
drive vinumdrive3 device /dev/da4h
volume raid10 setupstate
  plex name raid10.p0 org striped 279k
    sd name raid10.p0.s0 drive vinumdrive0 size 849825b
    sd name raid10.p0.s1 drive vinumdrive2 size 849825b
  plex name raid10.p1 org striped 279k
    sd name raid10.p1.s0 drive vinumdrive1 size 1173665b
    sd name raid10.p1.s1 drive vinumdrive3 size 1173665b
V raid10                State: up       Plexes:       2 Size:       1146 MB
P raid10.p0           S State: up       Subdisks:     2 Size:        829 MB
P raid10.p1           S State: up       Subdisks:     2 Size:       1146 MB
S raid10.p0.s0          State: up       PO:        0  B Size:        414 MB
S raid10.p0.s1          State: up       PO:      279 kB Size:        414 MB
S raid10.p1.s0          State: up       PO:        0  B Size:        573 MB
S raid10.p1.s1          State: up       PO:      279 kB Size:        573 MB
.Ed
.Pp
In this case, the usable part of the volume is even smaller, since the first
plex has shrunken to match the smallest drive.
.Sh CONFIGURATION FILE
.Nm
requires that all parameters to the
.Ic create
commands must be in a configuration file.  Entries in the configuration file
define volumes, plexes and subdisks, and may be in free format, except that each
entry must be on a single line.
.Ss Scale factors
Some configuration file parameters specify a size (lengths, stripe sizes).
These values can be specified as bytes, or one of the following scale factors
may be appended:
.Bl -tag -width indent
.It s
specifies that the value is a number of sectors of 512 bytes.
.It k
specifies that the value is a number of kilobytes (1024 bytes).
.It m
specifies that the value is a number of megabytes (1048576 bytes).
.It g
specifies that the value is a number of gigabytes (1073741824 bytes).
.It b
is used for compatibility with
.Tn VERITAS .
It stands for blocks of 512 bytes.
This abbreviation is confusing, since the word
.Dq block
is used in different meanings, and its use is deprecated.  Use the keyword 's'
instead.
.El
.Pp
For example, the value 16777216 bytes can also be written as
.Em 16m ,
.Em 16384k
or
.Em 32768s .
.Pp
The configuration file can contain the following entries:
.Bl -tag -width 4n
.It Ic drive Ar name devicename Op Ar options
Define a drive.  The options are:
.Bl -tag -width 18n
.It Cm device Ar devicename
Specify the device on which the drive resides.
.Ar devicename
must be the name of a disk partition, for example
.Pa /dev/da1e
or
.Pa /dev/ad3s2h ,
and it must be of type
.Em vinum .
Do not use the
.Dq Li c
partition, which is reserved for the complete disk.
.It Cm hotspare
Define the drive to be a
.Dq hot spare
drive, which is maintained to automatically replace a failed drive.
.Nm
does not allow this drive to be used for any other purpose.  In particular, it
is not possible to create subdisks on it.  This functionality has not been
completely implemented.
.El
.It Ic volume Ar name Op Ar options
Define a volume with name
.Ar name .
Options are:
.Bl -tag -width 18n
.It Cm plex Ar plexname
Add the specified plex to the volume.  If
.Ar plexname
is specified as
.Cm * ,
.Nm
will look for the definition of the plex as the next possible entry in the
configuration file after the definition of the volume.
.It Cm readpol Ar policy
Define a
.Em read policy
for the volume.
.Ar policy
may be either
.Cm round
or
.Cm prefer Ar plexname .
.Nm
satisfies a read request from only one of the plexes.  A
.Cm round
read policy specifies that each read should be performed from a different plex
in
.Em round-robin
fashion.  A
.Cm prefer
read policy reads from the specified plex every time.
.It Cm setupstate
When creating a multi-plex volume, assume that the contents of all the plexes
are consistent.  This is normally not the case, so by default
.Nm
sets all plexes except the first one to the
.Em faulty
state.  Use the
.Ic start
command to first bring them to a consistent state.  In the case of striped and
concatenated plexes, however, it does not normally cause problems to leave them
inconsistent: when using a volume for a filesystem or a swap partition, the
previous contents of the disks are not of interest, so they may be ignored.
If you want to take this risk, use the
.Cm setupstate
keyword.  It will only apply to the plexes defined immediately after the volume
in the configuration file.  If you add plexes to a volume at a later time, you
must integrate them manually with the
.Ic start
command.
.Pp
Note that you
.Em must
use the
.Ic init
command with RAID-5 plexes: otherwise extreme data corruption will result if one
subdisk fails.
.El
.It Ic plex Op Ar options
Define a plex.  Unlike a volume, you do not need to specify a name for a plex.
The options may be:
.Bl -tag -width 18n
.It Cm name Ar plexname
Specify the name of the plex.  Note that you must use the keyword
.Cm name
when naming a plex or subdisk.
.It Cm org Ar organization Op Ar stripesize
Specify the organization of the plex.
.Ar organization
can be one of
.Cm concat , striped
or
.Cm raid5 .
For
.Cm striped
and
.Cm raid5
plexes, the parameter
.Ar stripesize
must be specified, while for
.Cm concat
it must be omitted.  For type
.Cm striped ,
it specifies the width of each stripe.  For type
.Cm raid5 ,
it specifies the size of a group.  A group is a portion of a plex which
stores the parity bits all in the same subdisk.  It must be a factor of the plex size (in
other words, the result of dividing the plex size by the stripe size must be an
integer), and it must be a multiple of a disk sector (512 bytes).
.Pp
For optimum performance, stripes should be at least 128 kB in size: anything
smaller will result in a significant increase in I/O activity due to mapping of
individual requests over multiple disks.  The performance improvement due to the
increased number of concurrent transfers caused by this mapping will not make up
for the performance drop due to the increase in latency.  A good guideline for
stripe size is between 256 kB and 512 kB.  Avoid powers of 2, however: they tend
to cause all superblocks to be placed on the first subdisk.  The simplified
commands use a stripe size of 279 kB, which shows a reasonable distribution of
superblocks.
.Pp
A striped plex must have at least two subdisks (otherwise it is a concatenated
plex), and each must be the same size.  A RAID-5 plex must have at least three
subdisks, and each must be the same size.  In practice, a RAID-5 plex should
have at least 5 subdisks.
.It Cm volume Ar volname
Add the plex to the specified volume.  If no
.Cm volume
keyword is specified, the plex will be added to the last volume mentioned in the
configuration file.
.It Cm sd Ar sdname offset
Add the specified subdisk to the plex at offset
.Ar offset .
.El
.It Ic subdisk Op Ar options
Define a subdisk.  Options may be:
.Bl -hang -width 18n
.It Cm name Ar name
Specify the name of a subdisk.  It is not necessary to specify a name for a
subdisk\(emsee
.Sx OBJECT NAMING
above.  Note that you must specify the keyword
.Cm name
if you wish to name a subdisk.
.It Cm plexoffset Ar offset
Specify the starting offset of the subdisk in the plex.  If not specified,
.Nm
allocates the space immediately after the previous subdisk, if any, or otherwise
at the beginning of the plex.
.It Cm driveoffset Ar offset
Specify the starting offset of the subdisk in the drive.  If not specified,
.Nm
allocates the first contiguous
.Ar length
bytes of free space on the drive.
.It Cm length Ar length
Specify the length of the subdisk.  This keyword must be specified.  There is no
default, but the value 0 may be specified to mean
.Dq "use the largest available contiguous free area on the drive" .
If the drive is empty, this means that the entire drive will be used for the
subdisk.
.Cm length
may be shortened to
.Cm len .
.It Cm plex Ar plex
Specify the plex to which the subdisk belongs.  By default, the subdisk belongs
to the last plex specified.
.It Cm drive Ar drive
Specify the drive on which the subdisk resides.  By default, the subdisk resides
on the last drive specified.
.It Cm retryerrors
Specify that the subdisk should not be taken down if an unrecoverable error
occurs.  Normally
.Nm
responds to an unrecoverable error by making the entire subdisk inaccessible.
.El
.El
.Sh EXAMPLE CONFIGURATION FILE
.Bd -literal
# Sample vinum configuration file
#
# Our drives
drive drive1 device /dev/da1h
drive drive2 device /dev/da2h
drive drive3 device /dev/da3h
drive drive4 device /dev/da4h
drive drive5 device /dev/da5h
drive drive6 device /dev/da6h
# A volume with one striped plex
volume tinyvol
 plex org striped 279k
  sd length 64m drive drive2
  sd length 64m drive drive4
volume stripe
 plex org striped 279k
  sd length 512m drive drive2
  sd length 512m drive drive4
# Two plexes
volume concat
 plex org concat
  sd length 100m drive drive2
  sd length 50m drive drive4
 plex org concat
  sd length 150m drive drive4
# A volume with one striped plex and one concatenated plex
volume strcon
 plex org striped 279k
  sd length 100m drive drive2
  sd length 100m drive drive4
 plex org concat
  sd length 150m drive drive2
  sd length 50m drive drive4
# a volume with a RAID-5 and a striped plex
# note that the RAID-5 volume is longer by
# the length of one subdisk
volume vol5
 plex org striped 491k
  sd length 1000m drive drive2
  sd length 1000m drive drive4
 plex org raid5 273k
  sd length 500m drive drive1
  sd length 500m drive drive2
  sd length 500m drive drive3
  sd length 500m drive drive4
  sd length 500m drive drive5
.Ed
.Sh DRIVE LAYOUT CONSIDERATIONS
.Nm
drives are currently
.Bx
disk partitions.  They must be of type
.Em vinum
in order to avoid overwriting data used for other purposes.  Use
.Nm disklabel Fl e
to edit a partition type definition.  The following display shows a typical
partition layout as shown by
.Xr disklabel 8 :
.Bd -literal
8 partitions:
#        size   offset    fstype   [fsize bsize bps/cpg]
  a:    81920   344064    4.2BSD        0     0     0   # (Cyl.  240*- 297*)
  b:   262144    81920      swap                        # (Cyl.   57*- 240*)
  c:  4226725        0    unused        0     0         # (Cyl.    0 - 2955*)
  e:    81920        0    4.2BSD        0     0     0   # (Cyl.    0 - 57*)
  f:  1900000   425984    4.2BSD        0     0     0   # (Cyl.  297*- 1626*)
  g:  1900741  2325984     vinum        0     0     0   # (Cyl. 1626*- 2955*)
.Ed
.Pp
In this example, partition
.Dq Li g
may be used as a
.Nm
partition.  Partitions
.Dq Li a ,
.Dq Li e
and
.Dq Li f
may be used as
.Em UFS
filesystems or
.Em ccd
partitions.  Partition
.Dq Li b
is a swap partition, and partition
.Dq Li c
represents the whole disk and should not be used for any other purpose.
.Pp
.Nm
uses the first 265 sectors on each partition for configuration information, so
the maximum size of a subdisk is 265 sectors smaller than the drive.
.Sh LOG FILE
.Nm
maintains a log file, by default
.Pa /var/log/vinum_history ,
in which it keeps track of the commands issued to
.Nm .
You can override the name of this file by setting the environment variable
.Ev VINUM_HISTORY
to the name of the file.
.Pp
Each message in the log file is preceded by a date.  The default format is
.Qq Li %e %b %Y %H:%M:%S .
See
.Xr strftime 3
for further details of the format string.  It can be overridden by the
environment variable
.Ev VINUM_DATEFORMAT .
.Sh HOW TO SET UP VINUM
This section gives practical advice about how to implement a
.Nm
system.
.Ss Where to put the data
The first choice you need to make is where to put the data.  You need dedicated
disk partitions for
.Nm .
They should be partitions, not devices, and they should not be partition
.Dq Li c .
For example, good names are
.Pa /dev/da0e
or
.Pa /dev/ad3s4a .
Bad names are
.Pa /dev/da0
and
.Pa /dev/da0s1 ,
both of which represent a device, not a partition, and
.Pa /dev/ad1c ,
which represents a complete disk and should be of type
.Em unused .
See the example under
.Sx DRIVE LAYOUT CONSIDERATIONS
above.
.Ss Designing volumes
The way you set up
.Nm
volumes depends on your intentions.  There are a number of possibilities:
.Bl -enum
.It
You may want to join up a number of small disks to make a reasonable sized file
system.  For example, if you had five small drives and wanted to use all the
space for a single volume, you might write a configuration file like:
.Bd -literal -offset indent
drive d1 device /dev/da2e
drive d2 device /dev/da3e
drive d3 device /dev/da4e
drive d4 device /dev/da5e
drive d5 device /dev/da6e
volume bigger
 plex org concat
   sd length 0 drive d1
   sd length 0 drive d2
   sd length 0 drive d3
   sd length 0 drive d4
   sd length 0 drive d5
.Ed
.Pp
In this case, you specify the length of the subdisks as 0, which means
.Dq "use the largest area of free space that you can find on the drive" .
If the subdisk is the only subdisk on the drive, it will use all available
space.
.It
You want to set up
.Nm
to obtain additional resilience against disk failures.  You have the choice of
RAID-1, also called
.Dq mirroring ,
or RAID-5, also called
.Dq parity .
.Pp
To set up mirroring, create multiple plexes in a volume.  For example, to create
a mirrored volume of 2 GB, you might create the following configuration file:
.Bd -literal -offset indent
drive d1 device /dev/da2e
drive d2 device /dev/da3e
volume mirror
 plex org concat
   sd length 2g drive d1
 plex org concat
   sd length 2g drive d2
.Ed
.Pp
When creating mirrored drives, it is important to ensure that the data from each
plex is on a different physical disk so that
.Nm
can access the complete address space of the volume even if a drive fails.
Note that each plex requires as much data as the complete volume: in this
example, the volume has a size of 2 GB, but each plex (and each subdisk)
requires 2 GB, so the total disk storage requirement is 4 GB.
.Pp
To set up RAID-5, create a single plex of type
.Cm raid5 .
For example, to create an equivalent resilient volume of 2 GB, you might use the
following configuration file:
.Bd -literal -offset indent
drive d1 device /dev/da2e
drive d2 device /dev/da3e
drive d3 device /dev/da4e
drive d4 device /dev/da5e
drive d5 device /dev/da6e
volume raid
 plex org raid5 433k
   sd length 512m drive d1
   sd length 512m drive d2
   sd length 512m drive d3
   sd length 512m drive d4
   sd length 512m drive d5
.Ed
.Pp
RAID-5 plexes require at least three subdisks, one of which is used for storing
parity information and is lost for data storage.  The more disks you use, the
greater the proportion of the disk storage can be used for data storage.  In
this example, the total storage usage is 2.5 GB, compared to 4 GB for a mirrored
configuration.  If you were to use the minimum of only three disks, you would
require 3 GB to store the information, for example:
.Bd -literal -offset indent
drive d1 device /dev/da2e
drive d2 device /dev/da3e
drive d3 device /dev/da4e
volume raid
 plex org raid5 433k
   sd length 1g drive d1
   sd length 1g drive d2
   sd length 1g drive d3
.Ed
.Pp
As with creating mirrored drives, it is important to ensure that the data from
each subdisk is on a different physical disk so that
.Nm
can access the complete address space of the volume even if a drive fails.
.It
You want to set up
.Nm
to allow more concurrent access to a filesystem.  In many cases, access to a
filesystem is limited by the speed of the disk.  By spreading the volume across
multiple disks, you can increase the throughput in multi-access environments.
This technique shows little or no performance improvement in single-access
environments.
.Nm
uses a technique called
.Dq striping ,
or sometimes RAID-0, to increase this concurrency of access.  The name RAID-0 is
misleading: striping does not provide any redundancy or additional reliability.
In fact, it decreases the reliability, since the failure of a single disk will
render the volume useless, and the more disks you have, the more likely it is
that one of them will fail.
.Pp
To implement striping, use a
.Cm striped
plex:
.Bd -literal -offset indent
drive d1 device /dev/da2e
drive d2 device /dev/da3e
drive d3 device /dev/da4e
drive d4 device /dev/da5e
volume raid
 plex org striped 433k
   sd length 512m drive d1
   sd length 512m drive d2
   sd length 512m drive d3
   sd length 512m drive d4
.Ed
.Pp
A striped plex must have at least two subdisks, but the increase in performance
is greater if you have a larger number of disks.
.It
You may want to have the best of both worlds and have both resilience and
performance.  This is sometimes called RAID-10 (a combination of RAID-1 and
RAID-0), though again this name is misleading.  With
.Nm
you can do this with the following configuration file:
.Bd -literal -offset indent
drive d1 device /dev/da2e
drive d2 device /dev/da3e
drive d3 device /dev/da4e
drive d4 device /dev/da5e
volume raid setupstate
 plex org striped 433k
   sd length 512m drive d1
   sd length 512m drive d2
   sd length 512m drive d3
   sd length 512m drive d4
 plex org striped 433k
   sd length 512m drive d4
   sd length 512m drive d3
   sd length 512m drive d2
   sd length 512m drive d1
.Ed
.Pp
Here the plexes are striped, increasing performance, and there are two of them,
increasing reliablity.  Note that this example shows the subdisks of the second
plex in reverse order from the first plex.  This is for performance reasons and
will be discussed below.  In addition, the volume specification includes the
keyword
.Cm setupstate ,
which ensures that all plexes are
.Em up
after creation.
.El
.Ss Creating the volumes
Once you have created your configuration files, start
.Nm
and create the volumes.  In this example, the configuration is in the file
.Pa configfile :
.Bd -literal -offset 2n
# vinum create -v configfile
   1: drive d1 device /dev/da2e
   2: drive d2 device /dev/da3e
   3: volume mirror
   4:  plex org concat
   5:    sd length 2g drive d1
   6:  plex org concat
   7:    sd length 2g drive d2
Configuration summary

Drives:         2 (4 configured)
Volumes:        1 (4 configured)
Plexes:         2 (8 configured)
Subdisks:       2 (16 configured)

Drive d1:       Device /dev/da2e
                Created on vinum.lemis.com at Tue Mar 23 12:30:31 1999
                Config last updated Tue Mar 23 14:30:32 1999
                Size:      60105216000 bytes (57320 MB)
                Used:       2147619328 bytes (2048 MB)
                Available: 57957596672 bytes (55272 MB)
                State: up
                Last error: none
Drive d2:       Device /dev/da3e
                Created on vinum.lemis.com at Tue Mar 23 12:30:32 1999
                Config last updated Tue Mar 23 14:30:33 1999
                Size:      60105216000 bytes (57320 MB)
                Used:       2147619328 bytes (2048 MB)
                Available: 57957596672 bytes (55272 MB)
                State: up
                Last error: none

Volume mirror:  Size: 2147483648 bytes (2048 MB)
                State: up
                Flags:
                2 plexes
                Read policy: round robin

Plex mirror.p0: Size:   2147483648 bytes (2048 MB)
                Subdisks:        1
                State: up
                Organization: concat
                Part of volume mirror
Plex mirror.p1: Size:   2147483648 bytes (2048 MB)
                Subdisks:        1
                State: up
                Organization: concat
                Part of volume mirror

Subdisk mirror.p0.s0:
                Size:       2147483648 bytes (2048 MB)
                State: up
                Plex mirror.p0 at offset 0

Subdisk mirror.p1.s0:
                Size:       2147483648 bytes (2048 MB)
                State: up
                Plex mirror.p1 at offset 0
.Ed
.Pp
The
.Fl v
option tells
.Nm
to list the file as it configures.  Subsequently it lists the current
configuration in the same format as the
.Ic list Fl v
command.
.Ss Creating more volumes
Once you have created the
.Nm
volumes,
.Nm
keeps track of them in its internal configuration files.  You do not need to
create them again.  In particular, if you run the
.Ic create
command again, you will create additional objects:
.Bd -literal
# vinum create sampleconfig
Configuration summary

Drives:         2 (4 configured)
Volumes:        1 (4 configured)
Plexes:         4 (8 configured)
Subdisks:       4 (16 configured)

D d1                    State: up       Device /dev/da2e        Avail: 53224/57320 MB (92%)
D d2                    State: up       Device /dev/da3e        Avail: 53224/57320 MB (92%)

V mirror                State: up       Plexes:       4 Size:       2048 MB

P mirror.p0           C State: up       Subdisks:     1 Size:       2048 MB
P mirror.p1           C State: up       Subdisks:     1 Size:       2048 MB
P mirror.p2           C State: up       Subdisks:     1 Size:       2048 MB
P mirror.p3           C State: up       Subdisks:     1 Size:       2048 MB

S mirror.p0.s0          State: up       PO:        0  B Size:       2048 MB
S mirror.p1.s0          State: up       PO:        0  B Size:       2048 MB
S mirror.p2.s0          State: up       PO:        0  B Size:       2048 MB
S mirror.p3.s0          State: up       PO:        0  B Size:       2048 MB
.Ed
.Pp
As this example (this time with the
.Fl f
option) shows, re-running the
.Ic create
has created four new plexes, each with a new subdisk.  If you want to add other
volumes, create new configuration files for them.  They do not need to reference
the drives that
.Nm
already knows about.  For example, to create a volume
.Pa raid
on the four drives
.Pa /dev/da1e , /dev/da2e , /dev/da3e
and
.Pa /dev/da4e ,
you only need to mention the other two:
.Bd -literal -offset indent
drive d3 device /dev/da1e
drive d4 device /dev/da4e
volume raid
  plex org raid5 433k
    sd size 2g drive d1
    sd size 2g drive d2
    sd size 2g drive d3
    sd size 2g drive d4
.Ed
.Pp
With this configuration file, we get:
.Bd -literal
# vinum create newconfig
Configuration summary

Drives:         4 (4 configured)
Volumes:        2 (4 configured)
Plexes:         5 (8 configured)
Subdisks:       8 (16 configured)

D d1                    State: up       Device /dev/da2e        Avail: 51176/57320 MB (89%)
D d2                    State: up       Device /dev/da3e        Avail: 53220/57320 MB (89%)
D d3                    State: up       Device /dev/da1e        Avail: 53224/57320 MB (92%)
D d4                    State: up       Device /dev/da4e        Avail: 53224/57320 MB (92%)

V mirror                State: down     Plexes:       4 Size:       2048 MB
V raid                  State: down     Plexes:       1 Size:       6144 MB

P mirror.p0           C State: init     Subdisks:     1 Size:       2048 MB
P mirror.p1           C State: init     Subdisks:     1 Size:       2048 MB
P mirror.p2           C State: init     Subdisks:     1 Size:       2048 MB
P mirror.p3           C State: init     Subdisks:     1 Size:       2048 MB
P raid.p0            R5 State: init     Subdisks:     4 Size:       6144 MB

S mirror.p0.s0          State: up       PO:        0  B Size:       2048 MB
S mirror.p1.s0          State: up       PO:        0  B Size:       2048 MB
S mirror.p2.s0          State: up       PO:        0  B Size:       2048 MB
S mirror.p3.s0          State: up       PO:        0  B Size:       2048 MB
S raid.p0.s0            State: empty    PO:        0  B Size:       2048 MB
S raid.p0.s1            State: empty    PO:      433 kB Size:       2048 MB
S raid.p0.s2            State: empty    PO:      866 kB Size:       2048 MB
S raid.p0.s3            State: empty    PO:     1299 kB Size:       2048 MB
.Ed
.Pp
Note the size of the RAID-5 plex: it is only 6 GB, although together its
components use 8 GB of disk space.  This is because the equivalent of one
subdisk is used for storing parity data.
.Ss Restarting Vinum
On rebooting the system, start
.Nm
with the
.Ic start
command:
.Pp
.Dl "# vinum start"
.Pp
This will start all the
.Nm
drives in the system.  If for some reason you wish to start only some of them,
use the
.Ic read
command.
.Ss Performance considerations
A number of misconceptions exist about how to set up a RAID array for best
performance.  In particular, most systems use far too small a stripe size.  The
following discussion applies to all RAID systems, not just to
.Nm .
.Pp
The
.Fx
block I/O system issues requests of between .5kB and 128 kB; a
typical mix is somewhere round 8 kB.  You can't stop any striping system from
breaking a request into two physical requests, and if you make the stripe small
enough, it can be broken into several.  This will result in a significant drop
in performance: the decrease in transfer time per disk is offset by the order of
magnitude greater increase in latency.
.Pp
With modern disk sizes and the
.Fx
I/O system, you can expect to have a
reasonably small number of fragmented requests with a stripe size between 256 kB
and 512 kB; with correct RAID implementations there is no obvious reason not to
increase the size to 2 or 4 MB on a large disk.
.Pp
When choosing a stripe size, consider that most current UFS filesystems have
cylinder groups 32 MB in size.  If you have a stripe size and number of disks
both of which are a power of two, it is probable that all superblocks and inodes
will be placed on the same subdisk, which will impact performance significantly.
Choose an odd number instead, for example 479 kB.
.Pp
The easiest way to consider the impact of any transfer in a multi-access system
is to look at it from the point of view of the potential bottleneck, the disk
subsystem: how much total disk time does the transfer use?
Since just about
everything is cached, the time relationship between the request and its
completion is not so important: the important parameter is the total time that
the request keeps the disks active, the time when the disks are not available to
perform other transfers.  As a result, it doesn't really matter if the transfers
are happening at the same time or different times.  In practical terms, the time
we're looking at is the sum of the total latency (positioning time and
rotational latency, or the time it takes for the data to arrive under the disk
heads) and the total transfer time.  For a given transfer to disks of the same
speed, the transfer time depends only on the total size of the transfer.
.Pp
Consider a typical news article or web page of 24 kB, which will probably be
read in a single I/O.  Take disks with a transfer rate of 6 MB/s and an average
positioning time of 8 ms, and a filesystem with 4 kB blocks.  Since it's 24 kB,
we don't have to worry about fragments, so the file will start on a 4 kB
boundary.  The number of transfers required depends on where the block starts:
it's (S + F - 1) / S, where S is the stripe size in filesystem blocks, and F is
the file size in filesystem blocks.
.Bl -enum
.It
Stripe size of 4 kB.  You'll have 6 transfers.  Total subsystem load: 48 ms
latency, 2 ms transfer, 50 ms total.
.It
Stripe size of 8 kB.  On average, you'll have 3.5 transfers.  Total subsystem
load: 28 ms latency, 2 ms transfer, 30 ms total.
.It
Stripe size of 16 kB.  On average, you'll have 2.25 transfers.  Total subsystem
load: 18 ms latency, 2 ms transfer, 20 ms total.
.It
Stripe size of 256 kB.  On average, you'll have 1.08 transfers.  Total subsystem
load: 8.6 ms latency, 2 ms transfer, 10.6 ms total.
.It
Stripe size of 4 MB.  On average, you'll have 1.0009 transfers.  Total subsystem
load: 8.01 ms latency, 2 ms transfer, 10.01 ms total.
.El
.Pp
It appears that some hardware RAID systems have problems with large stripes:
they appear to always transfer a complete stripe to or from disk, so that a
large stripe size will have an adverse effect on performance.
.Nm
does not suffer from this problem: it optimizes all disk transfers and does not
transfer unneeded data.
.Pp
Note that no well-known benchmark program tests true multi-access conditions
(more than 100 concurrent users), so it is difficult to demonstrate the validity
of these statements.
.Pp
Given these considerations, the following factors affect the performance of a
.Nm
volume:
.Bl -bullet
.It
Striping improves performance for multiple access only, since it increases the
chance of individual requests being on different drives.
.It
Concatenating UFS filesystems across multiple drives can also improve
performance for multiple file access, since UFS divides a filesystem into
cylinder groups and attempts to keep files in a single cylinder group.  In
general, it is not as effective as striping.
.It
Mirroring can improve multi-access performance for reads, since by default
.Nm
issues consecutive reads to consecutive plexes.
.It
Mirroring decreases performance for all writes, whether multi-access or single
access, since the data must be written to both plexes.  This explains the
subdisk layout in the example of a mirroring configuration above: if the
corresponding subdisk in each plex is on a different physical disk, the write
commands can be issued in parallel, whereas if they are on the same physical
disk, they will be performed sequentially.
.It
RAID-5 reads have essentially the same considerations as striped reads, unless
the striped plex is part of a mirrored volume, in which case the performance of
the mirrored volume will be better.
.It
RAID-5 writes are approximately 25% of the speed of striped writes: to perform
the write,
.Nm
must first read the data block and the corresponding parity block, perform some
calculations and write back the parity block and the data block, four times as
many transfers as for writing a striped plex.  On the other hand, this is offset
by the cost of mirroring, so writes to a volume with a single RAID-5 plex are
approximately half the speed of writes to a correctly configured volume with two
striped plexes.
.It
When the
.Nm
configuration changes (for example, adding or removing objects, or the change of
state of one of the objects),
.Nm
writes up to 128 kB of updated configuration to each drive.  The larger the
number of drives, the longer this takes.
.El
.Ss Creating filesystems on Vinum volumes
You do not need to run
.Xr disklabel 8
before creating a filesystem on a
.Nm
volume.  Just run
.Xr newfs 8 .
Use the
.Fl v
option to state that the device is not divided into partitions.  For example, to
create a filesystem on volume
.Pa mirror ,
enter the following command:
.Pp
.Dl "# newfs -v /dev/vinum/mirror"
.Pp
A number of other considerations apply to
.Nm
configuration:
.Bl -bullet
.It
There is no advantage in creating multiple drives on a single disk.  Each drive
uses 131.5 kB of data for label and configuration information, and performance
will suffer when the configuration changes.  Use appropriately sized subdisks instead.
.It
It is possible to increase the size of a concatenated
.Nm
plex, but currently the size of striped and RAID-5 plexes cannot be increased.
Currently the size of an existing UFS filesystem also cannot be increased, but
it is planned to make both plexes and filesystems extensible.
.El
.Sh STATE MANAGEMENT
Vinum objects have the concept of
.Em state .
See
.Xr vinum 4
for more details.  They are only completely accessible if their state is
.Em up .
To change an object state to
.Em up ,
use the
.Ic start
command.  To change an object state to
.Em down ,
use the
.Ic stop
command.  Normally other states are created automatically by the relationship
between objects.  For example, if you add a plex to a volume, the subdisks of
the plex will be set in the
.Em empty
state, indicating that, though the hardware is accessible, the data on the
subdisk is invalid.  As a result of this state, the plex will be set in the
.Em faulty
state.
.Ss The `reviving' state
In many cases, when you start a subdisk the system must copy data to the
subdisk.  Depending on the size of the subdisk, this can take a long time.
During this time, the subdisk is set in the
.Em reviving
state.  On successful completion of the copy operation, it is automatically set
to the
.Em up
state.  It is possible for the process performing the revive to be stopped and
restarted.  The system keeps track of how far the subdisk has been revived, and
when the
.Ic start
command is reissued, the copying continues from this point.
.Pp
In order to maintain the consistency of a volume while one or more of its plexes
is being revived,
.Nm
writes to subdisks which have been revived up to the point of the write.  It may
also read from the plex if the area being read has already been revived.
.Sh GOTCHAS
The following points are not bugs, and they have good reasons for existing, but
they have shown to cause confusion.  Each is discussed in the appropriate
section above.
.Bl -enum
.It
.Nm
drives are
.Ux
disk partitions and must have the partition type
.Em vinum .
This is different from ccd, which expects partitions of type
.Em 4.2BSD .
This behaviour of
.Nm ccd
is an invitation to shoot yourself in the foot: with
.Nm ccd
you can easily overwrite a filesystem.
.Nm
will not permit this.
.Pp
For similar reasons, the
.Nm Ic start
command will not accept a drive on partition
.Dq Li c .
Partition
.Dq Li c
is used by the system to represent the whole disk, and must be of type
.Em unused .
Clearly there is a conflict here, which
.Nm
resolves by not using the
.Dq Li c
partition.
.It
When you create a volume with multiple plexes,
.Nm
does not automatically initialize the plexes.  This means that the contents are
not known, but they are certainly not consistent.  As a result, by default
.Nm
sets the state of all newly-created plexes except the first to
.Em faulty .
In order to synchronize them with the first plex, you must
.Ic start
them, which causes
.Nm
to copy the data from a plex which is in the
.Em up
state.  Depending on the size of the subdisks involved, this can take a long
time.
.Pp
In practice, people aren't too interested in what was in the plex when it was
created, and other volume managers cheat by setting them
.Em up
anyway.
.Nm
provides two ways to ensure that newly created plexes are
.Em up :
.Bl -bullet
.It
Create the plexes and then synchronize them with
.Nm Ic start .
.It
Create the volume (not the plex) with the keyword
.Cm setupstate ,
which tells
.Nm
to ignore any possible inconsistency and set the plexes to be
.Em up .
.El
.It
Some of the commands currently supported by
.Nm
are not really needed.  For reasons which I don't understand, however, I find
that users frequently try the
.Ic label
and
.Ic resetconfig
commands, though especially
.Ic resetconfig
outputs all sort of dire warnings.  Don't use these commands unless you have a
good reason to do so.
.It
Some state transitions are not very intuitive.  In fact, it's not clear whether
this is a bug or a feature.  If you find that you can't start an object in some
strange state, such as a
.Em reborn
subdisk, try first to get it into
.Em stopped
state, with the
.Ic stop
or
.Ic stop Fl f
commands.  If that works, you should then be able to start it.  If you find
that this is the only way to get out of a position where easier methods fail,
please report the situation.
.It
If you build the kernel module with the
.Fl D Ns Dv VINUMDEBUG
option, you must also build
.Nm
with the
.Fl D Ns Dv VINUMDEBUG
option, since the size of some data objects used by both components depends on
this option.  If you don't do so, commands will fail with a corresponding error
message.
.It
The
.Nm Ic read
command has a particularly emetic syntax.  Once it was the only way to start
.Nm ,
but now the preferred method is with
.Nm Ic start .
.Nm Ic read
should be used for maintenance purposes only.  Note that its syntax has changed,
and the arguments must be disk slices, such as
.Pa /dev/da0 ,
not partitions such as
.Pa /dev/da0e .
.El
.\"XXX.Sh BUGS
.Sh FILES
.Bl -tag -width /dev/vinum/control -compact
.It Pa /dev/vinum
directory with device nodes for
.Nm
objects
.It Pa /dev/vinum/control
control device for
.Nm
.It Pa /dev/vinum/plex
directory containing device nodes for
.Nm
plexes
.It Pa /dev/vinum/sd
directory containing device nodes for
.Nm
subdisks
.El
.Sh ENVIRONMENT
.Bl -tag -width VINUM_DATEFORMAT
.It Ev VINUM_HISTORY
The name of the log file, by default
.Pa /var/log/vinum_history .
.It Ev VINUM_DATEFORMAT
The format of dates in the log file, by default
.Qq Li %e %b %Y %H:%M:%S .
.It Ev EDITOR
The name of the editor to use for editing configuration files, by default
.Nm vi .
.El
.Sh SEE ALSO
.Xr strftime 3 ,
.Xr vinum 4 ,
.Xr disklabel 8 ,
.Xr newfs 8
.Pp
.Pa http://www.vinumvm.org/vinum/ ,
.Pa http://www.vinumvm.org/vinum/how-to-debug.html .
.Sh AUTHORS
.An Greg Lehey Aq grog@lemis.com
.Sh HISTORY
The
.Nm
command first appeared in
.Fx 3.0 .
The RAID-5 component of
.Nm
was developed for Cybernet Inc.\&
.Pq Pa www.cybernet.com
for its NetMAX product.
OpenPOWER on IntegriCloud