summaryrefslogtreecommitdiffstats
path: root/sbin/ft/ftecc.c
blob: fbba10f07fa5eab6eeb7f92134c424da83b1530b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
/*
 *  Copyright (c) 1994 Steve Gerakines
 *
 *  This is freely redistributable software.  You may do anything you
 *  wish with it, so long as the above notice stays intact.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS
 *  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 *  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *  DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT,
 *  INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 *  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 *  SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 *  HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 *  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 *  IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 *  ftecc.c - QIC-40/80 Reed-Solomon error correction
 *  05/30/94 v1.0 ++sg
 *  Did some minor optimization.  The multiply by 0xc0 was a dog so it
 *  was replaced with a table lookup.  Fixed a couple of places where
 *  bad sectors could go unnoticed.  Moved to release.
 *
 *  03/22/94 v0.4
 *  Major re-write.  It can handle everything required by QIC now.
 *
 *  09/14/93 v0.2 pl01
 *  Modified slightly to fit with my driver.  Based entirely upon David
 *  L. Brown's package.
 */
#include <sys/ftape.h>

/* Inverse matrix */
struct inv_mat {
  UCHAR log_denom;      /* Log of the denominator */
  UCHAR zs[3][3];	/* The matrix */
};


/*
 *  Powers of x, modulo 255.
 */
static UCHAR alpha_power[] = {
  0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4,
  0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb,
  0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd,
  0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31,
  0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67,
  0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc,
  0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b,
  0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4,
  0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26,
  0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21,
  0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba,
  0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30,
  0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0,
  0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3,
  0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a,
  0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9,
  0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44,
  0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef,
  0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85,
  0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6,
  0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf,
  0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff,
  0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58,
  0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a,
  0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24,
  0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8,
  0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64,
  0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2,
  0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda,
  0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77,
  0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x01
};


/*
 *  Log table, modulo 255 + 1.
 */
static UCHAR alpha_log[] = {
  0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a,
  0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a,
  0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1,
  0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3,
  0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83,
  0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4,
  0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35,
  0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38,
  0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70,
  0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48,
  0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24,
  0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15,
  0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f,
  0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10,
  0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7,
  0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b,
  0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08,
  0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a,
  0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91,
  0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb,
  0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2,
  0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf,
  0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52,
  0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86,
  0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc,
  0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc,
  0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8,
  0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44,
  0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1,
  0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97,
  0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5,
  0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7
};


/*
 *  Multiplication table for 0xc0.
 */
static UCHAR mult_c0[] = {
  0x00, 0xc0, 0x07, 0xc7, 0x0e, 0xce, 0x09, 0xc9,
  0x1c, 0xdc, 0x1b, 0xdb, 0x12, 0xd2, 0x15, 0xd5,
  0x38, 0xf8, 0x3f, 0xff, 0x36, 0xf6, 0x31, 0xf1,
  0x24, 0xe4, 0x23, 0xe3, 0x2a, 0xea, 0x2d, 0xed,
  0x70, 0xb0, 0x77, 0xb7, 0x7e, 0xbe, 0x79, 0xb9,
  0x6c, 0xac, 0x6b, 0xab, 0x62, 0xa2, 0x65, 0xa5,
  0x48, 0x88, 0x4f, 0x8f, 0x46, 0x86, 0x41, 0x81,
  0x54, 0x94, 0x53, 0x93, 0x5a, 0x9a, 0x5d, 0x9d,
  0xe0, 0x20, 0xe7, 0x27, 0xee, 0x2e, 0xe9, 0x29,
  0xfc, 0x3c, 0xfb, 0x3b, 0xf2, 0x32, 0xf5, 0x35,
  0xd8, 0x18, 0xdf, 0x1f, 0xd6, 0x16, 0xd1, 0x11,
  0xc4, 0x04, 0xc3, 0x03, 0xca, 0x0a, 0xcd, 0x0d,
  0x90, 0x50, 0x97, 0x57, 0x9e, 0x5e, 0x99, 0x59,
  0x8c, 0x4c, 0x8b, 0x4b, 0x82, 0x42, 0x85, 0x45,
  0xa8, 0x68, 0xaf, 0x6f, 0xa6, 0x66, 0xa1, 0x61,
  0xb4, 0x74, 0xb3, 0x73, 0xba, 0x7a, 0xbd, 0x7d,
  0x47, 0x87, 0x40, 0x80, 0x49, 0x89, 0x4e, 0x8e,
  0x5b, 0x9b, 0x5c, 0x9c, 0x55, 0x95, 0x52, 0x92,
  0x7f, 0xbf, 0x78, 0xb8, 0x71, 0xb1, 0x76, 0xb6,
  0x63, 0xa3, 0x64, 0xa4, 0x6d, 0xad, 0x6a, 0xaa,
  0x37, 0xf7, 0x30, 0xf0, 0x39, 0xf9, 0x3e, 0xfe,
  0x2b, 0xeb, 0x2c, 0xec, 0x25, 0xe5, 0x22, 0xe2,
  0x0f, 0xcf, 0x08, 0xc8, 0x01, 0xc1, 0x06, 0xc6,
  0x13, 0xd3, 0x14, 0xd4, 0x1d, 0xdd, 0x1a, 0xda,
  0xa7, 0x67, 0xa0, 0x60, 0xa9, 0x69, 0xae, 0x6e,
  0xbb, 0x7b, 0xbc, 0x7c, 0xb5, 0x75, 0xb2, 0x72,
  0x9f, 0x5f, 0x98, 0x58, 0x91, 0x51, 0x96, 0x56,
  0x83, 0x43, 0x84, 0x44, 0x8d, 0x4d, 0x8a, 0x4a,
  0xd7, 0x17, 0xd0, 0x10, 0xd9, 0x19, 0xde, 0x1e,
  0xcb, 0x0b, 0xcc, 0x0c, 0xc5, 0x05, 0xc2, 0x02,
  0xef, 0x2f, 0xe8, 0x28, 0xe1, 0x21, 0xe6, 0x26,
  0xf3, 0x33, 0xf4, 0x34, 0xfd, 0x3d, 0xfa, 0x3a
};


/*
 *  Return number of sectors available in a segment.
 */
int
sect_count(ULONG badmap)
{
  int i, amt;

  for (amt = QCV_BLKSEG, i = 0; i < QCV_BLKSEG; i++)
	if (badmap & (1 << i)) amt--;
  return(amt);
}


/*
 *  Return number of bytes available in a segment.
 */
int
sect_bytes(ULONG badmap)
{
  int i, amt;

  for (amt = QCV_SEGSIZE, i = 0; i < QCV_BLKSEG; i++)
	if (badmap & (1 << i)) amt -= QCV_BLKSIZE;
  return(amt);
}


/*
 *  Multiply two numbers in the field.
 */
static inline UCHAR
multiply(UCHAR a, UCHAR b)
{
  int tmp;

  if (!a || !b) return(0);
  tmp = alpha_log[a] + alpha_log[b];
  if (tmp > 254) tmp -= 255;
  return(alpha_power[tmp]);
}


/*
 *  Multiply by an exponent.
 */
static inline UCHAR
multiply_out(UCHAR a, int b)
{
  int tmp;

  if (!a) return(0);
  tmp = alpha_log[a] + b;
  if (tmp > 254) tmp -= 255;
  return(alpha_power[tmp]);
}


/*
 *  Divide two numbers.
 */
static inline UCHAR
divide(UCHAR a, UCHAR b)
{
  int tmp;

  if (!a || !b) return(0);
  tmp = alpha_log[a] - alpha_log[b];
  if (tmp < 0) tmp += 255;
  return (alpha_power[tmp]);
}


/*
 *  Divide using exponent.
 */
static inline UCHAR
divide_out(UCHAR a, UCHAR b)
{
  int tmp;

  if (!a) return 0;
  tmp = alpha_log[a] - b;
  if (tmp < 0) tmp += 255;
  return (alpha_power[tmp]);
}


/*
 *  This returns the value z^{a-b}.
 */
static inline UCHAR
z_of_ab(UCHAR a, UCHAR b)
{
  int tmp = a - b;

  if (tmp < 0) tmp += 255;
  return(alpha_power[tmp]);
}


/*
 *  Calculate the inverse matrix for two or three errors.  Returns 0
 *  if there is no inverse or 1 if successful.
 */
static inline int
calculate_inverse(int nerrs, int *pblk, struct inv_mat *inv)
{
  /* First some variables to remember some of the results. */
  UCHAR z20, z10, z21, z12, z01, z02;
  UCHAR i0, i1, i2;
  UCHAR iv0, iv1, iv2;

  if (nerrs < 2) return(1);
  if (nerrs > 3) return(0);

  i0 = pblk[0]; i1 = pblk[1]; i2 = pblk[2];
  if (nerrs == 2) {
	/* 2 errs */
	z01 = alpha_power[255 - i0];
	z02 = alpha_power[255 - i1];
	inv->log_denom = (z01 ^ z02);
	if (!inv->log_denom) return(0);
	inv->log_denom = 255 - alpha_log[inv->log_denom];

	inv->zs[0][0] = multiply_out(  1, inv->log_denom);
	inv->zs[0][1] = multiply_out(z02, inv->log_denom);
	inv->zs[1][0] = multiply_out(  1, inv->log_denom);
	inv->zs[1][1] = multiply_out(z01, inv->log_denom);
  } else {
	/* 3 errs */
	z20 = z_of_ab (i2, i0);
	z10 = z_of_ab (i1, i0);
	z21 = z_of_ab (i2, i1);
	z12 = z_of_ab (i1, i2);
	z01 = z_of_ab (i0, i1);
	z02 = z_of_ab (i0, i2);
	inv->log_denom = (z20 ^ z10 ^ z21 ^ z12 ^ z01 ^ z02);
	if (!inv->log_denom) return(0);
	inv->log_denom = 255 - alpha_log[inv->log_denom];

	iv0 = alpha_power[255 - i0];
	iv1 = alpha_power[255 - i1];
	iv2 = alpha_power[255 - i2];
	i0 = alpha_power[i0];
	i1 = alpha_power[i1];
	i2 = alpha_power[i2];
	inv->zs[0][0] = multiply_out(i1 ^ i2, inv->log_denom);
	inv->zs[0][1] = multiply_out(z21 ^ z12, inv->log_denom);
	inv->zs[0][2] = multiply_out(iv1 ^ iv2, inv->log_denom);
	inv->zs[1][0] = multiply_out(i0 ^ i2, inv->log_denom);
	inv->zs[1][1] = multiply_out(z20 ^ z02, inv->log_denom);
	inv->zs[1][2] = multiply_out(iv0 ^ iv2, inv->log_denom);
	inv->zs[2][0] = multiply_out(i0 ^ i1, inv->log_denom);
	inv->zs[2][1] = multiply_out(z10 ^ z01, inv->log_denom);
	inv->zs[2][2] = multiply_out(iv0 ^ iv1, inv->log_denom);
  }
  return(1);
}


/*
 *  Determine the error magnitudes for a given matrix and syndromes.
 */
static inline void
determine(int nerrs, struct inv_mat *inv, UCHAR *ss, UCHAR *es)
{
  UCHAR tmp;
  int i, j;

  for (i = 0; i < nerrs; i++) {
	es[i] = 0;
	for (j = 0; j < nerrs; j++)
		es[i] ^= multiply(ss[j], inv->zs[i][j]);
  }
}


/*
 *  Compute the 3 syndrome values.
 */
static inline int
compute_syndromes(UCHAR *data, int nblks, int col, UCHAR *ss)
{
  UCHAR r0, r1, r2, t1, t2;
  UCHAR *rptr;

  rptr = data + col;
  data += nblks << 10;
  r0 = r1 = r2 = 0;
  while (rptr < data) {
	t1 = *rptr ^ r0;
	t2 = mult_c0[t1];
	r0 = t2 ^ r1;
	r1 = t2 ^ r2;
	r2 = t1;
	rptr += QCV_BLKSIZE;
  }
  if (r0 || r1 || r2) {
	ss[0] = divide_out(r0 ^ divide_out(r1 ^ divide_out(r2, 1), 1), nblks);
	ss[1] = r0 ^ r1 ^ r2;
	ss[2] = multiply_out(r0 ^ multiply_out(r1 ^ multiply_out(r2, 1), 1), nblks);
	return(0);
  }
  return(1);
}


/*
 *  Calculate the parity bytes for a segment, returns 0 on success (always).
 */
int
set_parity (UCHAR *data, ULONG badmap)
{
  UCHAR r0, r1, r2, t1, t2;
  UCHAR *rptr;
  int max, row, col;

  max = sect_count(badmap) - 3;
  col = QCV_BLKSIZE;
  while (col--) {
	rptr = data;
	r0 = r1 = r2 = 0;
	row = max;
	while (row--) {
		t1 = *rptr ^ r0;
		t2 = mult_c0[t1];
		r0 = t2 ^ r1;
		r1 = t2 ^ r2;
		r2 = t1;
		rptr += QCV_BLKSIZE;
	}
	*rptr = r0; rptr += QCV_BLKSIZE;
	*rptr = r1; rptr += QCV_BLKSIZE;
	*rptr = r2;
	data++;
  }
  return(0);
}


/*
 *  Check and correct errors in a block.  Returns 0 on success,
 *  1 if failed.
 */
int
check_parity(UCHAR *data, ULONG badmap, ULONG crcmap)
{
  int crcerrs, eblk[3];
  int col, row;
  int i, j, nblks;
  UCHAR ss[3], es[3];
  int i1, i2, saverrs;
  struct inv_mat inv;

  nblks = sect_count(badmap);

  /* Count the number of CRC errors and note their locations. */
  crcerrs = 0;
  if (crcmap) {
	for (i = 0; i < nblks; i++) {
		if (crcmap & (1 << i)) {
			if (crcerrs == 3) return(1);
			eblk[crcerrs++] = i;
		}
	}
  }

  /* Calculate the inverse matrix */
  if (!calculate_inverse(crcerrs, eblk, &inv)) return(1);

  /* Scan each column for problems and attempt to correct. */
  for (col = 0; col < QCV_BLKSIZE; col++) {
	if (compute_syndromes(data, nblks, col, ss)) continue;
	es[0] = es[1] = es[2] = 0;

	/* Analyze the error situation. */
	switch (crcerrs) {
	    case 0:	/* 0 errors >0 failures */
		if (!ss[0]) return(1);
		eblk[crcerrs] = alpha_log[divide(ss[1], ss[0])];
		if (eblk[crcerrs] >= nblks) return(1);
		es[0] = ss[1];
		if (++crcerrs > 3) return(1);
		break;

	    case 1:	/* 1 error (+ possible failures) */
		i1 = ss[2] ^ multiply_out(ss[1], eblk[0]);
		i2 = ss[1] ^ multiply_out(ss[0], eblk[0]);
		if (!i1 && !i2) {			/* only 1 error */
			inv.zs[0][0] = alpha_power[eblk[0]];
			inv.log_denom = 0;
		} else if (!i1 || !i2) {		/* too many errors */
			return(1);
		} else {				/* add failure */
			eblk[crcerrs] = alpha_log[divide(i1, i2)];
			if (eblk[crcerrs] >= nblks) return(1);
			if (++crcerrs > 3) return(1);
			if (!calculate_inverse(crcerrs, eblk, &inv)) return(1);
		}
		determine(crcerrs, &inv, ss, es);
		break;

	    case 2:	/* 2 errors */
	    case 3:	/* 3 errors */
		determine(crcerrs, &inv, ss, es);
		break;

	    default:
		return(1);
	}

	/* Make corrections. */
	for (i = 0; i < crcerrs; i++) {
		data[(eblk[i] << 10) | col] ^= es[i];
		ss[0] ^= divide_out(es[i], eblk[i]);
		ss[1] ^= es[i];
		ss[2] ^= multiply_out(es[i], eblk[i]);
	}
	if (ss[0] || ss[1] || ss[2]) return(1);
  }
  return(0);
}
OpenPOWER on IntegriCloud