1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
/*-
* Copyright (c) 2011 David Schultz
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Hyperbolic tangent of a complex argument z = x + i y.
*
* The algorithm is from:
*
* W. Kahan. Branch Cuts for Complex Elementary Functions or Much
* Ado About Nothing's Sign Bit. In The State of the Art in
* Numerical Analysis, pp. 165 ff. Iserles and Powell, eds., 1987.
*
* Method:
*
* Let t = tan(x)
* beta = 1/cos^2(y)
* s = sinh(x)
* rho = cosh(x)
*
* We have:
*
* tanh(z) = sinh(z) / cosh(z)
*
* sinh(x) cos(y) + i cosh(x) sin(y)
* = ---------------------------------
* cosh(x) cos(y) + i sinh(x) sin(y)
*
* cosh(x) sinh(x) / cos^2(y) + i tan(y)
* = -------------------------------------
* 1 + sinh^2(x) / cos^2(y)
*
* beta rho s + i t
* = ----------------
* 1 + beta s^2
*
* Modifications:
*
* I omitted the original algorithm's handling of overflow in tan(x) after
* verifying with nearpi.c that this can't happen in IEEE single or double
* precision. I also handle large x differently.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <complex.h>
#include <math.h>
#include "math_private.h"
double complex
ctanh(double complex z)
{
double x, y;
double t, beta, s, rho, denom;
uint32_t hx, ix, lx;
x = creal(z);
y = cimag(z);
EXTRACT_WORDS(hx, lx, x);
ix = hx & 0x7fffffff;
/*
* ctanh(NaN + i 0) = NaN + i 0
*
* ctanh(NaN + i y) = NaN + i NaN for y != 0
*
* The imaginary part has the sign of x*sin(2*y), but there's no
* special effort to get this right.
*
* ctanh(+-Inf +- i Inf) = +-1 +- 0
*
* ctanh(+-Inf + i y) = +-1 + 0 sin(2y) for y finite
*
* The imaginary part of the sign is unspecified. This special
* case is only needed to avoid a spurious invalid exception when
* y is infinite.
*/
if (ix >= 0x7ff00000) {
if ((ix & 0xfffff) | lx) /* x is NaN */
return (cpack(x, (y == 0 ? y : x * y)));
SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */
return (cpack(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))));
}
/*
* ctanh(x + i NAN) = NaN + i NaN
* ctanh(x +- i Inf) = NaN + i NaN
*/
if (!isfinite(y))
return (cpack(y - y, y - y));
/*
* ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
* approximation sinh^2(huge) ~= exp(2*huge) / 4.
* We use a modified formula to avoid spurious overflow.
*/
if (ix >= 0x40360000) { /* x >= 22 */
double exp_mx = exp(-fabs(x));
return (cpack(copysign(1, x),
4 * sin(y) * cos(y) * exp_mx * exp_mx));
}
/* Kahan's algorithm */
t = tan(y);
beta = 1.0 + t * t; /* = 1 / cos^2(y) */
s = sinh(x);
rho = sqrt(1 + s * s); /* = cosh(x) */
denom = 1 + beta * s * s;
return (cpack((beta * rho * s) / denom, t / denom));
}
double complex
ctan(double complex z)
{
/* ctan(z) = -I * ctanh(I * z) */
z = ctanh(cpack(-cimag(z), creal(z)));
return (cpack(cimag(z), -creal(z)));
}
|