summaryrefslogtreecommitdiffstats
path: root/lib/msun/src/e_logf.c
blob: 77fe4791b156d35390be808cf05cd0f88749f0b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/* e_logf.c -- float version of e_log.c.
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "math.h"
#include "math_private.h"

/* __ieee754_log(x)
 * Return the logrithm of x
 *
 * Method :                  
 *   1. Argument Reduction: find k and f such that 
 *                      x = 2^k * (1+f), 
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *   2. Approximation of log(1+f).
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *               = 2s + s*R
 *      We use a special Reme algorithm on [0,0.1716] to generate 
 *      a polynomial of degree 8 to approximate R The maximum error 
 *      of this polynomial approximation is bounded by 2**-34.24. In
 *      other words,
 *                      2      4      6      8
 *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s
 *      (the values of Lg1 to Lg7 are listed in the program)
 *      and
 *          |      2          8           |     -34.24
 *          | Lg1*s +...+Lg4*s    -  R(z) | <= 2 
 *          |                             |
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 *      In order to guarantee error in log below 1ulp, we compute log
 *      by
 *              log(1+f) = f - s*(f - R)        (if f is not too large)
 *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
 *
 *      3. Finally,  log(x) = k*ln2 + log(1+f).  
 *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 *         Here ln2 is split into two floating point number: 
 *                      ln2_hi + ln2_lo,
 *         where n*ln2_hi is always exact for |n| < 2000.
 *
 * Special cases:
 *      log(x) is NaN with signal if x < 0 (including -INF) ; 
 *      log(+INF) is +INF; log(0) is -INF with signal;
 *      log(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following 
 * constants. The decimal values may be used, provided that the 
 * compiler will convert from decimal to binary accurately enough 
 * to produce the hexadecimal values shown.
 */

static const float
ln2_hi =   6.9313812256e-01,	/* 0x3f317180 */
ln2_lo =   9.0580006145e-06,	/* 0x3717f7d1 */
two25 =    3.355443200e+07,	/* 0x4c000000 */
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
Lg1 =      0xaaaaaa.0p-24,	/* 0.66666662693 */
Lg2 =      0xccce13.0p-25,	/* 0.40000972152 */
Lg3 =      0x91e9ee.0p-25,	/* 0.28498786688 */
Lg4 =      0xf89e26.0p-26;	/* 0.24279078841 */

static const float zero   =  0.0;

float
__ieee754_logf(float x)
{
	float hfsq,f,s,z,R,w,t1,t2,dk;
	int32_t k,ix,i,j;

	GET_FLOAT_WORD(ix,x);

	k=0;
	if (ix < 0x00800000) {			/* x < 2**-126  */
	    if ((ix&0x7fffffff)==0)
		return -two25/zero;		/* log(+-0)=-inf */
	    if (ix<0) return (x-x)/zero;	/* log(-#) = NaN */
	    k -= 25; x *= two25; /* subnormal number, scale up x */
	    GET_FLOAT_WORD(ix,x);
	}
	if (ix >= 0x7f800000) return x+x;
	k += (ix>>23)-127;
	ix &= 0x007fffff;
	i = (ix+(0x95f64<<3))&0x800000;
	SET_FLOAT_WORD(x,ix|(i^0x3f800000));	/* normalize x or x/2 */
	k += (i>>23);
	f = x-(float)1.0;
	if((0x007fffff&(0x8000+ix))<0xc000) {	/* -2**-9 <= f < 2**-9 */
	    if(f==zero) {
		if(k==0) {
		    return zero;
		} else {
		    dk=(float)k;
		    return dk*ln2_hi+dk*ln2_lo;
		}
	    }
	    R = f*f*((float)0.5-(float)0.33333333333333333*f);
	    if(k==0) return f-R; else {dk=(float)k;
	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
	}
 	s = f/((float)2.0+f);
	dk = (float)k;
	z = s*s;
	i = ix-(0x6147a<<3);
	w = z*z;
	j = (0x6b851<<3)-ix;
	t1= w*(Lg2+w*Lg4);
	t2= z*(Lg1+w*Lg3);
	i |= j;
	R = t2+t1;
	if(i>0) {
	    hfsq=(float)0.5*f*f;
	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
	} else {
	    if(k==0) return f-s*(f-R); else
		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
	}
}
OpenPOWER on IntegriCloud