summaryrefslogtreecommitdiffstats
path: root/lib/msun/ld80/s_expl.c
blob: ec748d371b65f5655e7cb9cd6e82a0d040069ff0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*-
 * Copyright (c) 2009-2013 Steven G. Kargl
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Optimized by Bruce D. Evans.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/**
 * Compute the exponential of x for Intel 80-bit format.  This is based on:
 *
 *   PTP Tang, "Table-driven implementation of the exponential function
 *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
 *   144-157 (1989).
 *
 * where the 32 table entries have been expanded to INTERVALS (see below).
 */

#include <float.h>

#ifdef __i386__
#include <ieeefp.h>
#endif

#include "fpmath.h"
#include "math.h"
#include "math_private.h"

#define	INTERVALS	128
#define	LOG2_INTERVALS	7
#define	BIAS	(LDBL_MAX_EXP - 1)

static const long double
huge = 0x1p10000L,
twom10000 = 0x1p-10000L;
/* XXX Prevent gcc from erroneously constant folding this: */
static volatile const long double tiny = 0x1p-10000L;

static const union IEEEl2bits
/* log(2**16384 - 0.5) rounded towards zero: */
/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13,  11356.5234062941439488L),
#define o_threshold	 (o_thresholdu.e)
/* log(2**(-16381-64-1)) rounded towards zero: */
u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
#define u_threshold	 (u_thresholdu.e)

static const double
/*
 * ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication).  L1 must
 * have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
 * bits zero so that multiplication of it by n is exact.
 */
INV_L = 1.8466496523378731e+2,		/*  0x171547652b82fe.0p-45 */
L1 =  5.4152123484527692e-3,		/*  0x162e42ff000000.0p-60 */
L2 = -3.2819649005320973e-13,		/* -0x1718432a1b0e26.0p-94 */
/*
 * Domain [-0.002708, 0.002708], range ~[-5.7136e-24, 5.7110e-24]:
 * |exp(x) - p(x)| < 2**-77.2
 * (0.002708 is ln2/(2*INTERVALS) rounded up a little).
 */
A2 =  0.5,
A3 =  1.6666666666666119e-1,		/*  0x15555555555490.0p-55 */
A4 =  4.1666666666665887e-2,		/*  0x155555555554e5.0p-57 */
A5 =  8.3333354987869413e-3,		/*  0x1111115b789919.0p-59 */
A6 =  1.3888891738560272e-3;		/*  0x16c16c651633ae.0p-62 */

/*
 * 2^(i/INTERVALS) for i in [0,INTERVALS] is represented by two values where
 * the first 53 bits of the significand are stored in hi and the next 53
 * bits are in lo.  Tang's paper states that the trailing 6 bits of hi must
 * be zero for his algorithm in both single and double precision, because
 * the table is re-used in the implementation of expm1() where a floating
 * point addition involving hi must be exact.  Here hi is double, so
 * converting it to long double gives 11 trailing zero bits.
 */
static const struct {
	double	hi;
	double	lo;
} tbl[INTERVALS] = {
	0x1p+0, 0x0p+0,
	0x1.0163da9fb3335p+0, 0x1.b61299ab8cdb7p-54,
	0x1.02c9a3e778060p+0, 0x1.dcdef95949ef4p-53,
	0x1.04315e86e7f84p+0, 0x1.7ae71f3441b49p-53,
	0x1.059b0d3158574p+0, 0x1.d73e2a475b465p-55,
	0x1.0706b29ddf6ddp+0, 0x1.8db880753b0f6p-53,
	0x1.0874518759bc8p+0, 0x1.186be4bb284ffp-57,
	0x1.09e3ecac6f383p+0, 0x1.1487818316136p-54,
	0x1.0b5586cf9890fp+0, 0x1.8a62e4adc610bp-54,
	0x1.0cc922b7247f7p+0, 0x1.01edc16e24f71p-54,
	0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c57b53p-59,
	0x1.0fb66affed31ap+0, 0x1.e464123bb1428p-53,
	0x1.11301d0125b50p+0, 0x1.49d77e35db263p-53,
	0x1.12abdc06c31cbp+0, 0x1.f72575a649ad2p-53,
	0x1.1429aaea92ddfp+0, 0x1.66820328764b1p-53,
	0x1.15a98c8a58e51p+0, 0x1.2406ab9eeab0ap-55,
	0x1.172b83c7d517ap+0, 0x1.b9bef918a1d63p-53,
	0x1.18af9388c8de9p+0, 0x1.777ee1734784ap-53,
	0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4968e4p-55,
	0x1.1bbe084045cd3p+0, 0x1.3563ce56884fcp-53,
	0x1.1d4873168b9aap+0, 0x1.e016e00a2643cp-54,
	0x1.1ed5022fcd91cp+0, 0x1.71033fec2243ap-53,
	0x1.2063b88628cd6p+0, 0x1.dc775814a8495p-55,
	0x1.21f49917ddc96p+0, 0x1.2a97e9494a5eep-55,
	0x1.2387a6e756238p+0, 0x1.9b07eb6c70573p-54,
	0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f4a4p-55,
	0x1.26b4565e27cddp+0, 0x1.2bd339940e9d9p-55,
	0x1.284dfe1f56380p+0, 0x1.2d9e2b9e07941p-53,
	0x1.29e9df51fdee1p+0, 0x1.612e8afad1255p-55,
	0x1.2b87fd0dad98fp+0, 0x1.fbbd48ca71f95p-53,
	0x1.2d285a6e4030bp+0, 0x1.0024754db41d5p-54,
	0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d52383p-56,
	0x1.306fe0a31b715p+0, 0x1.6f46ad23182e4p-55,
	0x1.32170fc4cd831p+0, 0x1.a9ce78e18047cp-55,
	0x1.33c08b26416ffp+0, 0x1.32721843659a6p-54,
	0x1.356c55f929ff0p+0, 0x1.928c468ec6e76p-53,
	0x1.371a7373aa9cap+0, 0x1.4e28aa05e8a8fp-53,
	0x1.38cae6d05d865p+0, 0x1.0b53961b37da2p-53,
	0x1.3a7db34e59ff6p+0, 0x1.d43792533c144p-53,
	0x1.3c32dc313a8e4p+0, 0x1.08003e4516b1ep-53,
	0x1.3dea64c123422p+0, 0x1.ada0911f09ebcp-55,
	0x1.3fa4504ac801bp+0, 0x1.417ee03548306p-53,
	0x1.4160a21f72e29p+0, 0x1.f0864b71e7b6cp-53,
	0x1.431f5d950a896p+0, 0x1.b8e088728219ap-53,
	0x1.44e086061892dp+0, 0x1.89b7a04ef80d0p-59,
	0x1.46a41ed1d0057p+0, 0x1.c944bd1648a76p-54,
	0x1.486a2b5c13cd0p+0, 0x1.3c1a3b69062f0p-56,
	0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be56p-54,
	0x1.4bfdad5362a27p+0, 0x1.d4397afec42e2p-56,
	0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a7833p-54,
	0x1.4f9b2769d2ca6p+0, 0x1.5a67b16d3540ep-53,
	0x1.516daa2cf6641p+0, 0x1.8225ea5909b04p-53,
	0x1.5342b569d4f81p+0, 0x1.be1507893b0d5p-53,
	0x1.551a4ca5d920ep+0, 0x1.8a5d8c4048699p-53,
	0x1.56f4736b527dap+0, 0x1.9bb2c011d93adp-54,
	0x1.58d12d497c7fdp+0, 0x1.295e15b9a1de8p-55,
	0x1.5ab07dd485429p+0, 0x1.6324c054647adp-54,
	0x1.5c9268a5946b7p+0, 0x1.c4b1b816986a2p-60,
	0x1.5e76f15ad2148p+0, 0x1.ba6f93080e65ep-54,
	0x1.605e1b976dc08p+0, 0x1.60edeb25490dcp-53,
	0x1.6247eb03a5584p+0, 0x1.63e1f40dfa5b5p-53,
	0x1.6434634ccc31fp+0, 0x1.8edf0e2989db3p-53,
	0x1.6623882552224p+0, 0x1.224fb3c5371e6p-53,
	0x1.68155d44ca973p+0, 0x1.038ae44f73e65p-57,
	0x1.6a09e667f3bccp+0, 0x1.21165f626cdd5p-53,
	0x1.6c012750bdabep+0, 0x1.daed533001e9ep-53,
	0x1.6dfb23c651a2ep+0, 0x1.e441c597c3775p-53,
	0x1.6ff7df9519483p+0, 0x1.9f0fc369e7c42p-53,
	0x1.71f75e8ec5f73p+0, 0x1.ba46e1e5de15ap-53,
	0x1.73f9a48a58173p+0, 0x1.7ab9349cd1562p-53,
	0x1.75feb564267c8p+0, 0x1.7edd354674916p-53,
	0x1.780694fde5d3fp+0, 0x1.866b80a02162dp-54,
	0x1.7a11473eb0186p+0, 0x1.afaa2047ed9b4p-53,
	0x1.7c1ed0130c132p+0, 0x1.f124cd1164dd6p-54,
	0x1.7e2f336cf4e62p+0, 0x1.05d02ba15797ep-56,
	0x1.80427543e1a11p+0, 0x1.6c1bccec9346bp-53,
	0x1.82589994cce12p+0, 0x1.159f115f56694p-53,
	0x1.8471a4623c7acp+0, 0x1.9ca5ed72f8c81p-53,
	0x1.868d99b4492ecp+0, 0x1.01c83b21584a3p-53,
	0x1.88ac7d98a6699p+0, 0x1.994c2f37cb53ap-54,
	0x1.8ace5422aa0dbp+0, 0x1.6e9f156864b27p-54,
	0x1.8cf3216b5448bp+0, 0x1.de55439a2c38bp-53,
	0x1.8f1ae99157736p+0, 0x1.5cc13a2e3976cp-55,
	0x1.9145b0b91ffc5p+0, 0x1.114c368d3ed6ep-53,
	0x1.93737b0cdc5e4p+0, 0x1.e8a0387e4a814p-53,
	0x1.95a44cbc8520ep+0, 0x1.d36906d2b41f9p-53,
	0x1.97d829fde4e4fp+0, 0x1.173d241f23d18p-53,
	0x1.9a0f170ca07b9p+0, 0x1.7462137188ce7p-53,
	0x1.9c49182a3f090p+0, 0x1.c7c46b071f2bep-56,
	0x1.9e86319e32323p+0, 0x1.824ca78e64c6ep-56,
	0x1.a0c667b5de564p+0, 0x1.6535b51719567p-53,
	0x1.a309bec4a2d33p+0, 0x1.6305c7ddc36abp-54,
	0x1.a5503b23e255cp+0, 0x1.1684892395f0fp-53,
	0x1.a799e1330b358p+0, 0x1.bcb7ecac563c7p-54,
	0x1.a9e6b5579fdbfp+0, 0x1.0fac90ef7fd31p-54,
	0x1.ac36bbfd3f379p+0, 0x1.81b72cd4624ccp-53,
	0x1.ae89f995ad3adp+0, 0x1.7a1cd345dcc81p-54,
	0x1.b0e07298db665p+0, 0x1.2108559bf8deep-53,
	0x1.b33a2b84f15fap+0, 0x1.ed7fa1cf7b290p-53,
	0x1.b59728de55939p+0, 0x1.1c7102222c90ep-53,
	0x1.b7f76f2fb5e46p+0, 0x1.d54f610356a79p-53,
	0x1.ba5b030a10649p+0, 0x1.0819678d5eb69p-53,
	0x1.bcc1e904bc1d2p+0, 0x1.23dd07a2d9e84p-55,
	0x1.bf2c25bd71e08p+0, 0x1.0811ae04a31c7p-53,
	0x1.c199bdd85529cp+0, 0x1.11065895048ddp-55,
	0x1.c40ab5fffd07ap+0, 0x1.b4537e083c60ap-54,
	0x1.c67f12e57d14bp+0, 0x1.2884dff483cadp-54,
	0x1.c8f6d9406e7b5p+0, 0x1.1acbc48805c44p-56,
	0x1.cb720dcef9069p+0, 0x1.503cbd1e949dbp-56,
	0x1.cdf0b555dc3f9p+0, 0x1.889f12b1f58a3p-53,
	0x1.d072d4a07897bp+0, 0x1.1a1e45e4342b2p-53,
	0x1.d2f87080d89f1p+0, 0x1.15bc247313d44p-53,
	0x1.d5818dcfba487p+0, 0x1.2ed02d75b3707p-55,
	0x1.d80e316c98397p+0, 0x1.7709f3a09100cp-53,
	0x1.da9e603db3285p+0, 0x1.c2300696db532p-54,
	0x1.dd321f301b460p+0, 0x1.2da5778f018c3p-54,
	0x1.dfc97337b9b5ep+0, 0x1.72d195873da52p-53,
	0x1.e264614f5a128p+0, 0x1.424ec3f42f5b5p-53,
	0x1.e502ee78b3ff6p+0, 0x1.39e8980a9cc8fp-55,
	0x1.e7a51fbc74c83p+0, 0x1.2d522ca0c8de2p-54,
	0x1.ea4afa2a490d9p+0, 0x1.0b1ee7431ebb6p-53,
	0x1.ecf482d8e67f0p+0, 0x1.1b60625f7293ap-53,
	0x1.efa1bee615a27p+0, 0x1.dc7f486a4b6b0p-54,
	0x1.f252b376bba97p+0, 0x1.3a1a5bf0d8e43p-54,
	0x1.f50765b6e4540p+0, 0x1.9d3e12dd8a18bp-54,
	0x1.f7bfdad9cbe13p+0, 0x1.1227697fce57bp-53,
	0x1.fa7c1819e90d8p+0, 0x1.74853f3a5931ep-55,
	0x1.fd3c22b8f71f1p+0, 0x1.2eb74966579e7p-57
};

long double
expl(long double x)
{
	union IEEEl2bits u, v;
	long double fn, q, r, r1, r2, t, twopk, twopkp10000;
	long double z;
	int k, n, n2;
	uint16_t hx, ix;

	/* Filter out exceptional cases. */
	u.e = x;
	hx = u.xbits.expsign;
	ix = hx & 0x7fff;
	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
		if (ix == BIAS + LDBL_MAX_EXP) {
			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
				return (-1 / x);
 			return (x + x);	/* x is +Inf, +NaN or unsupported */
		}
		if (x > o_threshold)
			return (huge * huge);
		if (x < u_threshold)
			return (tiny * tiny);
	} else if (ix < BIAS - 65) {	/* |x| < 0x1p-65 (includes pseudos) */
		return (1 + x);		/* 1 with inexact iff x != 0 */
	}

	ENTERI();

	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
	/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
	fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
	r = x - fn * L1 - fn * L2;	/* r = r1 + r2 done independently. */
#if defined(HAVE_EFFICIENT_IRINTL)
	n = irintl(fn);
#elif defined(HAVE_EFFICIENT_IRINT)
	n = irint(fn);
#else
	n = (int)fn;
#endif
	n2 = (unsigned)n % INTERVALS;
	/* Depend on the sign bit being propagated: */
	k = n >> LOG2_INTERVALS;
	r1 = x - fn * L1;
	r2 = fn * -L2;

	/* Prepare scale factors. */
	v.e = 1;
	if (k >= LDBL_MIN_EXP) {
		v.xbits.expsign = BIAS + k;
		twopk = v.e;
	} else {
		v.xbits.expsign = BIAS + k + 10000;
		twopkp10000 = v.e;
	}

	/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
	z = r * r;
	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
	t = (long double)tbl[n2].lo + tbl[n2].hi;
	t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;

	/* Scale by 2**k. */
	if (k >= LDBL_MIN_EXP) {
		if (k == LDBL_MAX_EXP)
			RETURNI(t * 2 * 0x1p16383L);
		RETURNI(t * twopk);
	} else {
		RETURNI(t * twopkp10000 * twom10000);
	}
}

/**
 * Compute expm1l(x) for Intel 80-bit format.  This is based on:
 *
 *   PTP Tang, "Table-driven implementation of the Expm1 function
 *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
 *   211-222 (1992).
 */

/*
 * Our T1 and T2 are chosen to be approximately the points where method
 * A and method B have the same accuracy.  Tang's T1 and T2 are the
 * points where method A's accuracy changes by a full bit.  For Tang,
 * this drop in accuracy makes method A immediately less accurate than
 * method B, but our larger INTERVALS makes method A 2 bits more
 * accurate so it remains the most accurate method significantly
 * closer to the origin despite losing the full bit in our extended
 * range for it.
 */
static const double
T1 = -0.1659,				/* ~-30.625/128 * log(2) */
T2 =  0.1659;				/* ~30.625/128 * log(2) */

/*
 * Domain [-0.1659, 0.1659], range ~[-1.2027e-22, 3.4417e-22]:
 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.2
 */
static const union IEEEl2bits
B3 = LD80C(0xaaaaaaaaaaaaaaab, -3,  1.66666666666666666671e-1L),
B4 = LD80C(0xaaaaaaaaaaaaaaac, -5,  4.16666666666666666712e-2L);

static const double
B5  =  8.3333333333333245e-3,		/*  0x1.111111111110cp-7 */
B6  =  1.3888888888888861e-3,		/*  0x1.6c16c16c16c0ap-10 */
B7  =  1.9841269841532042e-4,		/*  0x1.a01a01a0319f9p-13 */
B8  =  2.4801587302069236e-5,		/*  0x1.a01a01a03cbbcp-16 */
B9  =  2.7557316558468562e-6,		/*  0x1.71de37fd33d67p-19 */
B10 =  2.7557315829785151e-7,		/*  0x1.27e4f91418144p-22 */
B11 =  2.5063168199779829e-8,		/*  0x1.ae94fabdc6b27p-26 */
B12 =  2.0887164654459567e-9;		/*  0x1.1f122d6413fe1p-29 */

long double
expm1l(long double x)
{
	union IEEEl2bits u, v;
	long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
	long double x_lo, x2, z;
	long double x4;
	int k, n, n2;
	uint16_t hx, ix;

	/* Filter out exceptional cases. */
	u.e = x;
	hx = u.xbits.expsign;
	ix = hx & 0x7fff;
	if (ix >= BIAS + 6) {		/* |x| >= 64 or x is NaN */
		if (ix == BIAS + LDBL_MAX_EXP) {
			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
				return (-1 / x - 1);
			return (x + x);	/* x is +Inf, +NaN or unsupported */
		}
		if (x > o_threshold)
			return (huge * huge);
		/*
		 * expm1l() never underflows, but it must avoid
		 * unrepresentable large negative exponents.  We used a
		 * much smaller threshold for large |x| above than in
		 * expl() so as to handle not so large negative exponents
		 * in the same way as large ones here.
		 */
		if (hx & 0x8000)	/* x <= -64 */
			return (tiny - 1);	/* good for x < -65ln2 - eps */
	}

	ENTERI();

	if (T1 < x && x < T2) {
		if (ix < BIAS - 64) {	/* |x| < 0x1p-64 (includes pseudos) */
			/* x (rounded) with inexact if x != 0: */
			RETURNI(x == 0 ? x :
			    (0x1p100 * x + fabsl(x)) * 0x1p-100);
		}

		x2 = x * x;
		x4 = x2 * x2;
		q = x4 * (x2 * (x4 *
		    /*
		     * XXX the number of terms is no longer good for
		     * pairwise grouping of all except B3, and the
		     * grouping is no longer from highest down.
		     */
		    (x2 *            B12  + (x * B11 + B10)) +
		    (x2 * (x * B9 +  B8) +  (x * B7 +  B6))) +
			  (x * B5 +  B4.e)) + x2 * x * B3.e;

		x_hi = (float)x;
		x_lo = x - x_hi;
		hx2_hi = x_hi * x_hi / 2;
		hx2_lo = x_lo * (x + x_hi) / 2;
		if (ix >= BIAS - 7)
			RETURNI(hx2_lo + x_lo + q + (hx2_hi + x_hi));
		else
			RETURNI(hx2_lo + q + hx2_hi + x);
	}

	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
	/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
	fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
#if defined(HAVE_EFFICIENT_IRINTL)
	n = irintl(fn);
#elif defined(HAVE_EFFICIENT_IRINT)
	n = irint(fn);
#else
	n = (int)fn;
#endif
	n2 = (unsigned)n % INTERVALS;
	k = n >> LOG2_INTERVALS;
	r1 = x - fn * L1;
	r2 = fn * -L2;
	r = r1 + r2;

	/* Prepare scale factor. */
	v.e = 1;
	v.xbits.expsign = BIAS + k;
	twopk = v.e;

	/*
	 * Evaluate lower terms of
	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
	 */
	z = r * r;
	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;

	t = (long double)tbl[n2].lo + tbl[n2].hi;

	if (k == 0) {
		t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 +
		    (tbl[n2].hi - 1);
		RETURNI(t);
	}
	if (k == -1) {
		t = tbl[n2].lo * (r1 + 1) + t * q + tbl[n2].hi * r1 + 
		    (tbl[n2].hi - 2);
		RETURNI(t / 2);
	}
	if (k < -7) {
		t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
		RETURNI(t * twopk - 1);
	}
	if (k > 2 * LDBL_MANT_DIG - 1) {
		t = tbl[n2].lo + t * (q + r1) + tbl[n2].hi;
		if (k == LDBL_MAX_EXP)
			RETURNI(t * 2 * 0x1p16383L - 1);
		RETURNI(t * twopk - 1);
	}

	v.xbits.expsign = BIAS - k;
	twomk = v.e;

	if (k > LDBL_MANT_DIG - 1)
		t = tbl[n2].lo - twomk + t * (q + r1) + tbl[n2].hi;
	else
		t = tbl[n2].lo + t * (q + r1) + (tbl[n2].hi - twomk);
	RETURNI(t * twopk);
}
OpenPOWER on IntegriCloud