1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
/*
* Copyright (c) 2001 Dima Dorfman.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This is the traditional Berkeley MP library implemented in terms of
* the OpenSSL BIGNUM library. It was written to replace libgmp, and
* is meant to be as compatible with the latter as feasible.
*
* There seems to be a lack of documentation for the Berkeley MP
* interface. All I could find was libgmp documentation (which didn't
* talk about the semantics of the functions) and an old SunOS 4.1
* manual page from 1989. The latter wasn't very detailed, either,
* but at least described what the function's arguments were. In
* general the interface seems to be archaic, somewhat poorly
* designed, and poorly, if at all, documented. It is considered
* harmful.
*
* Miscellaneous notes on this implementation:
*
* - The SunOS manual page mentioned above indicates that if an error
* occurs, the library should "produce messages and core images."
* Given that most of the functions don't have return values (and
* thus no sane way of alerting the caller to an error), this seems
* reasonable. The MPERR and MPERRX macros call warn and warnx,
* respectively, then abort().
*
* - All the functions which take an argument to be "filled in"
* assume that the argument has been initialized by one of the *tom()
* routines before being passed to it. I never saw this documented
* anywhere, but this seems to be consistent with the way this
* library is used.
*
* - msqrt() is the only routine which had to be implemented which
* doesn't have a close counterpart in the OpenSSL BIGNUM library.
* It was implemented by hand using Newton's recursive formula.
* Doing it this way, although more error-prone, has the positive
* sideaffect of testing a lot of other functions; if msqrt()
* produces the correct results, most of the other routines will as
* well.
*
* - Internal-use-only routines (i.e., those defined here statically
* and not in mp.h) have an underscore prepended to their name (this
* is more for aesthetical reasons than technical). All such
* routines take an extra argument, 'msg', that denotes what they
* should call themselves in an error message. This is so a user
* doesn't get an error message from a function they didn't call.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "openssl/crypto/bn/bn_lcl.h"
#include "mp.h"
#define MPERR(s) do { warn s; abort(); } while (0)
#define MPERRX(s) do { warnx s; abort(); } while (0)
#define BN_ERRCHECK(msg, expr) do { \
if (!(expr)) _bnerr(msg); \
} while (0)
static void _bnerr(const char *);
static MINT *_dtom(const char *, const char *);
static MINT *_itom(const char *, short);
static void _madd(const char *, const MINT *, const MINT *, MINT *);
static int _mcmpa(const char *, const MINT *, const MINT *);
static void _mdiv(const char *, const MINT *, const MINT *, MINT *, MINT *);
static void _mfree(const char *, MINT *);
static void _moveb(const char *, const BIGNUM *, MINT *);
static void _movem(const char *, const MINT *, MINT *);
static void _msub(const char *, const MINT *, const MINT *, MINT *);
static char *_mtod(const char *, const MINT *);
static char *_mtox(const char *, const MINT *);
static void _mult(const char *, const MINT *, const MINT *, MINT *);
static void _sdiv(const char *, const MINT *, short, MINT *, short *);
static MINT *_xtom(const char *, const char *);
/*
* Report an error from one of the BN_* functions using MPERRX.
*/
static void
_bnerr(const char *msg)
{
ERR_load_crypto_strings();
MPERRX(("%s: %s", msg, ERR_reason_error_string(ERR_get_error())));
}
/*
* Convert a decimal string to an MINT.
*/
static MINT *
_dtom(const char *msg, const char *s)
{
MINT *mp;
mp = malloc(sizeof(*mp));
if (mp == NULL)
MPERR(("%s", msg));
mp->bn = BN_new();
if (mp->bn == NULL)
_bnerr(msg);
BN_ERRCHECK(msg, BN_dec2bn(&mp->bn, s));
return (mp);
}
/*
* Compute the greatest common divisor of mp1 and mp2; result goes in rmp.
*/
void
gcd(const MINT *mp1, const MINT *mp2, MINT *rmp)
{
BIGNUM b;
BN_CTX c;
BN_CTX_init(&c);
BN_init(&b);
BN_ERRCHECK("gcd", BN_gcd(&b, mp1->bn, mp2->bn, &c));
_moveb("gcd", &b, rmp);
BN_free(&b);
BN_CTX_free(&c);
}
/*
* Make an MINT out of a short integer. Return value must be mfree()'d.
*/
static MINT *
_itom(const char *msg, short n)
{
MINT *mp;
char *s;
asprintf(&s, "%x", n);
if (s == NULL)
MPERR(("%s", msg));
mp = _xtom(msg, s);
free(s);
return (mp);
}
MINT *
itom(short n)
{
return (_itom("itom", n));
}
/*
* Compute rmp=mp1+mp2.
*/
static void
_madd(const char *msg, const MINT *mp1, const MINT *mp2, MINT *rmp)
{
BIGNUM b;
BN_init(&b);
BN_ERRCHECK(msg, BN_add(&b, mp1->bn, mp2->bn));
_moveb(msg, &b, rmp);
BN_free(&b);
}
void
madd(const MINT *mp1, const MINT *mp2, MINT *rmp)
{
_madd("madd", mp1, mp2, rmp);
}
/*
* Return -1, 0, or 1 if mp1<mp2, mp1==mp2, or mp1>mp2, respectivley.
*/
int
mcmp(const MINT *mp1, const MINT *mp2)
{
return (BN_cmp(mp1->bn, mp2->bn));
}
/*
* Same as mcmp but compares absolute values.
*/
static int
_mcmpa(const char *msg __unused, const MINT *mp1, const MINT *mp2)
{
return (BN_ucmp(mp1->bn, mp2->bn));
}
/*
* Compute qmp=nmp/dmp and rmp=nmp%dmp.
*/
static void
_mdiv(const char *msg, const MINT *nmp, const MINT *dmp, MINT *qmp, MINT *rmp)
{
BIGNUM q, r;
BN_CTX c;
BN_CTX_init(&c);
BN_init(&r);
BN_init(&q);
BN_ERRCHECK(msg, BN_div(&q, &r, nmp->bn, dmp->bn, &c));
_moveb(msg, &q, qmp);
_moveb(msg, &r, rmp);
BN_free(&q);
BN_free(&r);
BN_CTX_free(&c);
}
void
mdiv(const MINT *nmp, const MINT *dmp, MINT *qmp, MINT *rmp)
{
_mdiv("mdiv", nmp, dmp, qmp, rmp);
}
/*
* Free memory associated with an MINT.
*/
static void
_mfree(const char *msg __unused, MINT *mp)
{
BN_clear(mp->bn);
BN_free(mp->bn);
free(mp);
}
void
mfree(MINT *mp)
{
_mfree("mfree", mp);
}
/*
* Read an integer from standard input and stick the result in mp.
* The input is treated to be in base 10. This must be the silliest
* API in existence; why can't the program read in a string and call
* xtom()? (Or if base 10 is desires, perhaps dtom() could be
* exported.)
*/
void
min(MINT *mp)
{
MINT *rmp;
char *line, *nline;
size_t linelen;
line = fgetln(stdin, &linelen);
if (line == NULL)
MPERR(("min"));
nline = malloc(linelen);
if (nline == NULL)
MPERR(("min"));
strncpy(nline, line, linelen);
nline[linelen] = '\0';
rmp = _dtom("min", nline);
_movem("min", rmp, mp);
_mfree("min", rmp);
free(nline);
}
/*
* Print the value of mp to standard output in base 10. See blurb
* above min() for why this is so useless.
*/
void
mout(const MINT *mp)
{
char *s;
s = _mtod("mout", mp);
printf("%s", s);
free(s);
}
/*
* Set the value of tmp to the value of smp (i.e., tmp=smp).
*/
void
move(const MINT *smp, MINT *tmp)
{
_movem("move", smp, tmp);
}
/*
* Internal routine to set the value of tmp to that of sbp.
*/
static void
_moveb(const char *msg, const BIGNUM *sbp, MINT *tmp)
{
BN_ERRCHECK(msg, BN_copy(tmp->bn, sbp));
}
/*
* Internal routine to set the value of tmp to that of smp.
*/
static void
_movem(const char *msg, const MINT *smp, MINT *tmp)
{
BN_ERRCHECK(msg, BN_copy(tmp->bn, smp->bn));
}
/*
* Compute the square root of nmp and put the result in xmp. The
* remainder goes in rmp. Should satisfy: rmp=nmp-(xmp*xmp).
*
* Note that the OpenSSL BIGNUM library does not have a square root
* function, so this had to be implemented by hand using Newton's
* recursive formula:
*
* x = (x + (n / x)) / 2
*
* where x is the square root of the positive number n. In the
* beginning, x should be a reasonable guess, but the value 1,
* although suboptimal, works, too; this is that is used below.
*/
void
msqrt(const MINT *nmp, MINT *xmp, MINT *rmp)
{
MINT *tolerance;
MINT *ox, *x;
MINT *z1, *z2, *z3;
short i;
tolerance = _itom("msqrt", 1);
x = _itom("msqrt", 1);
ox = _itom("msqrt", 0);
z1 = _itom("msqrt", 0);
z2 = _itom("msqrt", 0);
z3 = _itom("msqrt", 0);
do {
_movem("msqrt", x, ox);
_mdiv("msqrt", nmp, x, z1, z2);
_madd("msqrt", x, z1, z2);
_sdiv("msqrt", z2, 2, x, &i);
_msub("msqrt", ox, x, z3);
} while (_mcmpa("msqrt", z3, tolerance) == 1);
_movem("msqrt", x, xmp);
_mult("msqrt", x, x, z1);
_msub("msqrt", nmp, z1, z2);
_movem("msqrt", z2, rmp);
_mfree("msqrt", tolerance);
_mfree("msqrt", ox);
_mfree("msqrt", x);
_mfree("msqrt", z1);
_mfree("msqrt", z2);
_mfree("msqrt", z3);
}
/*
* Compute rmp=mp1-mp2.
*/
static void
_msub(const char *msg, const MINT *mp1, const MINT *mp2, MINT *rmp)
{
BIGNUM b;
BN_init(&b);
BN_ERRCHECK(msg, BN_sub(&b, mp1->bn, mp2->bn));
_moveb(msg, &b, rmp);
BN_free(&b);
}
void
msub(const MINT *mp1, const MINT *mp2, MINT *rmp)
{
_msub("msub", mp1, mp2, rmp);
}
/*
* Return a decimal representation of mp. Return value must be
* free()'d.
*/
static char *
_mtod(const char *msg, const MINT *mp)
{
char *s, *s2;
s = BN_bn2dec(mp->bn);
if (s == NULL)
_bnerr(msg);
asprintf(&s2, "%s", s);
if (s2 == NULL)
MPERR(("%s", msg));
OPENSSL_free(s);
return (s2);
}
/*
* Return a hexadecimal representation of mp. Return value must be
* free()'d.
*/
static char *
_mtox(const char *msg, const MINT *mp)
{
char *p, *s, *s2;
int len;
s = BN_bn2hex(mp->bn);
if (s == NULL)
_bnerr(msg);
asprintf(&s2, "%s", s);
if (s2 == NULL)
MPERR(("%s", msg));
OPENSSL_free(s);
/*
* This is a kludge for libgmp compatibility. The latter's
* implementation of this function returns lower-case letters,
* but BN_bn2hex returns upper-case. Some programs (e.g.,
* newkey(1)) are sensitive to this. Although it's probably
* their fault, it's nice to be compatible.
*/
len = strlen(s2);
for (p = s2; p < s2 + len; p++)
*p = tolower(*p);
return (s2);
}
char *
mtox(const MINT *mp)
{
return (_mtox("mtox", mp));
}
/*
* Compute rmp=mp1*mp2.
*/
static void
_mult(const char *msg, const MINT *mp1, const MINT *mp2, MINT *rmp)
{
BIGNUM b;
BN_CTX c;
BN_CTX_init(&c);
BN_init(&b);
BN_ERRCHECK(msg, BN_mul(&b, mp1->bn, mp2->bn, &c));
_moveb(msg, &b, rmp);
BN_free(&b);
BN_CTX_free(&c);
}
void
mult(const MINT *mp1, const MINT *mp2, MINT *rmp)
{
_mult("mult", mp1, mp2, rmp);
}
/*
* Compute rmp=(bmp^emp)mod mmp. (Note that here and above rpow() '^'
* means 'raise to power', not 'bitwise XOR'.)
*/
void
pow(const MINT *bmp, const MINT *emp, const MINT *mmp, MINT *rmp)
{
BIGNUM b;
BN_CTX c;
BN_CTX_init(&c);
BN_init(&b);
BN_ERRCHECK("pow", BN_mod_exp(&b, bmp->bn, emp->bn, mmp->bn, &c));
_moveb("pow", &b, rmp);
BN_free(&b);
BN_CTX_free(&c);
}
/*
* Compute rmp=bmp^e. (See note above pow().)
*/
void
rpow(const MINT *bmp, short e, MINT *rmp)
{
MINT *emp;
BIGNUM b;
BN_CTX c;
BN_CTX_init(&c);
BN_init(&b);
emp = _itom("rpow", e);
BN_ERRCHECK("rpow", BN_exp(&b, bmp->bn, emp->bn, &c));
_moveb("rpow", &b, rmp);
_mfree("rpow", emp);
BN_free(&b);
BN_CTX_free(&c);
}
/*
* Compute qmp=nmp/d and ro=nmp%d.
*/
static void
_sdiv(const char *msg, const MINT *nmp, short d, MINT *qmp, short *ro)
{
MINT *dmp, *rmp;
BIGNUM q, r;
BN_CTX c;
char *s;
BN_CTX_init(&c);
BN_init(&q);
BN_init(&r);
dmp = _itom(msg, d);
rmp = _itom(msg, 0);
BN_ERRCHECK(msg, BN_div(&q, &r, nmp->bn, dmp->bn, &c));
_moveb(msg, &q, qmp);
_moveb(msg, &r, rmp);
s = _mtox(msg, rmp);
errno = 0;
*ro = strtol(s, NULL, 16);
if (errno != 0)
MPERR(("%s underflow or overflow", msg));
free(s);
_mfree(msg, dmp);
_mfree(msg, rmp);
BN_free(&r);
BN_free(&q);
BN_CTX_free(&c);
}
void
sdiv(const MINT *nmp, short d, MINT *qmp, short *ro)
{
_sdiv("sdiv", nmp, d, qmp, ro);
}
/*
* Convert a hexadecimal string to an MINT.
*/
static MINT *
_xtom(const char *msg, const char *s)
{
MINT *mp;
mp = malloc(sizeof(*mp));
if (mp == NULL)
MPERR(("%s", msg));
mp->bn = BN_new();
if (mp->bn == NULL)
_bnerr(msg);
BN_ERRCHECK(msg, BN_hex2bn(&mp->bn, s));
return (mp);
}
MINT *
xtom(const char *s)
{
return (_xtom("xtom", s));
}
|