summaryrefslogtreecommitdiffstats
path: root/lib/libkse/thread/thr_kern.c
blob: 6176b713cfbb9729e16e207b1545fb8dae9d0d04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
/*
 * Copyright (C) 2003 Daniel M. Eischen <deischen@freebsd.org>
 * Copyright (C) 2002 Jonathon Mini <mini@freebsd.org>
 * Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by John Birrell.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/types.h>
#include <sys/kse.h>
#include <sys/signalvar.h>
#include <sys/queue.h>
#include <machine/atomic.h>

#include <assert.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ucontext.h>
#include <unistd.h>

#include "atomic_ops.h"
#include "thr_private.h"
#include "pthread_md.h"
#include "libc_private.h"

/*#define DEBUG_THREAD_KERN */
#ifdef DEBUG_THREAD_KERN
#define DBG_MSG		stdout_debug
#else
#define DBG_MSG(x...)
#endif

/*
 * Define a high water mark for the maximum number of threads that
 * will be cached.  Once this level is reached, any extra threads
 * will be free()'d.
 *
 * XXX - It doesn't make sense to worry about the maximum number of
 *       KSEs that we can cache because the system will limit us to
 *       something *much* less than the maximum number of threads
 *       that we can have.  Disregarding KSEs in their own group,
 *       the maximum number of KSEs is the number of processors in
 *       the system.
 */
#define	MAX_CACHED_THREADS	100
#define	KSE_STACKSIZE		16384

#define	KSE_SET_MBOX(kse, thrd) \
	(kse)->k_mbx.km_curthread = &(thrd)->tmbx

#define	KSE_SET_EXITED(kse)	(kse)->k_flags |= KF_EXITED

/*
 * Macros for manipulating the run queues.  The priority queue
 * routines use the thread's pqe link and also handle the setting
 * and clearing of the thread's THR_FLAGS_IN_RUNQ flag.
 */
#define	KSE_RUNQ_INSERT_HEAD(kse, thrd)			\
	_pq_insert_head(&(kse)->k_schedq->sq_runq, thrd)
#define	KSE_RUNQ_INSERT_TAIL(kse, thrd)			\
	_pq_insert_tail(&(kse)->k_schedq->sq_runq, thrd)
#define	KSE_RUNQ_REMOVE(kse, thrd)			\
	_pq_remove(&(kse)->k_schedq->sq_runq, thrd)
#define	KSE_RUNQ_FIRST(kse)	_pq_first(&(kse)->k_schedq->sq_runq)

/*
 * XXX - Remove when David commits kernel changes to support these.
 */
#ifndef KMF_NOUPCALL
#define	KMF_NOUPCALL	0x01
#define	KMF_NOCOMPLETED	0x02
#endif


/*
 * We've got to keep track of everything that is allocated, not only
 * to have a speedy free list, but also so they can be deallocated
 * after a fork().
 */
static TAILQ_HEAD(, kse)	active_kseq;
static TAILQ_HEAD(, kse)	free_kseq;
static TAILQ_HEAD(, kse_group)	free_kse_groupq;
static TAILQ_HEAD(, kse_group)	active_kse_groupq;
static TAILQ_HEAD(, kse_group)	gc_ksegq;
static struct lock		kse_lock;	/* also used for kseg queue */
static int			free_kse_count = 0;
static int			free_kseg_count = 0;
static TAILQ_HEAD(, pthread)	free_threadq;
static struct lock		thread_lock;
static int			free_thread_count = 0;
static int			inited = 0;
static int			active_kse_count = 0;
static int			active_kseg_count = 0;

static void	kse_check_completed(struct kse *kse);
static void	kse_check_waitq(struct kse *kse);
static void	kse_check_signals(struct kse *kse);
static void	kse_fini(struct kse *curkse);
static void	kse_sched_multi(struct kse *curkse);
#ifdef NOT_YET
static void	kse_sched_single(struct kse *curkse);
#endif
static void	kse_switchout_thread(struct kse *kse, struct pthread *thread);
static void	kse_wait(struct kse *kse, struct pthread *td_wait);
static void	kse_free_unlocked(struct kse *kse);
static void	kseg_free(struct kse_group *kseg);
static void	kseg_init(struct kse_group *kseg);
static void	kseg_reinit(struct kse_group *kseg);
static void	kse_waitq_insert(struct pthread *thread);
static void	thr_cleanup(struct kse *kse, struct pthread *curthread);
#ifdef NOT_YET
static void	thr_resume_wrapper(int unused_1, siginfo_t *unused_2,
		    ucontext_t *ucp);
#endif
static void	thr_resume_check(struct pthread *curthread, ucontext_t *ucp,
		    struct pthread_sigframe *psf);
static int	thr_timedout(struct pthread *thread, struct timespec *curtime);

/*
 * This is called after a fork().
 * No locks need to be taken here since we are guaranteed to be
 * single threaded.
 */
void
_kse_single_thread(struct pthread *curthread)
{
	struct kse *kse, *kse_next;
	struct kse_group *kseg, *kseg_next;
	struct pthread *thread, *thread_next;
	kse_critical_t crit;
	int i;

	/*
	 * Disable upcalls and clear the threaded flag.
	 * XXX - I don't think we need to disable upcalls after a fork().
	 *       but it doesn't hurt.
	 */
	crit = _kse_critical_enter();
	__isthreaded = 0;

	/*
	 * Enter a loop to remove and free all threads other than
	 * the running thread from the active thread list:
	 */
	for (thread = TAILQ_FIRST(&_thread_list); thread != NULL;
	    thread = thread_next) {
		/*
		 * Advance to the next thread before the destroying
		 * the current thread.
		*/
		thread_next = TAILQ_NEXT(thread, tle);

		/*
		 * Remove this thread from the list (the current
		 * thread will be removed but re-added by libpthread
		 * initialization.
		 */
		TAILQ_REMOVE(&_thread_list, thread, tle);
		/* Make sure this isn't the running thread: */
		if (thread != curthread) {
			_thr_stack_free(&thread->attr);
			if (thread->specific != NULL)
				free(thread->specific);
			for (i = 0; i < MAX_THR_LOCKLEVEL; i++) {
				_lockuser_destroy(&thread->lockusers[i]);
			}
			_lock_destroy(&thread->lock);
			free(thread);
		}
	}

	TAILQ_INIT(&curthread->mutexq);		/* initialize mutex queue */
	curthread->joiner = NULL;		/* no joining threads yet */
	sigemptyset(&curthread->sigpend);	/* clear pending signals */
	if (curthread->specific != NULL) {
		free(curthread->specific);
		curthread->specific = NULL;
		curthread->specific_data_count = 0;
	}

	/* Free the free KSEs: */
	while ((kse = TAILQ_FIRST(&free_kseq)) != NULL) {
		TAILQ_REMOVE(&free_kseq, kse, k_qe);
		_ksd_destroy(&kse->k_ksd);
		if (kse->k_stack.ss_sp != NULL)
			free(kse->k_stack.ss_sp);
		free(kse);
	}
	free_kse_count = 0;

	/* Free the active KSEs: */
	for (kse = TAILQ_FIRST(&active_kseq); kse != NULL; kse = kse_next) {
		kse_next = TAILQ_NEXT(kse, k_qe);
		TAILQ_REMOVE(&active_kseq, kse, k_qe);
		for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
			_lockuser_destroy(&kse->k_lockusers[i]);
		}
		if (kse->k_stack.ss_sp != NULL)
			free(kse->k_stack.ss_sp);
		_lock_destroy(&kse->k_lock);
		free(kse);
	}
	active_kse_count = 0;

	/* Free the free KSEGs: */
	while ((kseg = TAILQ_FIRST(&free_kse_groupq)) != NULL) {
		TAILQ_REMOVE(&free_kse_groupq, kseg, kg_qe);
		_lock_destroy(&kseg->kg_lock);
		_pq_free(&kseg->kg_schedq.sq_runq);
		free(kseg);
	}
	free_kseg_count = 0;

	/* Free the active KSEGs: */
	for (kseg = TAILQ_FIRST(&active_kse_groupq);
	    kseg != NULL; kseg = kseg_next) {
		kseg_next = TAILQ_NEXT(kseg, kg_qe);
		TAILQ_REMOVE(&active_kse_groupq, kseg, kg_qe);
		_lock_destroy(&kseg->kg_lock);
		_pq_free(&kseg->kg_schedq.sq_runq);
		free(kseg);
	}
	active_kseg_count = 0;

	/* Free the free threads. */
	while ((thread = TAILQ_FIRST(&free_threadq)) != NULL) {
		TAILQ_REMOVE(&free_threadq, thread, tle);
		if (thread->specific != NULL)
			free(thread->specific);
		for (i = 0; i < MAX_THR_LOCKLEVEL; i++) {
			_lockuser_destroy(&thread->lockusers[i]);
		}
		_lock_destroy(&thread->lock);
		free(thread);
	}
	free_thread_count = 0;

	/* Free the to-be-gc'd threads. */
	while ((thread = TAILQ_FIRST(&_thread_gc_list)) != NULL) {
		TAILQ_REMOVE(&_thread_gc_list, thread, gcle);
		free(thread);
	}
	TAILQ_INIT(&gc_ksegq);
	_gc_count = 0;

	if (inited != 0) {
		/*
		 * Destroy these locks; they'll be recreated to assure they
		 * are in the unlocked state.
		 */
		_lock_destroy(&kse_lock);
		_lock_destroy(&thread_lock);
		_lock_destroy(&_thread_list_lock);
		inited = 0;
	}

	/*
	 * After a fork(), the leftover thread goes back to being
	 * scope process.
	 */
	curthread->attr.flags &= ~PTHREAD_SCOPE_SYSTEM;
	curthread->attr.flags |= PTHREAD_SCOPE_PROCESS;

	/*
	 * After a fork, we are still operating on the thread's original
	 * stack.  Don't clear the THR_FLAGS_USER from the thread's
	 * attribute flags.
	 */

	/* Initialize the threads library. */
	curthread->kse = NULL;
	curthread->kseg = NULL;
	_kse_initial = NULL;
	_libpthread_init(curthread);
}

/*
 * This is used to initialize housekeeping and to initialize the
 * KSD for the KSE.
 */
void
_kse_init(void)
{
	if (inited == 0) {
		TAILQ_INIT(&active_kseq);
		TAILQ_INIT(&active_kse_groupq);
		TAILQ_INIT(&free_kseq);
		TAILQ_INIT(&free_kse_groupq);
		TAILQ_INIT(&free_threadq);
		TAILQ_INIT(&gc_ksegq);
		if (_lock_init(&kse_lock, LCK_ADAPTIVE,
		    _kse_lock_wait, _kse_lock_wakeup) != 0)
			PANIC("Unable to initialize free KSE queue lock");
		if (_lock_init(&thread_lock, LCK_ADAPTIVE,
		    _kse_lock_wait, _kse_lock_wakeup) != 0)
			PANIC("Unable to initialize free thread queue lock");
		if (_lock_init(&_thread_list_lock, LCK_ADAPTIVE,
		    _kse_lock_wait, _kse_lock_wakeup) != 0)
			PANIC("Unable to initialize thread list lock");
		active_kse_count = 0;
		active_kseg_count = 0;
		_gc_count = 0;
		inited = 1;
	}
}

int
_kse_isthreaded(void)
{
	return (__isthreaded != 0);
}

/*
 * This is called when the first thread (other than the initial
 * thread) is created.
 */
int
_kse_setthreaded(int threaded)
{
	if ((threaded != 0) && (__isthreaded == 0)) {
		/*
		 * Locking functions in libc are required when there are
		 * threads other than the initial thread.
		 */
		__isthreaded = 1;

		/*
		 * Tell the kernel to create a KSE for the initial thread
		 * and enable upcalls in it.
		 */
		_kse_initial->k_flags |= KF_STARTED;
		if (kse_create(&_kse_initial->k_mbx, 0) != 0) {
			_kse_initial->k_flags &= ~KF_STARTED;
			/* may abort() */
			DBG_MSG("kse_create failed\n");
			return (-1);
		}
		KSE_SET_MBOX(_kse_initial, _thr_initial);
	}
	return (0);
}

/*
 * Lock wait and wakeup handlers for KSE locks.  These are only used by
 * KSEs, and should never be used by threads.  KSE locks include the
 * KSE group lock (used for locking the scheduling queue) and the
 * kse_lock defined above.
 *
 * When a KSE lock attempt blocks, the entire KSE blocks allowing another
 * KSE to run.  For the most part, it doesn't make much sense to try and
 * schedule another thread because you need to lock the scheduling queue
 * in order to do that.  And since the KSE lock is used to lock the scheduling
 * queue, you would just end up blocking again.
 */
void
_kse_lock_wait(struct lock *lock, struct lockuser *lu)
{
	struct kse *curkse = (struct kse *)_LCK_GET_PRIVATE(lu);
	struct timespec ts;
	int saved_flags;

	if (curkse->k_mbx.km_curthread != NULL)
		PANIC("kse_lock_wait does not disable upcall.\n");
	/*
	 * Enter a loop to wait until we get the lock.
	 */
	ts.tv_sec = 0;
	ts.tv_nsec = 1000000;  /* 1 sec */
	KSE_SET_WAIT(curkse);
	while (_LCK_BUSY(lu)) {
		/*
		 * Yield the kse and wait to be notified when the lock
		 * is granted.
		 */
		saved_flags = curkse->k_mbx.km_flags;
		curkse->k_mbx.km_flags |= KMF_NOUPCALL;
		kse_release(&ts);
		curkse->k_mbx.km_flags = saved_flags;

		/*
		 * Make sure that the wait flag is set again in case
		 * we wokeup without the lock being granted.
		 */
		KSE_SET_WAIT(curkse);
	}
	KSE_CLEAR_WAIT(curkse);
}

void
_kse_lock_wakeup(struct lock *lock, struct lockuser *lu)
{
	struct kse *curkse;
	struct kse *kse;

	curkse = _get_curkse();
	kse = (struct kse *)_LCK_GET_PRIVATE(lu);

	if (kse == curkse)
		PANIC("KSE trying to wake itself up in lock");
	else if (KSE_WAITING(kse)) {
		/*
		 * Notify the owning kse that it has the lock.
		 */
		KSE_WAKEUP(kse);
	}
}

/*
 * Thread wait and wakeup handlers for thread locks.  These are only used
 * by threads, never by KSEs.  Thread locks include the per-thread lock
 * (defined in its structure), and condition variable and mutex locks.
 */
void
_thr_lock_wait(struct lock *lock, struct lockuser *lu)
{
	struct pthread *curthread = (struct pthread *)lu->lu_private;
	int count;

	/*
	 * Spin for a bit.
	 *
	 * XXX - We probably want to make this a bit smarter.  It
	 *       doesn't make sense to spin unless there is more
	 *       than 1 CPU.  A thread that is holding one of these
	 *       locks is prevented from being swapped out for another
	 *       thread within the same scheduling entity.
	 */
	count = 0;
	while (_LCK_BUSY(lu) && count < 300)
		count++;
	while (_LCK_BUSY(lu)) {
		THR_SCHED_LOCK(curthread, curthread);
		if (_LCK_BUSY(lu)) {
			/* Wait for the lock: */
			atomic_store_rel_int(&curthread->need_wakeup, 1);
			THR_SET_STATE(curthread, PS_LOCKWAIT);
			THR_SCHED_UNLOCK(curthread, curthread);
			_thr_sched_switch(curthread);
		}
		else
			THR_SCHED_UNLOCK(curthread, curthread);
	}
}

void
_thr_lock_wakeup(struct lock *lock, struct lockuser *lu)
{
	struct pthread *thread;
	struct pthread *curthread;

	curthread = _get_curthread();
	thread = (struct pthread *)_LCK_GET_PRIVATE(lu);

	THR_SCHED_LOCK(curthread, thread);
	_thr_setrunnable_unlocked(thread);
	atomic_store_rel_int(&thread->need_wakeup, 0);
	THR_SCHED_UNLOCK(curthread, thread);
}

kse_critical_t
_kse_critical_enter(void)
{
	kse_critical_t crit;

	crit = _ksd_readandclear_tmbx;
	return (crit);
}

void
_kse_critical_leave(kse_critical_t crit)
{
	struct pthread *curthread;

	_ksd_set_tmbx(crit);
	if ((crit != NULL) && ((curthread = _get_curthread()) != NULL))
		THR_YIELD_CHECK(curthread);
}

void
_thr_critical_enter(struct pthread *thread)
{
	thread->critical_count++;
}

void
_thr_critical_leave(struct pthread *thread)
{
	thread->critical_count--;
	THR_YIELD_CHECK(thread);
}

/*
 * XXX - We may need to take the scheduling lock before calling
 *       this, or perhaps take the lock within here before
 *       doing anything else.
 */
void
_thr_sched_switch(struct pthread *curthread)
{
	struct pthread_sigframe psf;
	kse_critical_t crit;
	struct kse *curkse;
	volatile int once = 0;

	/* We're in the scheduler, 5 by 5: */
	crit = _kse_critical_enter();
	curkse = _get_curkse();

	curthread->need_switchout = 1;	/* The thread yielded on its own. */
	curthread->critical_yield = 0;	/* No need to yield anymore. */
	curthread->slice_usec = -1;	/* Restart the time slice. */

	/*
	 * The signal frame is allocated off the stack because
	 * a thread can be interrupted by other signals while
	 * it is running down pending signals.
	 */
	sigemptyset(&psf.psf_sigset);
	curthread->curframe = &psf;

	_thread_enter_uts(&curthread->tmbx, &curkse->k_mbx);

	/*
	 * This thread is being resumed; check for cancellations.
	 */
	if ((once == 0) && (!THR_IN_CRITICAL(curthread))) {
		once = 1;
		thr_resume_check(curthread, &curthread->tmbx.tm_context, &psf);
	}
}

/*
 * This is the scheduler for a KSE which runs a scope system thread.
 * The multi-thread KSE scheduler should also work for a single threaded
 * KSE, but we use a separate scheduler so that it can be fine-tuned
 * to be more efficient (and perhaps not need a separate stack for
 * the KSE, allowing it to use the thread's stack).
 *
 * XXX - This probably needs some work.
 */
#ifdef NOT_YET
static void
kse_sched_single(struct kse *curkse)
{
	struct pthread *curthread = curkse->k_curthread;
	struct pthread *td_wait;
	struct timespec ts;
	int level;

	if (curthread->active == 0) {
		if (curthread->state != PS_RUNNING) {
			/* Check to see if the thread has timed out. */
			KSE_GET_TOD(curkse, &ts);
			if (thr_timedout(curthread, &ts) != 0) {
				curthread->timeout = 1;
				curthread->state = PS_RUNNING;
			}
		}
	}

	/* This thread no longer needs to yield the CPU: */
	curthread->critical_yield = 0;
	curthread->need_switchout = 0;

	/*
	 * Lock the scheduling queue.
	 *
	 * There is no scheduling queue for single threaded KSEs,
	 * but we need a lock for protection regardless.
	 */
	KSE_SCHED_LOCK(curkse, curkse->k_kseg);

	/*
	 * This has to do the job of kse_switchout_thread(), only
	 * for a single threaded KSE/KSEG.
	 */

	switch (curthread->state) {
	case PS_DEAD:
		/* Unlock the scheduling queue and exit the KSE. */
		KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
		kse_fini(curkse);	/* does not return */
		break;

	case PS_COND_WAIT:
	case PS_SLEEP_WAIT:
		/* Only insert threads that can timeout: */
		if (curthread->wakeup_time.tv_sec != -1) {
			/* Insert into the waiting queue: */
			KSE_WAITQ_INSERT(curkse, curthread);
		}
		break;

	case PS_LOCKWAIT:
		level = curthread->locklevel - 1;
		if (_LCK_BUSY(&curthread->lockusers[level]))
			KSE_WAITQ_INSERT(curkse, curthread);
		else
			THR_SET_STATE(curthread, PS_RUNNING);
		break;

	case PS_JOIN:
	case PS_MUTEX_WAIT:
	case PS_RUNNING:
	case PS_SIGSUSPEND:
	case PS_SIGWAIT:
	case PS_SUSPENDED:
	case PS_DEADLOCK:
	default:
		/*
		 * These states don't timeout and don't need
		 * to be in the waiting queue.
		 */
		break;
	}
	while (curthread->state != PS_RUNNING) {
		curthread->active = 0;
		td_wait = KSE_WAITQ_FIRST(curkse);

		kse_wait(curkse, td_wait);

	    	if (td_wait != NULL) {
			KSE_GET_TOD(curkse, &ts);
			if (thr_timedout(curthread, &ts)) {
				/* Indicate the thread timedout: */
				td_wait->timeout = 1;

				/* Make the thread runnable. */
				THR_SET_STATE(td_wait, PS_RUNNING);
				KSE_WAITQ_REMOVE(curkse, td_wait);
			}
		}
		KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
		kse_check_signals(curkse);
		KSE_SCHED_LOCK(curkse, curkse->k_kseg);
	}

	/* Remove the frame reference. */
	curthread->curframe = NULL;

	/* Unlock the scheduling queue. */
	KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);

	/*
	 * Continue the thread at its current frame:
	 */
	DBG_MSG("Continuing bound thread %p\n", curthread);
	_thread_switch(&curthread->tmbx, &curkse->k_mbx.km_curthread);
	PANIC("Thread has returned from _thread_switch");
}
#endif

void
dump_queues(struct kse *curkse)
{
	struct pthread *thread;

	DBG_MSG("Threads in waiting queue:\n");
	TAILQ_FOREACH(thread, &curkse->k_kseg->kg_schedq.sq_waitq, pqe) {
		DBG_MSG("  thread %p, state %d, blocked %d\n",
		    thread, thread->state, thread->blocked);
	}
}

/*
 * This is the scheduler for a KSE which runs multiple threads.
 */
static void
kse_sched_multi(struct kse *curkse)
{
	struct pthread *curthread, *td_wait;
	struct pthread_sigframe *curframe;
	int ret;

	/* Check for first time initialization: */
	if ((curkse->k_flags & KF_INITIALIZED) == 0) {
		/* Setup this KSEs specific data. */
		_ksd_setprivate(&curkse->k_ksd);
		_set_curkse(curkse);

		/* Set this before grabbing the context. */
		curkse->k_flags |= KF_INITIALIZED;
	}

	/* This may have returned from a kse_release(). */
	if (KSE_WAITING(curkse))
		KSE_CLEAR_WAIT(curkse);

	/* Lock the scheduling lock. */
	KSE_SCHED_LOCK(curkse, curkse->k_kseg);

	/*
	 * If the current thread was completed in another KSE, then
	 * it will be in the run queue.  Don't mark it as being blocked.
	 */
	if (((curthread = curkse->k_curthread) != NULL) &&
	    ((curthread->flags & THR_FLAGS_IN_RUNQ) == 0) &&
	    (curthread->need_switchout == 0)) {
		/*
		 * Assume the current thread is blocked; when the
		 * completed threads are checked and if the current
		 * thread is among the completed, the blocked flag
		 * will be cleared.
		 */
		curthread->blocked = 1;
	}

	/* Check for any unblocked threads in the kernel. */
	kse_check_completed(curkse);

	/*
	 * Check for threads that have timed-out.
	 */
	kse_check_waitq(curkse);

	/*
	 * Switchout the current thread, if necessary, as the last step
	 * so that it is inserted into the run queue (if it's runnable)
	 * _after_ any other threads that were added to it above.
	 */
	if (curthread == NULL)
		;  /* Nothing to do here. */
	else if ((curthread->need_switchout == 0) &&
	    (curthread->blocked == 0) && (THR_IN_CRITICAL(curthread))) {
		/*
		 * Resume the thread and tell it to yield when
		 * it leaves the critical region.
		 */
		curthread->critical_yield = 0;
		curthread->active = 1;
		if ((curthread->flags & THR_FLAGS_IN_RUNQ) != 0)
			KSE_RUNQ_REMOVE(curkse, curthread);
		curkse->k_curthread = curthread;
		curthread->kse = curkse;
		KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
		DBG_MSG("Continuing thread %p in critical region\n",
		    curthread);
		ret = _thread_switch(&curthread->tmbx,
		    &curkse->k_mbx.km_curthread);
		if (ret != 0)
			PANIC("Can't resume thread in critical region\n");
	}
	else if ((curthread->flags & THR_FLAGS_IN_RUNQ) == 0)
		kse_switchout_thread(curkse, curthread);
	curkse->k_curthread = NULL;

	/* This has to be done without the scheduling lock held. */
	KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
	kse_check_signals(curkse);
	KSE_SCHED_LOCK(curkse, curkse->k_kseg);

	dump_queues(curkse);

	/* Check if there are no threads ready to run: */
	while (((curthread = KSE_RUNQ_FIRST(curkse)) == NULL) &&
	    (curkse->k_kseg->kg_threadcount != 0)) {
		/*
		 * Wait for a thread to become active or until there are
		 * no more threads.
		 */
		td_wait = KSE_WAITQ_FIRST(curkse);
		kse_wait(curkse, td_wait);
		kse_check_completed(curkse);
		kse_check_waitq(curkse);
		KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
		kse_check_signals(curkse);
		KSE_SCHED_LOCK(curkse, curkse->k_kseg);
	}

	/* Check for no more threads: */
	if (curkse->k_kseg->kg_threadcount == 0) {
		/*
		 * Normally this shouldn't return, but it will if there
		 * are other KSEs running that create new threads that
		 * are assigned to this KSE[G].  For instance, if a scope
		 * system thread were to create a scope process thread
		 * and this kse[g] is the initial kse[g], then that newly
		 * created thread would be assigned to us (the initial
		 * kse[g]).
		 */
		KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
		kse_fini(curkse);
		KSE_SCHED_LOCK(curkse, curkse->k_kseg);
		curthread = KSE_RUNQ_FIRST(curkse);
	}

	THR_ASSERT(curthread != NULL,
	    "Return from kse_wait/fini without thread.");
	THR_ASSERT(curthread->state != PS_DEAD,
	    "Trying to resume dead thread!");
	KSE_RUNQ_REMOVE(curkse, curthread);

	/*
	 * Make the selected thread the current thread.
	 */
	curkse->k_curthread = curthread;

	/*
	 * Make sure the current thread's kse points to this kse.
	 */
	curthread->kse = curkse;

	/*
	 * Reset accounting.
	 */
	curthread->tmbx.tm_uticks = 0;
	curthread->tmbx.tm_sticks = 0;

	/*
	 * Reset the time slice if this thread is running for the first
	 * time or running again after using its full time slice allocation.
	 */
	if (curthread->slice_usec == -1)
		curthread->slice_usec = 0;

	/* Mark the thread active. */
	curthread->active = 1;

	/* Remove the frame reference. */
	curframe = curthread->curframe;
	curthread->curframe = NULL;

	/* Unlock the scheduling queue: */
	KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);

	/*
	 * The thread's current signal frame will only be NULL if it
	 * is being resumed after being blocked in the kernel.  In
	 * this case, and if the thread needs to run down pending
	 * signals or needs a cancellation check, we need to add a
	 * signal frame to the thread's context.
	 */
#ifdef NOT_YET
	if ((curframe == NULL) && ((curthread->check_pending != 0) ||
	    (((curthread->cancelflags & THR_AT_CANCEL_POINT) == 0) &&
	    ((curthread->cancelflags & PTHREAD_CANCEL_ASYNCHRONOUS) != 0)))) {
		signalcontext(&curthread->tmbx.tm_context, 0,
		    (__sighandler_t *)thr_resume_wrapper);
	}
#endif
#ifdef GS_HACK
	/* XXX - The kernel sometimes forgets to restore %gs properly. */
	_ksd_setprivate(&curkse->k_ksd);
#endif
	/*
	 * Continue the thread at its current frame:
	 */
	ret = _thread_switch(&curthread->tmbx, &curkse->k_mbx.km_curthread);
	if (ret != 0)
		PANIC("Thread has returned from _thread_switch");

	/* This point should not be reached. */
	PANIC("Thread has returned from _thread_switch");
}

static void
kse_check_signals(struct kse *curkse)
{
	sigset_t sigset;
	int i;

	/* Deliver posted signals. */
	for (i = 0; i < _SIG_WORDS; i++) {
		atomic_swap_int(&curkse->k_mbx.km_sigscaught.__bits[i],
		    0, &sigset.__bits[i]);
	}
	if (SIGNOTEMPTY(sigset)) {
		/*
		 * Dispatch each signal.
		 *
		 * XXX - There is no siginfo for any of these.
		 *       I think there should be, especially for
		 *       signals from other processes (si_pid, si_uid).
		 */
		for (i = 1; i < NSIG; i++) {
			if (sigismember(&sigset, i) != 0) {
				DBG_MSG("Dispatching signal %d\n", i);
				_thr_sig_dispatch(curkse, i,
				    NULL /* no siginfo */);
			}
		}
		sigemptyset(&sigset);
		__sys_sigprocmask(SIG_SETMASK, &sigset, NULL);
	}
}

#ifdef NOT_YET
static void
thr_resume_wrapper(int unused_1, siginfo_t *unused_2, ucontext_t *ucp)
{
	struct pthread *curthread = _get_curthread();

	thr_resume_check(curthread, ucp, NULL);
}
#endif

static void
thr_resume_check(struct pthread *curthread, ucontext_t *ucp,
    struct pthread_sigframe *psf)
{
	/* Check signals before cancellations. */
	while (curthread->check_pending != 0) {
		/* Clear the pending flag. */
		curthread->check_pending = 0;

		/*
		 * It's perfectly valid, though not portable, for
		 * signal handlers to munge their interrupted context
		 * and expect to return to it.  Ensure we use the
		 * correct context when running down signals.
		 */
		_thr_sig_rundown(curthread, ucp, psf);
	}

	if (((curthread->cancelflags & THR_AT_CANCEL_POINT) == 0) &&
	    ((curthread->cancelflags & PTHREAD_CANCEL_ASYNCHRONOUS) != 0))
		pthread_testcancel();
}

/*
 * Clean up a thread.  This must be called with the thread's KSE
 * scheduling lock held.  The thread must be a thread from the
 * KSE's group.
 */
static void
thr_cleanup(struct kse *curkse, struct pthread *thread)
{
	struct pthread *joiner;

	if ((joiner = thread->joiner) != NULL) {
		thread->joiner = NULL;
		if ((joiner->state == PS_JOIN) &&
		    (joiner->join_status.thread == thread)) {
			joiner->join_status.thread = NULL;

			/* Set the return status for the joining thread: */
			joiner->join_status.ret = thread->ret;

			/* Make the thread runnable. */
			if (joiner->kseg == curkse->k_kseg)
				_thr_setrunnable_unlocked(joiner);
			else {
				KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
				KSE_SCHED_LOCK(curkse, joiner->kseg);
				_thr_setrunnable_unlocked(joiner);
				KSE_SCHED_UNLOCK(curkse, joiner->kseg);
				KSE_SCHED_LOCK(curkse, curkse->k_kseg);
			}
		}
		thread->attr.flags |= PTHREAD_DETACHED;
	}

	if ((thread->attr.flags & PTHREAD_SCOPE_PROCESS) == 0) {
		/*
		 * Remove the thread from the KSEG's list of threads.
	 	 */
		KSEG_THRQ_REMOVE(thread->kseg, thread);
		/*
		 * Migrate the thread to the main KSE so that this
		 * KSE and KSEG can be cleaned when their last thread
		 * exits.
		 */
		thread->kseg = _kse_initial->k_kseg;
		thread->kse = _kse_initial;
	}
	thread->flags |= THR_FLAGS_GC_SAFE;

	/*
	 * We can't hold the thread list lock while holding the
	 * scheduler lock.
	 */
	KSE_SCHED_UNLOCK(curkse, curkse->k_kseg);
	DBG_MSG("Adding thread %p to GC list\n", thread);
	KSE_LOCK_ACQUIRE(curkse, &_thread_list_lock);
	THR_GCLIST_ADD(thread);
	KSE_LOCK_RELEASE(curkse, &_thread_list_lock);
	KSE_SCHED_LOCK(curkse, curkse->k_kseg);
}

void
_thr_gc(struct pthread *curthread)
{
	struct pthread *td, *td_next;
	kse_critical_t crit;
	TAILQ_HEAD(, pthread) worklist;

	TAILQ_INIT(&worklist);
	crit = _kse_critical_enter();
	KSE_LOCK_ACQUIRE(curthread->kse, &_thread_list_lock);

	/* Check the threads waiting for GC. */
	for (td = TAILQ_FIRST(&_thread_gc_list); td != NULL; td = td_next) {
		td_next = TAILQ_NEXT(td, gcle);
		if ((td->flags & THR_FLAGS_GC_SAFE) == 0)
			continue;
#ifdef NOT_YET
		else if (((td->attr.flags & PTHREAD_SCOPE_PROCESS) != 0) &&
		    (td->kse->k_mbx.km_flags == 0)) {
			/*
			 * The thread and KSE are operating on the same
			 * stack.  Wait for the KSE to exit before freeing
			 * the thread's stack as well as everything else.
			 */
			continue;
		}
#endif
		/*
		 * Remove the thread from the GC list.  If the thread
		 * isn't yet detached, it will get added back to the
		 * GC list at a later time.
		 */
		THR_GCLIST_REMOVE(td);
		DBG_MSG("Freeing thread %p stack\n", td);
		/*
		 * We can free the thread stack since it's no longer
		 * in use.
		 */
		_thr_stack_free(&td->attr);
		if (((td->attr.flags & PTHREAD_DETACHED) != 0) &&
		    (td->refcount == 0)) {
			/*
			 * The thread has detached and is no longer
			 * referenced.  It is safe to remove all
			 * remnants of the thread.
			 */
			TAILQ_INSERT_HEAD(&worklist, td, gcle);
		}
	}
	KSE_LOCK_RELEASE(curthread->kse, &_thread_list_lock);
	_kse_critical_leave(crit);

	while ((td = TAILQ_FIRST(&worklist)) != NULL) {
		TAILQ_REMOVE(&worklist, td, gcle);

		if ((td->attr.flags & PTHREAD_SCOPE_PROCESS) != 0) {
			crit = _kse_critical_enter();
			KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
			kse_free_unlocked(td->kse);
			kseg_free(td->kseg);
			KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
			_kse_critical_leave(crit);
		}
		DBG_MSG("Freeing thread %p\n", td);
		_thr_free(curthread, td);
	}
}


/*
 * Only new threads that are running or suspended may be scheduled.
 */
void
_thr_schedule_add(struct pthread *curthread, struct pthread *newthread)
{
	struct kse *curkse;
	kse_critical_t crit;
	int need_start;

	/*
	 * If this is the first time creating a thread, make sure
	 * the mailbox is set for the current thread.
	 */
	if ((newthread->attr.flags & PTHREAD_SCOPE_SYSTEM) != 0) {
#ifdef NOT_YET
		/* We use the thread's stack as the KSE's stack. */
		new_thread->kse->k_mbx.km_stack.ss_sp =
		    new_thread->attr.stackaddr_attr;
		new_thread->kse->k_mbx.km_stack.ss_size =
		    new_thread->attr.stacksize_attr;
#endif
		/*
		 * No need to lock the scheduling queue since the
		 * KSE/KSEG pair have not yet been started.
		 */
		KSEG_THRQ_ADD(newthread->kseg, newthread);
		TAILQ_INSERT_TAIL(&newthread->kseg->kg_kseq, newthread->kse,
		    k_kgqe);
		if (newthread->state == PS_RUNNING)
			THR_RUNQ_INSERT_TAIL(newthread);
		newthread->kse->k_curthread = NULL;
		newthread->kse->k_mbx.km_flags = 0;
		newthread->kse->k_mbx.km_func = (kse_func_t *)kse_sched_multi;

		/*
		 * This thread needs a new KSE and KSEG.
		 */
		crit = _kse_critical_enter();
		curkse = _get_curkse();
		_ksd_setprivate(&newthread->kse->k_ksd);
		newthread->kse->k_flags |= KF_INITIALIZED;
		kse_create(&newthread->kse->k_mbx, 1);
		_ksd_setprivate(&curkse->k_ksd);
		_kse_critical_leave(crit);
	}
	else {
		/*
		 * Lock the KSE and add the new thread to its list of
		 * assigned threads.  If the new thread is runnable, also
		 * add it to the KSE's run queue.
		 */
		need_start = 0;
		KSE_SCHED_LOCK(curthread->kse, newthread->kseg);
		KSEG_THRQ_ADD(newthread->kseg, newthread);
		if (newthread->state == PS_RUNNING)
			THR_RUNQ_INSERT_TAIL(newthread);
		if ((newthread->kse->k_flags & KF_STARTED) == 0) {
			/*
			 * This KSE hasn't been started yet.  Start it
			 * outside of holding the lock.
			 */
			newthread->kse->k_flags |= KF_STARTED;
			newthread->kse->k_mbx.km_func =
			    (kse_func_t *)kse_sched_multi;
			newthread->kse->k_mbx.km_flags = 0;
			need_start = 1;
		}
		KSE_SCHED_UNLOCK(curthread->kse, newthread->kseg);

	  	if (need_start != 0)
			kse_create(&newthread->kse->k_mbx, 0);
		else if ((newthread->state == PS_RUNNING) &&
		    KSE_WAITING(newthread->kse)) {
			/*
			 * The thread is being scheduled on another KSEG.
			 */
			KSE_WAKEUP(newthread->kse);
		}
	}
}

void
kse_waitq_insert(struct pthread *thread)
{
	struct pthread *td;

	if (thread->wakeup_time.tv_sec == -1)
		TAILQ_INSERT_TAIL(&thread->kse->k_schedq->sq_waitq, thread,
		    pqe);
	else {
		td = TAILQ_FIRST(&thread->kse->k_schedq->sq_waitq);
		while ((td != NULL) && (td->wakeup_time.tv_sec != -1) &&
		    ((td->wakeup_time.tv_sec < thread->wakeup_time.tv_sec) ||
		    ((td->wakeup_time.tv_sec == thread->wakeup_time.tv_sec) &&
		    (td->wakeup_time.tv_nsec <= thread->wakeup_time.tv_nsec))))
			td = TAILQ_NEXT(td, pqe);
		if (td == NULL)
			TAILQ_INSERT_TAIL(&thread->kse->k_schedq->sq_waitq,
			    thread, pqe);
		else
			TAILQ_INSERT_BEFORE(td, thread, pqe);
	}
	thread->flags |= THR_FLAGS_IN_WAITQ;
}

/*
 * This must be called with the scheduling lock held.
 */
static void
kse_check_completed(struct kse *kse)
{
	struct pthread *thread;
	struct kse_thr_mailbox *completed;

	if ((completed = kse->k_mbx.km_completed) != NULL) {
		kse->k_mbx.km_completed = NULL;
		while (completed != NULL) {
			thread = completed->tm_udata;
			DBG_MSG("Found completed thread %p, name %s\n",
			    thread,
			    (thread->name == NULL) ? "none" : thread->name);
			thread->blocked = 0;
			if (thread != kse->k_curthread)
				KSE_RUNQ_INSERT_TAIL(kse, thread);
			completed = completed->tm_next;
		}
	}
}

/*
 * This must be called with the scheduling lock held.
 */
static void
kse_check_waitq(struct kse *kse)
{
	struct pthread	*pthread;
	struct timespec ts;

	KSE_GET_TOD(kse, &ts);

	/*
	 * Wake up threads that have timedout.  This has to be
	 * done before adding the current thread to the run queue
	 * so that a CPU intensive thread doesn't get preference
	 * over waiting threads.
	 */
	while (((pthread = KSE_WAITQ_FIRST(kse)) != NULL) &&
	    thr_timedout(pthread, &ts)) {
		/* Remove the thread from the wait queue: */
		KSE_WAITQ_REMOVE(kse, pthread);
		DBG_MSG("Found timedout thread %p in waitq\n", pthread);

		/* Indicate the thread timedout: */
		pthread->timeout = 1;

		/* Add the thread to the priority queue: */
		THR_SET_STATE(pthread, PS_RUNNING);
		KSE_RUNQ_INSERT_TAIL(kse, pthread);
	}
}

static int
thr_timedout(struct pthread *thread, struct timespec *curtime)
{
	if (thread->wakeup_time.tv_sec < 0)
		return (0);
	else if (thread->wakeup_time.tv_sec > curtime->tv_sec)
		return (0);
	else if ((thread->wakeup_time.tv_sec == curtime->tv_sec) &&
	    (thread->wakeup_time.tv_nsec > curtime->tv_nsec))
		return (0);
	else
		return (1);
}

/*
 * This must be called with the scheduling lock held.
 *
 * Each thread has a time slice, a wakeup time (used when it wants
 * to wait for a specified amount of time), a run state, and an
 * active flag.
 *
 * When a thread gets run by the scheduler, the active flag is
 * set to non-zero (1).  When a thread performs an explicit yield
 * or schedules a state change, it enters the scheduler and the
 * active flag is cleared.  When the active flag is still seen
 * set in the scheduler, that means that the thread is blocked in
 * the kernel (because it is cleared before entering the scheduler
 * in all other instances).
 *
 * The wakeup time is only set for those states that can timeout.
 * It is set to (-1, -1) for all other instances.
 *
 * The thread's run state, aside from being useful when debugging,
 * is used to place the thread in an appropriate queue.  There
 * are 2 basic queues:
 *
 *   o run queue - queue ordered by priority for all threads
 *                 that are runnable
 *   o waiting queue - queue sorted by wakeup time for all threads
 *                     that are not otherwise runnable (not blocked
 *                     in kernel, not waiting for locks)
 *
 * The thread's time slice is used for round-robin scheduling
 * (the default scheduling policy).  While a SCHED_RR thread
 * is runnable it's time slice accumulates.  When it reaches
 * the time slice interval, it gets reset and added to the end
 * of the queue of threads at its priority.  When a thread no
 * longer becomes runnable (blocks in kernel, waits, etc), its
 * time slice is reset.
 *
 * The job of kse_switchout_thread() is to handle all of the above.
 */
static void
kse_switchout_thread(struct kse *kse, struct pthread *thread)
{
	int level;

	/*
	 * Place the currently running thread into the
	 * appropriate queue(s).
	 */
	DBG_MSG("Switching out thread %p, state %d\n", thread, thread->state);
	if (thread->blocked != 0) {
		/* This thread must have blocked in the kernel. */
		/* thread->slice_usec = -1;*/	/* restart timeslice */
		/*
		 * XXX - Check for pending signals for this thread to
		 *       see if we need to interrupt it in the kernel.
		 */
		/* if (thread->check_pending != 0) */
		if ((thread->slice_usec != -1) &&
		    (thread->attr.sched_policy != SCHED_FIFO))
			thread->slice_usec += (thread->tmbx.tm_uticks
			    + thread->tmbx.tm_sticks) * _clock_res_usec;
	}
	else {
		switch (thread->state) {
		case PS_DEAD:
			/*
			 * The scheduler is operating on a different
			 * stack.  It is safe to do garbage collecting
			 * here.
			 */
			thr_cleanup(kse, thread);
			return;
			break;

		case PS_RUNNING:
			/* Nothing to do here. */
			break;

		case PS_COND_WAIT:
		case PS_SLEEP_WAIT:
			/* Insert into the waiting queue: */
			KSE_WAITQ_INSERT(kse, thread);
			break;

		case PS_LOCKWAIT:
			/*
			 * This state doesn't timeout.
			 */
			thread->wakeup_time.tv_sec = -1;
			thread->wakeup_time.tv_nsec = -1;
			level = thread->locklevel - 1;
			if (_LCK_BUSY(&thread->lockusers[level]))
				KSE_WAITQ_INSERT(kse, thread);
			else
				THR_SET_STATE(thread, PS_RUNNING);
			break;

		case PS_JOIN:
		case PS_MUTEX_WAIT:
		case PS_SIGSUSPEND:
		case PS_SIGWAIT:
		case PS_SUSPENDED:
		case PS_DEADLOCK:
		default:
			/*
			 * These states don't timeout.
			 */
			thread->wakeup_time.tv_sec = -1;
			thread->wakeup_time.tv_nsec = -1;

			/* Insert into the waiting queue: */
			KSE_WAITQ_INSERT(kse, thread);
			break;
		}
		if (thread->state != PS_RUNNING) {
			/* Restart the time slice: */
			thread->slice_usec = -1;
		} else {
			if (thread->need_switchout != 0)
				/*
				 * The thread yielded on its own;
				 * restart the timeslice.
				 */
				thread->slice_usec = -1;
			else if ((thread->slice_usec != -1) &&
	   		    (thread->attr.sched_policy != SCHED_FIFO)) {
				thread->slice_usec += (thread->tmbx.tm_uticks
				    + thread->tmbx.tm_sticks) * _clock_res_usec;
				/* Check for time quantum exceeded: */
				if (thread->slice_usec > TIMESLICE_USEC)
					thread->slice_usec = -1;
			}
			if (thread->slice_usec == -1) {
				/*
				 * The thread exceeded its time quantum or
				 * it yielded the CPU; place it at the tail
				 * of the queue for its priority.
				 */
				KSE_RUNQ_INSERT_TAIL(kse, thread);
			} else {
				/*
				 * The thread hasn't exceeded its interval
				 * Place it at the head of the queue for its
				 * priority.
				 */
				KSE_RUNQ_INSERT_HEAD(kse, thread);
			}
		}
	}
	thread->active = 0;
	thread->need_switchout = 0;
}

/*
 * This function waits for the smallest timeout value of any waiting
 * thread, or until it receives a message from another KSE.
 *
 * This must be called with the scheduling lock held.
 */
static void
kse_wait(struct kse *kse, struct pthread *td_wait)
{
	struct timespec ts, ts_sleep;
	int saved_flags;

	KSE_GET_TOD(kse, &ts);

	if ((td_wait == NULL) || (td_wait->wakeup_time.tv_sec < 0)) {
		/* Limit sleep to no more than 2 minutes. */
		ts_sleep.tv_sec = 120;
		ts_sleep.tv_nsec = 0;
	} else {
		TIMESPEC_SUB(&ts_sleep, &td_wait->wakeup_time, &ts);
		if (ts_sleep.tv_sec > 120) {
			ts_sleep.tv_sec = 120;
			ts_sleep.tv_nsec = 0;
		}
	}
	/* Don't sleep for negative times. */
	if ((ts_sleep.tv_sec >= 0) && (ts_sleep.tv_nsec >= 0)) {
		KSE_SET_WAIT(kse);
		KSE_SCHED_UNLOCK(kse, kse->k_kseg);
		saved_flags = kse->k_mbx.km_flags;
		kse->k_mbx.km_flags |= KMF_NOUPCALL;
		kse_release(&ts_sleep);
		kse->k_mbx.km_flags = saved_flags;
		KSE_CLEAR_WAIT(kse);
		KSE_SCHED_LOCK(kse, kse->k_kseg);
	}
}

/*
 * Avoid calling this kse_exit() so as not to confuse it with the
 * system call of the same name.
 */
static void
kse_fini(struct kse *kse)
{
	struct timespec ts;
	struct kse_group *free_kseg = NULL;

	if ((kse->k_kseg->kg_flags & KGF_SINGLE_THREAD) != 0)
		kse_exit();
	/*
	 * Check to see if this is one of the main kses.
	 */
	else if (kse->k_kseg != _kse_initial->k_kseg) {
		/* Remove this KSE from the KSEG's list of KSEs. */
		KSE_SCHED_LOCK(kse, kse->k_kseg);
		TAILQ_REMOVE(&kse->k_kseg->kg_kseq, kse, k_kgqe);
		if (TAILQ_EMPTY(&kse->k_kseg->kg_kseq))
			free_kseg = kse->k_kseg;
		KSE_SCHED_UNLOCK(kse, kse->k_kseg);

		/*
		 * Add this KSE to the list of free KSEs along with
		 * the KSEG if is now orphaned.
		 */
		KSE_LOCK_ACQUIRE(kse, &kse_lock);
		if (free_kseg != NULL)
			kseg_free(free_kseg);
		kse_free_unlocked(kse);
		KSE_LOCK_RELEASE(kse, &kse_lock);
		kse_exit();
		/* Never returns. */
	} else {
		/*
		 * Wait for the last KSE/thread to exit, or for more
		 * threads to be created (it is possible for additional
		 * scope process threads to be created after the main
		 * thread exits).
		 */
		ts.tv_sec = 120;
		ts.tv_nsec = 0;
		KSE_SET_WAIT(kse);
		KSE_SCHED_LOCK(kse, kse->k_kseg);
		if ((active_kse_count > 1) &&
		    (kse->k_kseg->kg_threadcount == 0)) {
			KSE_SCHED_UNLOCK(kse, kse->k_kseg);
			/*
			 * XXX - We need a way for the KSE to do a timed
			 *       wait.
			 */
			kse_release(&ts);
			/* The above never returns. */
		}
		KSE_SCHED_UNLOCK(kse, kse->k_kseg);

		/* There are no more threads; exit this process: */
		if (kse->k_kseg->kg_threadcount == 0) {
			/* kse_exit(); */
			__isthreaded = 0;
			exit(0);
		}
	}
}

void
_thr_sig_add(struct pthread *thread, int sig, siginfo_t *info, ucontext_t *ucp)
{
	struct kse *curkse;

	curkse = _get_curkse();

	KSE_SCHED_LOCK(curkse, thread->kseg);
	/*
	 * A threads assigned KSE can't change out from under us
	 * when we hold the scheduler lock.
	 */
	if (THR_IS_ACTIVE(thread)) {
		/* Thread is active.  Can't install the signal for it. */
		/* Make a note in the thread that it has a signal. */
		sigaddset(&thread->sigpend, sig);
		thread->check_pending = 1;
	}
	else {
		/* Make a note in the thread that it has a signal. */
		sigaddset(&thread->sigpend, sig);
		thread->check_pending = 1;

		if (thread->blocked != 0) {
			/* Tell the kernel to interrupt the thread. */
			kse_thr_interrupt(&thread->tmbx);
		}
	}
	KSE_SCHED_UNLOCK(curkse, thread->kseg);
}

void
_thr_set_timeout(const struct timespec *timeout)
{
	struct pthread	*curthread = _get_curthread();
	struct timespec ts;

	/* Reset the timeout flag for the running thread: */
	curthread->timeout = 0;

	/* Check if the thread is to wait forever: */
	if (timeout == NULL) {
		/*
		 * Set the wakeup time to something that can be recognised as
		 * different to an actual time of day:
		 */
		curthread->wakeup_time.tv_sec = -1;
		curthread->wakeup_time.tv_nsec = -1;
	}
	/* Check if no waiting is required: */
	else if ((timeout->tv_sec == 0) && (timeout->tv_nsec == 0)) {
		/* Set the wake up time to 'immediately': */
		curthread->wakeup_time.tv_sec = 0;
		curthread->wakeup_time.tv_nsec = 0;
	} else {
		/* Calculate the time for the current thread to wakeup: */
		KSE_GET_TOD(curthread->kse, &ts);
		TIMESPEC_ADD(&curthread->wakeup_time, &ts, timeout);
	}
}

void
_thr_panic_exit(char *file, int line, char *msg)
{
	char buf[256];

	snprintf(buf, sizeof(buf), "(%s:%d) %s\n", file, line, msg);
	__sys_write(2, buf, strlen(buf));
	abort();
}

void
_thr_setrunnable(struct pthread *curthread, struct pthread *thread)
{
	kse_critical_t crit;

	crit = _kse_critical_enter();
	KSE_SCHED_LOCK(curthread->kse, thread->kseg);
	_thr_setrunnable_unlocked(thread);
	KSE_SCHED_UNLOCK(curthread->kse, thread->kseg);
	_kse_critical_leave(crit);
}

void
_thr_setrunnable_unlocked(struct pthread *thread)
{
	if ((thread->kseg->kg_flags & KGF_SINGLE_THREAD) != 0)
		/* No silly queues for these threads. */
		THR_SET_STATE(thread, PS_RUNNING);
	else {
		if ((thread->flags & THR_FLAGS_IN_WAITQ) != 0)
			KSE_WAITQ_REMOVE(thread->kse, thread);
		THR_SET_STATE(thread, PS_RUNNING);
		if ((thread->blocked == 0) &&
		    (thread->flags & THR_FLAGS_IN_RUNQ) == 0)
			THR_RUNQ_INSERT_TAIL(thread);
	}
        /*
         * XXX - Threads are not yet assigned to specific KSEs; they are
         *       assigned to the KSEG.  So the fact that a thread's KSE is
         *       waiting doesn't necessarily mean that it will be the KSE
         *       that runs the thread after the lock is granted.  But we
         *       don't know if the other KSEs within the same KSEG are
         *       also in a waiting state or not so we err on the side of
         *       caution and wakeup the thread's last known KSE.  We
         *       ensure that the threads KSE doesn't change while it's
         *       scheduling lock is held so it is safe to reference it
         *       (the KSE).  If the KSE wakes up and doesn't find any more
         *       work it will again go back to waiting so no harm is done.
         */
	if (KSE_WAITING(thread->kse))
		KSE_WAKEUP(thread->kse);
}

struct pthread *
_get_curthread(void)
{
	return (_ksd_curthread);
}

/* This assumes the caller has disabled upcalls. */
struct kse *
_get_curkse(void)
{
	return (_ksd_curkse);
}

void
_set_curkse(struct kse *kse)
{
	_ksd_setprivate(&kse->k_ksd);
}

/*
 * Allocate a new KSEG.
 *
 * We allow the current thread to be NULL in the case that this
 * is the first time a KSEG is being created (library initialization).
 * In this case, we don't need to (and can't) take any locks.
 */
struct kse_group *
_kseg_alloc(struct pthread *curthread)
{
	struct kse_group *kseg = NULL;
	kse_critical_t crit;

	if ((curthread != NULL) && (free_kseg_count > 0)) {
		/* Use the kse lock for the kseg queue. */
		crit = _kse_critical_enter();
		KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
		if ((kseg = TAILQ_FIRST(&free_kse_groupq)) != NULL) {
			TAILQ_REMOVE(&free_kse_groupq, kseg, kg_qe);
			free_kseg_count--;
			active_kseg_count++;
			TAILQ_INSERT_TAIL(&active_kse_groupq, kseg, kg_qe);
		}
		KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
		_kse_critical_leave(crit);
		if (kseg)
			kseg_reinit(kseg);
	}

	/*
	 * If requested, attempt to allocate a new KSE group only if the
	 * KSE allocation was successful and a KSE group wasn't found in
	 * the free list.
	 */
	if ((kseg == NULL) &&
	    ((kseg = (struct kse_group *)malloc(sizeof(*kseg))) != NULL)) {
		if (_pq_alloc(&kseg->kg_schedq.sq_runq,
		    THR_MIN_PRIORITY, THR_LAST_PRIORITY) != 0) {
			free(kseg);
			kseg = NULL;
		} else {
			kseg_init(kseg);
			/* Add the KSEG to the list of active KSEGs. */
			if (curthread != NULL) {
				crit = _kse_critical_enter();
				KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
				active_kseg_count++;
				TAILQ_INSERT_TAIL(&active_kse_groupq,
				    kseg, kg_qe);
				KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
				_kse_critical_leave(crit);
			} else {
				active_kseg_count++;
				TAILQ_INSERT_TAIL(&active_kse_groupq,
				    kseg, kg_qe);
			}
		}
	}
	return (kseg);
}

/*
 * This must be called with the kse lock held and when there are
 * no more threads that reference it.
 */
static void
kseg_free(struct kse_group *kseg)
{
	TAILQ_REMOVE(&active_kse_groupq, kseg, kg_qe);
	TAILQ_INSERT_HEAD(&free_kse_groupq, kseg, kg_qe);
	free_kseg_count++;
	active_kseg_count--;
}

/*
 * Allocate a new KSE.
 *
 * We allow the current thread to be NULL in the case that this
 * is the first time a KSE is being created (library initialization).
 * In this case, we don't need to (and can't) take any locks.
 */
struct kse *
_kse_alloc(struct pthread *curthread)
{
	struct kse *kse = NULL;
	kse_critical_t crit;
	int need_ksd = 0;
	int i;

	if ((curthread != NULL) && (free_kse_count > 0)) {
		crit = _kse_critical_enter();
		KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
		/* Search for a finished KSE. */
		kse = TAILQ_FIRST(&free_kseq);
#ifdef NOT_YET
#define KEMBX_DONE	0x04
		while ((kse != NULL) &&
		    ((kse->k_mbx.km_flags & KEMBX_DONE) == 0)) {
			kse = TAILQ_NEXT(kse, k_qe);
		}
#undef KEMBX_DONE
#endif
		if (kse != NULL) {
			TAILQ_REMOVE(&free_kseq, kse, k_qe);
			free_kse_count--;
			active_kse_count++;
			TAILQ_INSERT_TAIL(&active_kseq, kse, k_qe);
		}
		KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
		_kse_critical_leave(crit);
	}
	if ((kse == NULL) &&
	    ((kse = (struct kse *)malloc(sizeof(*kse))) != NULL)) {
		bzero(kse, sizeof(*kse));

		/* Initialize the lockusers. */
		for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
			_lockuser_init(&kse->k_lockusers[i], (void *)kse);
			_LCK_SET_PRIVATE2(&kse->k_lockusers[i], NULL);
		}
		/* _lock_init(kse->k_lock, ...) */

		/* We had to malloc a kse; mark it as needing a new ID.*/
		need_ksd = 1;

		/*
		 * Create the KSE context.
		 *
		 * XXX - For now this is done here in the allocation.
		 *       In the future, we may want to have it done
		 *       outside the allocation so that scope system
		 *       threads (one thread per KSE) are not required
		 *       to have a stack for an unneeded kse upcall.
		 */
		kse->k_mbx.km_func = (kse_func_t *)kse_sched_multi;
		kse->k_mbx.km_stack.ss_sp = (char *)malloc(KSE_STACKSIZE);
		kse->k_mbx.km_stack.ss_size = KSE_STACKSIZE;
		kse->k_mbx.km_udata = (void *)kse;
		kse->k_mbx.km_quantum = 20000;
		/*
		 * We need to keep a copy of the stack in case it
		 * doesn't get used; a KSE running a scope system
		 * thread will use that thread's stack.
		 */
		kse->k_stack.ss_sp = kse->k_mbx.km_stack.ss_sp;
		kse->k_stack.ss_size = kse->k_mbx.km_stack.ss_size;
		if (kse->k_mbx.km_stack.ss_sp == NULL) {
			for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
				_lockuser_destroy(&kse->k_lockusers[i]);
			}
			/* _lock_destroy(&kse->k_lock); */
			free(kse);
			kse = NULL;
		}
	}
	if ((kse != NULL) && (need_ksd != 0)) {
		/* This KSE needs initialization. */
		if (curthread != NULL) {
			crit = _kse_critical_enter();
			KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
		}
		/* Initialize KSD inside of the lock. */
		if (_ksd_create(&kse->k_ksd, (void *)kse, sizeof(*kse)) != 0) {
			if (curthread != NULL) {
				KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
				_kse_critical_leave(crit);
			}
			free(kse->k_mbx.km_stack.ss_sp);
			for (i = 0; i < MAX_KSE_LOCKLEVEL; i++) {
				_lockuser_destroy(&kse->k_lockusers[i]);
			}
			free(kse);
			return (NULL);
		}
		kse->k_flags = 0;
		active_kse_count++;
		TAILQ_INSERT_TAIL(&active_kseq, kse, k_qe);
		if (curthread != NULL) {
			KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
			_kse_critical_leave(crit);
		}
	}
	return (kse);
}

void
kse_free_unlocked(struct kse *kse)
{
	active_kse_count--;
	kse->k_kseg = NULL;
	kse->k_flags &= ~KF_INITIALIZED;
	TAILQ_INSERT_HEAD(&free_kseq, kse, k_qe);
	free_kse_count++;
}

void
_kse_free(struct pthread *curthread, struct kse *kse)
{
	kse_critical_t crit;

	if (curthread == NULL)
		kse_free_unlocked(kse);
	else {
		crit = _kse_critical_enter();
		KSE_LOCK_ACQUIRE(curthread->kse, &kse_lock);
		kse_free_unlocked(kse);
		KSE_LOCK_RELEASE(curthread->kse, &kse_lock);
		_kse_critical_leave(crit);
	}
}

static void
kseg_init(struct kse_group *kseg)
{
	kseg_reinit(kseg);
	_lock_init(&kseg->kg_lock, LCK_ADAPTIVE, _kse_lock_wait,
	    _kse_lock_wakeup);
}

static void
kseg_reinit(struct kse_group *kseg)
{
	TAILQ_INIT(&kseg->kg_kseq);
	TAILQ_INIT(&kseg->kg_threadq);
	TAILQ_INIT(&kseg->kg_schedq.sq_waitq);
	kseg->kg_threadcount = 0;
	kseg->kg_idle_kses = 0;
	kseg->kg_flags = 0;
}

struct pthread *
_thr_alloc(struct pthread *curthread)
{
	kse_critical_t crit;
	struct pthread *thread = NULL;

	if (curthread != NULL) {
		if (GC_NEEDED())
			_thr_gc(curthread);
		if (free_thread_count > 0) {
			crit = _kse_critical_enter();
			KSE_LOCK_ACQUIRE(curthread->kse, &thread_lock);
			if ((thread = TAILQ_FIRST(&free_threadq)) != NULL) {
				TAILQ_REMOVE(&free_threadq, thread, tle);
				free_thread_count--;
			}
			KSE_LOCK_RELEASE(curthread->kse, &thread_lock);
		}
	}
	if (thread == NULL)
		thread = (struct pthread *)malloc(sizeof(struct pthread));
	return (thread);
}

void
_thr_free(struct pthread *curthread, struct pthread *thread)
{
	kse_critical_t crit;
	int i;

	DBG_MSG("Freeing thread %p\n", thread);
	if ((curthread == NULL) || (free_thread_count >= MAX_CACHED_THREADS)) {
		for (i = 0; i < MAX_THR_LOCKLEVEL; i++) {
			_lockuser_destroy(&thread->lockusers[i]);
		}
		_lock_destroy(&thread->lock);
		free(thread);
	}
	else {
		crit = _kse_critical_enter();
		KSE_LOCK_ACQUIRE(curthread->kse, &_thread_list_lock);
		THR_LIST_REMOVE(thread);
		KSE_LOCK_RELEASE(curthread->kse, &_thread_list_lock);
		KSE_LOCK_ACQUIRE(curthread->kse, &thread_lock);
		TAILQ_INSERT_HEAD(&free_threadq, thread, tle);
		free_thread_count++;
		KSE_LOCK_RELEASE(curthread->kse, &thread_lock);
		_kse_critical_leave(crit);
	}
}
OpenPOWER on IntegriCloud