summaryrefslogtreecommitdiffstats
path: root/lib/libc/stdlib/malloc.c
blob: 2d932cbaf16cf547b933c7ab32b033f7d1a98911 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
/*-
 * Copyright (C) 2006-2010 Jason Evans <jasone@FreeBSD.org>.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice(s), this list of conditions and the following disclaimer as
 *    the first lines of this file unmodified other than the possible
 *    addition of one or more copyright notices.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice(s), this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *******************************************************************************
 *
 * This allocator implementation is designed to provide scalable performance
 * for multi-threaded programs on multi-processor systems.  The following
 * features are included for this purpose:
 *
 *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
 *     contention and cache sloshing.
 *
 *   + Thread-specific caching is used if there are multiple threads, which
 *     reduces the amount of locking.
 *
 *   + Cache line sharing between arenas is avoided for internal data
 *     structures.
 *
 *   + Memory is managed in chunks and runs (chunks can be split into runs),
 *     rather than as individual pages.  This provides a constant-time
 *     mechanism for associating allocations with particular arenas.
 *
 * Allocation requests are rounded up to the nearest size class, and no record
 * of the original request size is maintained.  Allocations are broken into
 * categories according to size class.  Assuming runtime defaults, 4 KiB pages
 * and a 16 byte quantum on a 32-bit system, the size classes in each category
 * are as follows:
 *
 *   |========================================|
 *   | Category | Subcategory      |     Size |
 *   |========================================|
 *   | Small    | Tiny             |        2 |
 *   |          |                  |        4 |
 *   |          |                  |        8 |
 *   |          |------------------+----------|
 *   |          | Quantum-spaced   |       16 |
 *   |          |                  |       32 |
 *   |          |                  |       48 |
 *   |          |                  |      ... |
 *   |          |                  |       96 |
 *   |          |                  |      112 |
 *   |          |                  |      128 |
 *   |          |------------------+----------|
 *   |          | Cacheline-spaced |      192 |
 *   |          |                  |      256 |
 *   |          |                  |      320 |
 *   |          |                  |      384 |
 *   |          |                  |      448 |
 *   |          |                  |      512 |
 *   |          |------------------+----------|
 *   |          | Sub-page         |      760 |
 *   |          |                  |     1024 |
 *   |          |                  |     1280 |
 *   |          |                  |      ... |
 *   |          |                  |     3328 |
 *   |          |                  |     3584 |
 *   |          |                  |     3840 |
 *   |========================================|
 *   | Medium                      |    4 KiB |
 *   |                             |    6 KiB |
 *   |                             |    8 KiB |
 *   |                             |      ... |
 *   |                             |   28 KiB |
 *   |                             |   30 KiB |
 *   |                             |   32 KiB |
 *   |========================================|
 *   | Large                       |   36 KiB |
 *   |                             |   40 KiB |
 *   |                             |   44 KiB |
 *   |                             |      ... |
 *   |                             | 1012 KiB |
 *   |                             | 1016 KiB |
 *   |                             | 1020 KiB |
 *   |========================================|
 *   | Huge                        |    1 MiB |
 *   |                             |    2 MiB |
 *   |                             |    3 MiB |
 *   |                             |      ... |
 *   |========================================|
 *
 * Different mechanisms are used accoding to category:
 *
 *   Small/medium : Each size class is segregated into its own set of runs.
 *                  Each run maintains a bitmap of which regions are
 *                  free/allocated.
 *
 *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
 *           in the associated arena chunk header maps.
 *
 *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
 *          Metadata are stored in a separate red-black tree.
 *
 *******************************************************************************
 */

/*
 * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
 * defaults the A and J runtime options to off.  These settings are appropriate
 * for production systems.
 */
/* #define	MALLOC_PRODUCTION */

#ifndef MALLOC_PRODUCTION
   /*
    * MALLOC_DEBUG enables assertions and other sanity checks, and disables
    * inline functions.
    */
#  define MALLOC_DEBUG

   /* MALLOC_STATS enables statistics calculation. */
#  define MALLOC_STATS
#endif

/*
 * MALLOC_TINY enables support for tiny objects, which are smaller than one
 * quantum.
 */
#define	MALLOC_TINY

/*
 * MALLOC_TCACHE enables a thread-specific caching layer for small and medium
 * objects.  This makes it possible to allocate/deallocate objects without any
 * locking when the cache is in the steady state.
 */
#define	MALLOC_TCACHE

/*
 * MALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
 * segment (DSS).  In an ideal world, this functionality would be completely
 * unnecessary, but we are burdened by history and the lack of resource limits
 * for anonymous mapped memory.
 */
#define	MALLOC_DSS

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "libc_private.h"
#ifdef MALLOC_DEBUG
#  define _LOCK_DEBUG
#endif
#include "spinlock.h"
#include "namespace.h"
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/ktrace.h> /* Must come after several other sys/ includes. */

#include <machine/cpufunc.h>
#include <machine/param.h>
#include <machine/vmparam.h>

#include <errno.h>
#include <limits.h>
#include <link.h>
#include <pthread.h>
#include <sched.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>

#include "un-namespace.h"

#include "libc_private.h"

#define	RB_COMPACT
#include "rb.h"
#if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS))
#include "qr.h"
#include "ql.h"
#endif

#ifdef MALLOC_DEBUG
   /* Disable inlining to make debugging easier. */
#  define inline
#endif

/* Size of stack-allocated buffer passed to strerror_r(). */
#define	STRERROR_BUF		64

/*
 * Minimum alignment of allocations is 2^LG_QUANTUM bytes.
 */
#ifdef __i386__
#  define LG_QUANTUM		4
#  define LG_SIZEOF_PTR		2
#  define CPU_SPINWAIT		__asm__ volatile("pause")
#  ifdef __clang__
#    define TLS_MODEL		/* clang does not support tls_model yet */
#  else
#    define TLS_MODEL		__attribute__((tls_model("initial-exec")))
#  endif
#endif
#ifdef __ia64__
#  define LG_QUANTUM		4
#  define LG_SIZEOF_PTR		3
#  define TLS_MODEL		/* default */
#endif
#ifdef __alpha__
#  define LG_QUANTUM		4
#  define LG_SIZEOF_PTR		3
#  define NO_TLS
#endif
#ifdef __sparc64__
#  define LG_QUANTUM		4
#  define LG_SIZEOF_PTR		3
#  define TLS_MODEL		__attribute__((tls_model("initial-exec")))
#endif
#ifdef __amd64__
#  define LG_QUANTUM		4
#  define LG_SIZEOF_PTR		3
#  define CPU_SPINWAIT		__asm__ volatile("pause")
#  ifdef __clang__
#    define TLS_MODEL		/* clang does not support tls_model yet */
#  else
#    define TLS_MODEL		__attribute__((tls_model("initial-exec")))
#  endif
#endif
#ifdef __arm__
#  define LG_QUANTUM		3
#  define LG_SIZEOF_PTR		2
#  define NO_TLS
#endif
#ifdef __mips__
#  define LG_QUANTUM		3
#  define LG_SIZEOF_PTR		2
#  define NO_TLS
#endif
#ifdef __powerpc64__
#  define LG_QUANTUM		4
#  define LG_SIZEOF_PTR		3
#  define TLS_MODEL		/* default */
#elif defined(__powerpc__)
#  define LG_QUANTUM		4
#  define LG_SIZEOF_PTR		2
#  define TLS_MODEL		/* default */
#endif
#ifdef __s390x__
#  define LG_QUANTUM		4
#endif

#define	QUANTUM			((size_t)(1U << LG_QUANTUM))
#define	QUANTUM_MASK		(QUANTUM - 1)

#define	SIZEOF_PTR		(1U << LG_SIZEOF_PTR)

/* sizeof(int) == (1U << LG_SIZEOF_INT). */
#ifndef LG_SIZEOF_INT
#  define LG_SIZEOF_INT	2
#endif

/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
#if (!defined(PIC) && !defined(NO_TLS))
#  define NO_TLS
#endif

#ifdef NO_TLS
   /* MALLOC_TCACHE requires TLS. */
#  ifdef MALLOC_TCACHE
#    undef MALLOC_TCACHE
#  endif
#endif

/*
 * Size and alignment of memory chunks that are allocated by the OS's virtual
 * memory system.
 */
#define	LG_CHUNK_DEFAULT	22

/*
 * The minimum ratio of active:dirty pages per arena is computed as:
 *
 *   (nactive >> opt_lg_dirty_mult) >= ndirty
 *
 * So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32
 * times as many active pages as dirty pages.
 */
#define	LG_DIRTY_MULT_DEFAULT	5

/*
 * Maximum size of L1 cache line.  This is used to avoid cache line aliasing.
 * In addition, this controls the spacing of cacheline-spaced size classes.
 */
#define	LG_CACHELINE		6
#define	CACHELINE		((size_t)(1U << LG_CACHELINE))
#define	CACHELINE_MASK		(CACHELINE - 1)

/*
 * Subpages are an artificially designated partitioning of pages.  Their only
 * purpose is to support subpage-spaced size classes.
 *
 * There must be at least 4 subpages per page, due to the way size classes are
 * handled.
 */
#define	LG_SUBPAGE		8
#define	SUBPAGE			((size_t)(1U << LG_SUBPAGE))
#define	SUBPAGE_MASK		(SUBPAGE - 1)

#ifdef MALLOC_TINY
   /* Smallest size class to support. */
#  define LG_TINY_MIN		1
#endif

/*
 * Maximum size class that is a multiple of the quantum, but not (necessarily)
 * a power of 2.  Above this size, allocations are rounded up to the nearest
 * power of 2.
 */
#define	LG_QSPACE_MAX_DEFAULT	7

/*
 * Maximum size class that is a multiple of the cacheline, but not (necessarily)
 * a power of 2.  Above this size, allocations are rounded up to the nearest
 * power of 2.
 */
#define	LG_CSPACE_MAX_DEFAULT	9

/*
 * Maximum medium size class.  This must not be more than 1/4 of a chunk
 * (LG_MEDIUM_MAX_DEFAULT <= LG_CHUNK_DEFAULT - 2).
 */
#define	LG_MEDIUM_MAX_DEFAULT	15

/*
 * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
 * as small as possible such that this setting is still honored, without
 * violating other constraints.  The goal is to make runs as small as possible
 * without exceeding a per run external fragmentation threshold.
 *
 * We use binary fixed point math for overhead computations, where the binary
 * point is implicitly RUN_BFP bits to the left.
 *
 * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
 * honored for some/all object sizes, since there is one bit of header overhead
 * per object (plus a constant).  This constraint is relaxed (ignored) for runs
 * that are so small that the per-region overhead is greater than:
 *
 *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
 */
#define	RUN_BFP			12
/*                                    \/   Implicit binary fixed point. */
#define	RUN_MAX_OVRHD		0x0000003dU
#define	RUN_MAX_OVRHD_RELAX	0x00001800U

/* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
#define	RUN_MAX_SMALL							\
	(arena_maxclass <= (1U << (CHUNK_MAP_LG_PG_RANGE + PAGE_SHIFT))	\
	    ? arena_maxclass : (1U << (CHUNK_MAP_LG_PG_RANGE +		\
	    PAGE_SHIFT)))

/*
 * Hyper-threaded CPUs may need a special instruction inside spin loops in
 * order to yield to another virtual CPU.  If no such instruction is defined
 * above, make CPU_SPINWAIT a no-op.
 */
#ifndef CPU_SPINWAIT
#  define CPU_SPINWAIT
#endif

/*
 * Adaptive spinning must eventually switch to blocking, in order to avoid the
 * potential for priority inversion deadlock.  Backing off past a certain point
 * can actually waste time.
 */
#define	LG_SPIN_LIMIT		11

#ifdef MALLOC_TCACHE
   /*
    * Default number of cache slots for each bin in the thread cache (0:
    * disabled).
    */
#  define LG_TCACHE_NSLOTS_DEFAULT	7
   /*
    * (1U << opt_lg_tcache_gc_sweep) is the approximate number of
    * allocation events between full GC sweeps (-1: disabled).  Integer
    * rounding may cause the actual number to be slightly higher, since GC is
    * performed incrementally.
    */
#  define LG_TCACHE_GC_SWEEP_DEFAULT	13
#endif

/******************************************************************************/

/*
 * Mutexes based on spinlocks.  We can't use normal pthread spinlocks in all
 * places, because they require malloc()ed memory, which causes bootstrapping
 * issues in some cases.
 */
typedef struct {
	spinlock_t	lock;
} malloc_mutex_t;

/* Set to true once the allocator has been initialized. */
static bool malloc_initialized = false;

/* Used to avoid initialization races. */
static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};

/******************************************************************************/
/*
 * Statistics data structures.
 */

#ifdef MALLOC_STATS

#ifdef MALLOC_TCACHE
typedef struct tcache_bin_stats_s tcache_bin_stats_t;
struct tcache_bin_stats_s {
	/*
	 * Number of allocation requests that corresponded to the size of this
	 * bin.
	 */
	uint64_t	nrequests;
};
#endif

typedef struct malloc_bin_stats_s malloc_bin_stats_t;
struct malloc_bin_stats_s {
	/*
	 * Number of allocation requests that corresponded to the size of this
	 * bin.
	 */
	uint64_t	nrequests;

#ifdef MALLOC_TCACHE
	/* Number of tcache fills from this bin. */
	uint64_t	nfills;

	/* Number of tcache flushes to this bin. */
	uint64_t	nflushes;
#endif

	/* Total number of runs created for this bin's size class. */
	uint64_t	nruns;

	/*
	 * Total number of runs reused by extracting them from the runs tree for
	 * this bin's size class.
	 */
	uint64_t	reruns;

	/* High-water mark for this bin. */
	size_t		highruns;

	/* Current number of runs in this bin. */
	size_t		curruns;
};

typedef struct malloc_large_stats_s malloc_large_stats_t;
struct malloc_large_stats_s {
	/*
	 * Number of allocation requests that corresponded to this size class.
	 */
	uint64_t	nrequests;

	/* High-water mark for this size class. */
	size_t		highruns;

	/* Current number of runs of this size class. */
	size_t		curruns;
};

typedef struct arena_stats_s arena_stats_t;
struct arena_stats_s {
	/* Number of bytes currently mapped. */
	size_t		mapped;

	/*
	 * Total number of purge sweeps, total number of madvise calls made,
	 * and total pages purged in order to keep dirty unused memory under
	 * control.
	 */
	uint64_t	npurge;
	uint64_t	nmadvise;
	uint64_t	purged;

	/* Per-size-category statistics. */
	size_t		allocated_small;
	uint64_t	nmalloc_small;
	uint64_t	ndalloc_small;

	size_t		allocated_medium;
	uint64_t	nmalloc_medium;
	uint64_t	ndalloc_medium;

	size_t		allocated_large;
	uint64_t	nmalloc_large;
	uint64_t	ndalloc_large;

	/*
	 * One element for each possible size class, including sizes that
	 * overlap with bin size classes.  This is necessary because ipalloc()
	 * sometimes has to use such large objects in order to assure proper
	 * alignment.
	 */
	malloc_large_stats_t	*lstats;
};

typedef struct chunk_stats_s chunk_stats_t;
struct chunk_stats_s {
	/* Number of chunks that were allocated. */
	uint64_t	nchunks;

	/* High-water mark for number of chunks allocated. */
	size_t		highchunks;

	/*
	 * Current number of chunks allocated.  This value isn't maintained for
	 * any other purpose, so keep track of it in order to be able to set
	 * highchunks.
	 */
	size_t		curchunks;
};

#endif /* #ifdef MALLOC_STATS */

/******************************************************************************/
/*
 * Extent data structures.
 */

/* Tree of extents. */
typedef struct extent_node_s extent_node_t;
struct extent_node_s {
#ifdef MALLOC_DSS
	/* Linkage for the size/address-ordered tree. */
	rb_node(extent_node_t) link_szad;
#endif

	/* Linkage for the address-ordered tree. */
	rb_node(extent_node_t) link_ad;

	/* Pointer to the extent that this tree node is responsible for. */
	void	*addr;

	/* Total region size. */
	size_t	size;
};
typedef rb_tree(extent_node_t) extent_tree_t;

/******************************************************************************/
/*
 * Arena data structures.
 */

typedef struct arena_s arena_t;
typedef struct arena_bin_s arena_bin_t;

/* Each element of the chunk map corresponds to one page within the chunk. */
typedef struct arena_chunk_map_s arena_chunk_map_t;
struct arena_chunk_map_s {
	/*
	 * Linkage for run trees.  There are two disjoint uses:
	 *
	 * 1) arena_t's runs_avail tree.
	 * 2) arena_run_t conceptually uses this linkage for in-use non-full
	 *    runs, rather than directly embedding linkage.
	 */
	rb_node(arena_chunk_map_t)	link;

	/*
	 * Run address (or size) and various flags are stored together.  The bit
	 * layout looks like (assuming 32-bit system):
	 *
	 *   ???????? ???????? ????cccc ccccdzla
	 *
	 * ? : Unallocated: Run address for first/last pages, unset for internal
	 *                  pages.
	 *     Small/medium: Don't care.
	 *     Large: Run size for first page, unset for trailing pages.
	 * - : Unused.
	 * c : refcount (could overflow for PAGE_SIZE >= 128 KiB)
	 * d : dirty?
	 * z : zeroed?
	 * l : large?
	 * a : allocated?
	 *
	 * Following are example bit patterns for the three types of runs.
	 *
	 * p : run page offset
	 * s : run size
	 * x : don't care
	 * - : 0
	 * [dzla] : bit set
	 *
	 *   Unallocated:
	 *     ssssssss ssssssss ssss---- --------
	 *     xxxxxxxx xxxxxxxx xxxx---- ----d---
	 *     ssssssss ssssssss ssss---- -----z--
	 *
	 *   Small/medium:
	 *     pppppppp ppppcccc cccccccc cccc---a
	 *     pppppppp ppppcccc cccccccc cccc---a
	 *     pppppppp ppppcccc cccccccc cccc---a
	 *
	 *   Large:
	 *     ssssssss ssssssss ssss---- ------la
	 *     -------- -------- -------- ------la
	 *     -------- -------- -------- ------la
	 */
	size_t				bits;
#define	CHUNK_MAP_PG_MASK	((size_t)0xfff00000U)
#define	CHUNK_MAP_PG_SHIFT	20
#define	CHUNK_MAP_LG_PG_RANGE	12

#define	CHUNK_MAP_RC_MASK	((size_t)0xffff0U)
#define	CHUNK_MAP_RC_ONE	((size_t)0x00010U)

#define	CHUNK_MAP_FLAGS_MASK	((size_t)0xfU)
#define	CHUNK_MAP_DIRTY		((size_t)0x8U)
#define	CHUNK_MAP_ZEROED	((size_t)0x4U)
#define	CHUNK_MAP_LARGE		((size_t)0x2U)
#define	CHUNK_MAP_ALLOCATED	((size_t)0x1U)
#define	CHUNK_MAP_KEY		(CHUNK_MAP_DIRTY | CHUNK_MAP_ALLOCATED)
};
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;

/* Arena chunk header. */
typedef struct arena_chunk_s arena_chunk_t;
struct arena_chunk_s {
	/* Arena that owns the chunk. */
	arena_t		*arena;

	/* Linkage for the arena's chunks_dirty tree. */
	rb_node(arena_chunk_t) link_dirty;

	/*
	 * True if the chunk is currently in the chunks_dirty tree, due to
	 * having at some point contained one or more dirty pages.  Removal
	 * from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible.
	 */
	bool		dirtied;

	/* Number of dirty pages. */
	size_t		ndirty;

	/* Map of pages within chunk that keeps track of free/large/small. */
	arena_chunk_map_t map[1]; /* Dynamically sized. */
};
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;

typedef struct arena_run_s arena_run_t;
struct arena_run_s {
#ifdef MALLOC_DEBUG
	uint32_t	magic;
#  define ARENA_RUN_MAGIC 0x384adf93
#endif

	/* Bin this run is associated with. */
	arena_bin_t	*bin;

	/* Index of first element that might have a free region. */
	unsigned	regs_minelm;

	/* Number of free regions in run. */
	unsigned	nfree;

	/* Bitmask of in-use regions (0: in use, 1: free). */
	unsigned	regs_mask[1]; /* Dynamically sized. */
};

struct arena_bin_s {
	/*
	 * Current run being used to service allocations of this bin's size
	 * class.
	 */
	arena_run_t	*runcur;

	/*
	 * Tree of non-full runs.  This tree is used when looking for an
	 * existing run when runcur is no longer usable.  We choose the
	 * non-full run that is lowest in memory; this policy tends to keep
	 * objects packed well, and it can also help reduce the number of
	 * almost-empty chunks.
	 */
	arena_run_tree_t runs;

	/* Size of regions in a run for this bin's size class. */
	size_t		reg_size;

	/* Total size of a run for this bin's size class. */
	size_t		run_size;

	/* Total number of regions in a run for this bin's size class. */
	uint32_t	nregs;

	/* Number of elements in a run's regs_mask for this bin's size class. */
	uint32_t	regs_mask_nelms;

	/* Offset of first region in a run for this bin's size class. */
	uint32_t	reg0_offset;

#ifdef MALLOC_STATS
	/* Bin statistics. */
	malloc_bin_stats_t stats;
#endif
};

#ifdef MALLOC_TCACHE
typedef struct tcache_s tcache_t;
#endif

struct arena_s {
#ifdef MALLOC_DEBUG
	uint32_t		magic;
#  define ARENA_MAGIC 0x947d3d24
#endif

	/* All operations on this arena require that lock be locked. */
	pthread_mutex_t		lock;

#ifdef MALLOC_STATS
	arena_stats_t		stats;
#  ifdef MALLOC_TCACHE
	/*
	 * List of tcaches for extant threads associated with this arena.
	 * Stats from these are merged incrementally, and at exit.
	 */
	ql_head(tcache_t)	tcache_ql;
#  endif
#endif

	/* Tree of dirty-page-containing chunks this arena manages. */
	arena_chunk_tree_t	chunks_dirty;

	/*
	 * In order to avoid rapid chunk allocation/deallocation when an arena
	 * oscillates right on the cusp of needing a new chunk, cache the most
	 * recently freed chunk.  The spare is left in the arena's chunk trees
	 * until it is deleted.
	 *
	 * There is one spare chunk per arena, rather than one spare total, in
	 * order to avoid interactions between multiple threads that could make
	 * a single spare inadequate.
	 */
	arena_chunk_t		*spare;

	/* Number of pages in active runs. */
	size_t			nactive;

	/*
	 * Current count of pages within unused runs that are potentially
	 * dirty, and for which madvise(... MADV_FREE) has not been called.  By
	 * tracking this, we can institute a limit on how much dirty unused
	 * memory is mapped for each arena.
	 */
	size_t			ndirty;

	/*
	 * Size/address-ordered tree of this arena's available runs.  This tree
	 * is used for first-best-fit run allocation.
	 */
	arena_avail_tree_t	runs_avail;

	/*
	 * bins is used to store trees of free regions of the following sizes,
	 * assuming a 16-byte quantum, 4 KiB page size, and default
	 * MALLOC_OPTIONS.
	 *
	 *   bins[i] |   size |
	 *   --------+--------+
	 *        0  |      2 |
	 *        1  |      4 |
	 *        2  |      8 |
	 *   --------+--------+
	 *        3  |     16 |
	 *        4  |     32 |
	 *        5  |     48 |
	 *           :        :
	 *        8  |     96 |
	 *        9  |    112 |
	 *       10  |    128 |
	 *   --------+--------+
	 *       11  |    192 |
	 *       12  |    256 |
	 *       13  |    320 |
	 *       14  |    384 |
	 *       15  |    448 |
	 *       16  |    512 |
	 *   --------+--------+
	 *       17  |    768 |
	 *       18  |   1024 |
	 *       19  |   1280 |
	 *           :        :
	 *       27  |   3328 |
	 *       28  |   3584 |
	 *       29  |   3840 |
	 *   --------+--------+
	 *       30  |  4 KiB |
	 *       31  |  6 KiB |
	 *       33  |  8 KiB |
	 *           :        :
	 *       43  | 28 KiB |
	 *       44  | 30 KiB |
	 *       45  | 32 KiB |
	 *   --------+--------+
	 */
	arena_bin_t		bins[1]; /* Dynamically sized. */
};

/******************************************************************************/
/*
 * Thread cache data structures.
 */

#ifdef MALLOC_TCACHE
typedef struct tcache_bin_s tcache_bin_t;
struct tcache_bin_s {
#  ifdef MALLOC_STATS
	tcache_bin_stats_t tstats;
#  endif
	unsigned	low_water;	/* Min # cached since last GC. */
	unsigned	high_water;	/* Max # cached since last GC. */
	unsigned	ncached;	/* # of cached objects. */
	void		*slots[1];	/* Dynamically sized. */
};

struct tcache_s {
#  ifdef MALLOC_STATS
	ql_elm(tcache_t) link;		/* Used for aggregating stats. */
#  endif
	arena_t		*arena;		/* This thread's arena. */
	unsigned	ev_cnt;		/* Event count since incremental GC. */
	unsigned	next_gc_bin;	/* Next bin to GC. */
	tcache_bin_t	*tbins[1];	/* Dynamically sized. */
};
#endif

/******************************************************************************/
/*
 * Data.
 */

/* Number of CPUs. */
static unsigned		ncpus;

/* Various bin-related settings. */
#ifdef MALLOC_TINY		/* Number of (2^n)-spaced tiny bins. */
#  define		ntbins	((unsigned)(LG_QUANTUM - LG_TINY_MIN))
#else
#  define		ntbins	0
#endif
static unsigned		nqbins; /* Number of quantum-spaced bins. */
static unsigned		ncbins; /* Number of cacheline-spaced bins. */
static unsigned		nsbins; /* Number of subpage-spaced bins. */
static unsigned		nmbins; /* Number of medium bins. */
static unsigned		nbins;
static unsigned		mbin0; /* mbin offset (nbins - nmbins). */
#ifdef MALLOC_TINY
#  define		tspace_max	((size_t)(QUANTUM >> 1))
#endif
#define			qspace_min	QUANTUM
static size_t		qspace_max;
static size_t		cspace_min;
static size_t		cspace_max;
static size_t		sspace_min;
static size_t		sspace_max;
#define			small_maxclass	sspace_max
#define			medium_min	PAGE_SIZE
static size_t		medium_max;
#define			bin_maxclass	medium_max

/*
 * Soft limit on the number of medium size classes.  Spacing between medium
 * size classes never exceeds pagesize, which can force more than NBINS_MAX
 * medium size classes.
 */
#define	NMBINS_MAX	16
/* Spacing between medium size classes. */
static size_t		lg_mspace;
static size_t		mspace_mask;

static uint8_t const	*small_size2bin;
/*
 * const_small_size2bin is a static constant lookup table that in the common
 * case can be used as-is for small_size2bin.  For dynamically linked programs,
 * this avoids a page of memory overhead per process.
 */
#define	S2B_1(i)	i,
#define	S2B_2(i)	S2B_1(i) S2B_1(i)
#define	S2B_4(i)	S2B_2(i) S2B_2(i)
#define	S2B_8(i)	S2B_4(i) S2B_4(i)
#define	S2B_16(i)	S2B_8(i) S2B_8(i)
#define	S2B_32(i)	S2B_16(i) S2B_16(i)
#define	S2B_64(i)	S2B_32(i) S2B_32(i)
#define	S2B_128(i)	S2B_64(i) S2B_64(i)
#define	S2B_256(i)	S2B_128(i) S2B_128(i)
static const uint8_t	const_small_size2bin[PAGE_SIZE - 255] = {
	S2B_1(0xffU)		/*    0 */
#if (LG_QUANTUM == 4)
/* 64-bit system ************************/
#  ifdef MALLOC_TINY
	S2B_2(0)		/*    2 */
	S2B_2(1)		/*    4 */
	S2B_4(2)		/*    8 */
	S2B_8(3)		/*   16 */
#    define S2B_QMIN 3
#  else
	S2B_16(0)		/*   16 */
#    define S2B_QMIN 0
#  endif
	S2B_16(S2B_QMIN + 1)	/*   32 */
	S2B_16(S2B_QMIN + 2)	/*   48 */
	S2B_16(S2B_QMIN + 3)	/*   64 */
	S2B_16(S2B_QMIN + 4)	/*   80 */
	S2B_16(S2B_QMIN + 5)	/*   96 */
	S2B_16(S2B_QMIN + 6)	/*  112 */
	S2B_16(S2B_QMIN + 7)	/*  128 */
#  define S2B_CMIN (S2B_QMIN + 8)
#else
/* 32-bit system ************************/
#  ifdef MALLOC_TINY
	S2B_2(0)		/*    2 */
	S2B_2(1)		/*    4 */
	S2B_4(2)		/*    8 */
#    define S2B_QMIN 2
#  else
	S2B_8(0)		/*    8 */
#    define S2B_QMIN 0
#  endif
	S2B_8(S2B_QMIN + 1)	/*   16 */
	S2B_8(S2B_QMIN + 2)	/*   24 */
	S2B_8(S2B_QMIN + 3)	/*   32 */
	S2B_8(S2B_QMIN + 4)	/*   40 */
	S2B_8(S2B_QMIN + 5)	/*   48 */
	S2B_8(S2B_QMIN + 6)	/*   56 */
	S2B_8(S2B_QMIN + 7)	/*   64 */
	S2B_8(S2B_QMIN + 8)	/*   72 */
	S2B_8(S2B_QMIN + 9)	/*   80 */
	S2B_8(S2B_QMIN + 10)	/*   88 */
	S2B_8(S2B_QMIN + 11)	/*   96 */
	S2B_8(S2B_QMIN + 12)	/*  104 */
	S2B_8(S2B_QMIN + 13)	/*  112 */
	S2B_8(S2B_QMIN + 14)	/*  120 */
	S2B_8(S2B_QMIN + 15)	/*  128 */
#  define S2B_CMIN (S2B_QMIN + 16)
#endif
/****************************************/
	S2B_64(S2B_CMIN + 0)	/*  192 */
	S2B_64(S2B_CMIN + 1)	/*  256 */
	S2B_64(S2B_CMIN + 2)	/*  320 */
	S2B_64(S2B_CMIN + 3)	/*  384 */
	S2B_64(S2B_CMIN + 4)	/*  448 */
	S2B_64(S2B_CMIN + 5)	/*  512 */
#  define S2B_SMIN (S2B_CMIN + 6)
	S2B_256(S2B_SMIN + 0)	/*  768 */
	S2B_256(S2B_SMIN + 1)	/* 1024 */
	S2B_256(S2B_SMIN + 2)	/* 1280 */
	S2B_256(S2B_SMIN + 3)	/* 1536 */
	S2B_256(S2B_SMIN + 4)	/* 1792 */
	S2B_256(S2B_SMIN + 5)	/* 2048 */
	S2B_256(S2B_SMIN + 6)	/* 2304 */
	S2B_256(S2B_SMIN + 7)	/* 2560 */
	S2B_256(S2B_SMIN + 8)	/* 2816 */
	S2B_256(S2B_SMIN + 9)	/* 3072 */
	S2B_256(S2B_SMIN + 10)	/* 3328 */
	S2B_256(S2B_SMIN + 11)	/* 3584 */
	S2B_256(S2B_SMIN + 12)	/* 3840 */
#if (PAGE_SHIFT == 13)
	S2B_256(S2B_SMIN + 13)	/* 4096 */
	S2B_256(S2B_SMIN + 14)	/* 4352 */
	S2B_256(S2B_SMIN + 15)	/* 4608 */
	S2B_256(S2B_SMIN + 16)	/* 4864 */
	S2B_256(S2B_SMIN + 17)	/* 5120 */
	S2B_256(S2B_SMIN + 18)	/* 5376 */
	S2B_256(S2B_SMIN + 19)	/* 5632 */
	S2B_256(S2B_SMIN + 20)	/* 5888 */
	S2B_256(S2B_SMIN + 21)	/* 6144 */
	S2B_256(S2B_SMIN + 22)	/* 6400 */
	S2B_256(S2B_SMIN + 23)	/* 6656 */
	S2B_256(S2B_SMIN + 24)	/* 6912 */
	S2B_256(S2B_SMIN + 25)	/* 7168 */
	S2B_256(S2B_SMIN + 26)	/* 7424 */
	S2B_256(S2B_SMIN + 27)	/* 7680 */
	S2B_256(S2B_SMIN + 28)	/* 7936 */
#endif
};
#undef S2B_1
#undef S2B_2
#undef S2B_4
#undef S2B_8
#undef S2B_16
#undef S2B_32
#undef S2B_64
#undef S2B_128
#undef S2B_256
#undef S2B_QMIN
#undef S2B_CMIN
#undef S2B_SMIN

/* Various chunk-related settings. */
static size_t		chunksize;
static size_t		chunksize_mask; /* (chunksize - 1). */
static size_t		chunk_npages;
static size_t		arena_chunk_header_npages;
static size_t		arena_maxclass; /* Max size class for arenas. */

/********/
/*
 * Chunks.
 */

/* Protects chunk-related data structures. */
static malloc_mutex_t	huge_mtx;

/* Tree of chunks that are stand-alone huge allocations. */
static extent_tree_t	huge;

#ifdef MALLOC_DSS
/*
 * Protects sbrk() calls.  This avoids malloc races among threads, though it
 * does not protect against races with threads that call sbrk() directly.
 */
static malloc_mutex_t	dss_mtx;
/* Base address of the DSS. */
static void		*dss_base;
/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
static void		*dss_prev;
/* Current upper limit on DSS addresses. */
static void		*dss_max;

/*
 * Trees of chunks that were previously allocated (trees differ only in node
 * ordering).  These are used when allocating chunks, in an attempt to re-use
 * address space.  Depending on function, different tree orderings are needed,
 * which is why there are two trees with the same contents.
 */
static extent_tree_t	dss_chunks_szad;
static extent_tree_t	dss_chunks_ad;
#endif

#ifdef MALLOC_STATS
/* Huge allocation statistics. */
static uint64_t		huge_nmalloc;
static uint64_t		huge_ndalloc;
static size_t		huge_allocated;
#endif

/****************************/
/*
 * base (internal allocation).
 */

/*
 * Current pages that are being used for internal memory allocations.  These
 * pages are carved up in cacheline-size quanta, so that there is no chance of
 * false cache line sharing.
 */
static void		*base_pages;
static void		*base_next_addr;
static void		*base_past_addr; /* Addr immediately past base_pages. */
static extent_node_t	*base_nodes;
static malloc_mutex_t	base_mtx;
#ifdef MALLOC_STATS
static size_t		base_mapped;
#endif

/********/
/*
 * Arenas.
 */

/*
 * Arenas that are used to service external requests.  Not all elements of the
 * arenas array are necessarily used; arenas are created lazily as needed.
 */
static arena_t		**arenas;
static unsigned		narenas;
#ifndef NO_TLS
static unsigned		next_arena;
#endif
static pthread_mutex_t	arenas_lock; /* Protects arenas initialization. */

#ifndef NO_TLS
/*
 * Map of _pthread_self() --> arenas[???], used for selecting an arena to use
 * for allocations.
 */
static __thread arena_t		*arenas_map TLS_MODEL;
#endif

#ifdef MALLOC_TCACHE
/* Map of thread-specific caches. */
static __thread tcache_t	*tcache_tls TLS_MODEL;

/*
 * Number of cache slots for each bin in the thread cache, or 0 if tcache is
 * disabled.
 */
size_t				tcache_nslots;

/* Number of tcache allocation/deallocation events between incremental GCs. */
unsigned			tcache_gc_incr;
#endif

/*
 * Used by chunk_alloc_mmap() to decide whether to attempt the fast path and
 * potentially avoid some system calls.  We can get away without TLS here,
 * since the state of mmap_unaligned only affects performance, rather than
 * correct function.
 */
#ifndef NO_TLS
static __thread bool	mmap_unaligned TLS_MODEL;
#else
static		bool	mmap_unaligned;
#endif

#ifdef MALLOC_STATS
static malloc_mutex_t	chunks_mtx;
/* Chunk statistics. */
static chunk_stats_t	stats_chunks;
#endif

/*******************************/
/*
 * Runtime configuration options.
 */
const char	*_malloc_options;

#ifndef MALLOC_PRODUCTION
static bool	opt_abort = true;
static bool	opt_junk = true;
#else
static bool	opt_abort = false;
static bool	opt_junk = false;
#endif
#ifdef MALLOC_TCACHE
static size_t	opt_lg_tcache_nslots = LG_TCACHE_NSLOTS_DEFAULT;
static ssize_t	opt_lg_tcache_gc_sweep = LG_TCACHE_GC_SWEEP_DEFAULT;
#endif
#ifdef MALLOC_DSS
static bool	opt_dss = true;
static bool	opt_mmap = true;
#endif
static ssize_t	opt_lg_dirty_mult = LG_DIRTY_MULT_DEFAULT;
static bool	opt_stats_print = false;
static size_t	opt_lg_qspace_max = LG_QSPACE_MAX_DEFAULT;
static size_t	opt_lg_cspace_max = LG_CSPACE_MAX_DEFAULT;
static size_t	opt_lg_medium_max = LG_MEDIUM_MAX_DEFAULT;
static size_t	opt_lg_chunk = LG_CHUNK_DEFAULT;
static bool	opt_utrace = false;
static bool	opt_sysv = false;
static bool	opt_xmalloc = false;
static bool	opt_zero = false;
static int	opt_narenas_lshift = 0;

typedef struct {
	void	*p;
	size_t	s;
	void	*r;
} malloc_utrace_t;

#define	UTRACE(a, b, c)							\
	if (opt_utrace) {						\
		malloc_utrace_t ut;					\
		ut.p = (a);						\
		ut.s = (b);						\
		ut.r = (c);						\
		utrace(&ut, sizeof(ut));				\
	}

/******************************************************************************/
/*
 * Begin function prototypes for non-inline static functions.
 */

static void	malloc_mutex_init(malloc_mutex_t *mutex);
static bool	malloc_spin_init(pthread_mutex_t *lock);
#ifdef MALLOC_TINY
static size_t	pow2_ceil(size_t x);
#endif
static void	wrtmessage(const char *p1, const char *p2, const char *p3,
		const char *p4);
#ifdef MALLOC_STATS
static void	malloc_printf(const char *format, ...);
#endif
static char	*umax2s(uintmax_t x, unsigned base, char *s);
#ifdef MALLOC_DSS
static bool	base_pages_alloc_dss(size_t minsize);
#endif
static bool	base_pages_alloc_mmap(size_t minsize);
static bool	base_pages_alloc(size_t minsize);
static void	*base_alloc(size_t size);
static void	*base_calloc(size_t number, size_t size);
static extent_node_t *base_node_alloc(void);
static void	base_node_dealloc(extent_node_t *node);
static void	*pages_map(void *addr, size_t size);
static void	pages_unmap(void *addr, size_t size);
#ifdef MALLOC_DSS
static void	*chunk_alloc_dss(size_t size, bool *zero);
static void	*chunk_recycle_dss(size_t size, bool *zero);
#endif
static void	*chunk_alloc_mmap_slow(size_t size, bool unaligned);
static void	*chunk_alloc_mmap(size_t size);
static void	*chunk_alloc(size_t size, bool *zero);
#ifdef MALLOC_DSS
static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
static bool	chunk_dealloc_dss(void *chunk, size_t size);
#endif
static void	chunk_dealloc_mmap(void *chunk, size_t size);
static void	chunk_dealloc(void *chunk, size_t size);
#ifndef NO_TLS
static arena_t	*choose_arena_hard(void);
#endif
static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
    bool large, bool zero);
static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
static arena_run_t *arena_run_alloc(arena_t *arena, size_t size, bool large,
    bool zero);
static void	arena_purge(arena_t *arena);
static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
static void	arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
    arena_run_t *run, size_t oldsize, size_t newsize);
static void	arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
    arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
static void	*arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
static size_t	arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
#ifdef MALLOC_TCACHE
static void	tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin,
    size_t binind);
static void	*tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin,
    size_t binind);
#endif
static void	*arena_malloc_medium(arena_t *arena, size_t size, bool zero);
static void	*arena_malloc_large(arena_t *arena, size_t size, bool zero);
static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
    size_t alloc_size);
static bool	arena_is_large(const void *ptr);
static size_t	arena_salloc(const void *ptr);
static void
arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
    arena_bin_t *bin);
#ifdef MALLOC_STATS
static void	arena_stats_print(arena_t *arena);
#endif
static void	stats_print_atexit(void);
#ifdef MALLOC_TCACHE
static void	tcache_bin_flush(tcache_bin_t *tbin, size_t binind,
    unsigned rem);
#endif
static void	arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
    void *ptr);
#ifdef MALLOC_TCACHE
static void	arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk,
    void *ptr, arena_chunk_map_t *mapelm, tcache_t *tcache);
#endif
static void	arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
    void *ptr, size_t size, size_t oldsize);
static bool	arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
    void *ptr, size_t size, size_t oldsize);
static bool	arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
static bool	arena_new(arena_t *arena, unsigned ind);
static arena_t	*arenas_extend(unsigned ind);
#ifdef MALLOC_TCACHE
static tcache_bin_t	*tcache_bin_create(arena_t *arena);
static void	tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin,
    unsigned binind);
#  ifdef MALLOC_STATS
static void	tcache_stats_merge(tcache_t *tcache, arena_t *arena);
#  endif
static tcache_t	*tcache_create(arena_t *arena);
static void	tcache_destroy(tcache_t *tcache);
#endif
static void	*huge_malloc(size_t size, bool zero);
static void	*huge_palloc(size_t alignment, size_t size);
static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
static void	huge_dalloc(void *ptr);
static void	malloc_stats_print(void);
#ifdef MALLOC_DEBUG
static void	small_size2bin_validate(void);
#endif
static bool	small_size2bin_init(void);
static bool	small_size2bin_init_hard(void);
static unsigned	malloc_ncpus(void);
static bool	malloc_init_hard(void);

/*
 * End function prototypes.
 */
/******************************************************************************/

static void
wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
{

	if (_write(STDERR_FILENO, p1, strlen(p1)) < 0
	    || _write(STDERR_FILENO, p2, strlen(p2)) < 0
	    || _write(STDERR_FILENO, p3, strlen(p3)) < 0
	    || _write(STDERR_FILENO, p4, strlen(p4)) < 0)
		return;
}

void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
	    const char *p4) = wrtmessage;

/*
 * We don't want to depend on vsnprintf() for production builds, since that can
 * cause unnecessary bloat for static binaries.  umax2s() provides minimal
 * integer printing functionality, so that malloc_printf() use can be limited to
 * MALLOC_STATS code.
 */
#define	UMAX2S_BUFSIZE	65
static char *
umax2s(uintmax_t x, unsigned base, char *s)
{
	unsigned i;

	i = UMAX2S_BUFSIZE - 1;
	s[i] = '\0';
	switch (base) {
	case 10:
		do {
			i--;
			s[i] = "0123456789"[x % 10];
			x /= 10;
		} while (x > 0);
		break;
	case 16:
		do {
			i--;
			s[i] = "0123456789abcdef"[x & 0xf];
			x >>= 4;
		} while (x > 0);
		break;
	default:
		do {
			i--;
			s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base];
			x /= base;
		} while (x > 0);
	}

	return (&s[i]);
}

/*
 * Define a custom assert() in order to reduce the chances of deadlock during
 * assertion failure.
 */
#ifdef MALLOC_DEBUG
#  define assert(e) do {						\
	if (!(e)) {							\
		char line_buf[UMAX2S_BUFSIZE];				\
		_malloc_message(_getprogname(), ": (malloc) ",		\
		    __FILE__, ":");					\
		_malloc_message(umax2s(__LINE__, 10, line_buf),		\
		    ": Failed assertion: ", "\"", #e);			\
		_malloc_message("\"\n", "", "", "");			\
		abort();						\
	}								\
} while (0)
#else
#define assert(e)
#endif

#ifdef MALLOC_STATS
/*
 * Print to stderr in such a way as to (hopefully) avoid memory allocation.
 */
static void
malloc_printf(const char *format, ...)
{
	char buf[4096];
	va_list ap;

	va_start(ap, format);
	vsnprintf(buf, sizeof(buf), format, ap);
	va_end(ap);
	_malloc_message(buf, "", "", "");
}
#endif

/******************************************************************************/
/*
 * Begin mutex.  We can't use normal pthread mutexes in all places, because
 * they require malloc()ed memory, which causes bootstrapping issues in some
 * cases.
 */

static void
malloc_mutex_init(malloc_mutex_t *mutex)
{
	static const spinlock_t lock = _SPINLOCK_INITIALIZER;

	mutex->lock = lock;
}

static inline void
malloc_mutex_lock(malloc_mutex_t *mutex)
{

	if (__isthreaded)
		_SPINLOCK(&mutex->lock);
}

static inline void
malloc_mutex_unlock(malloc_mutex_t *mutex)
{

	if (__isthreaded)
		_SPINUNLOCK(&mutex->lock);
}

/*
 * End mutex.
 */
/******************************************************************************/
/*
 * Begin spin lock.  Spin locks here are actually adaptive mutexes that block
 * after a period of spinning, because unbounded spinning would allow for
 * priority inversion.
 */

/*
 * We use an unpublished interface to initialize pthread mutexes with an
 * allocation callback, in order to avoid infinite recursion.
 */
int	_pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
    void *(calloc_cb)(size_t, size_t));

__weak_reference(_pthread_mutex_init_calloc_cb_stub,
    _pthread_mutex_init_calloc_cb);

int
_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
    void *(calloc_cb)(size_t, size_t))
{

	return (0);
}

static bool
malloc_spin_init(pthread_mutex_t *lock)
{

	if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
		return (true);

	return (false);
}

static inline void
malloc_spin_lock(pthread_mutex_t *lock)
{

	if (__isthreaded) {
		if (_pthread_mutex_trylock(lock) != 0) {
			/* Exponentially back off if there are multiple CPUs. */
			if (ncpus > 1) {
				unsigned i;
				volatile unsigned j;

				for (i = 1; i <= LG_SPIN_LIMIT; i++) {
					for (j = 0; j < (1U << i); j++) {
						CPU_SPINWAIT;
					}

					if (_pthread_mutex_trylock(lock) == 0)
						return;
				}
			}

			/*
			 * Spinning failed.  Block until the lock becomes
			 * available, in order to avoid indefinite priority
			 * inversion.
			 */
			_pthread_mutex_lock(lock);
		}
	}
}

static inline void
malloc_spin_unlock(pthread_mutex_t *lock)
{

	if (__isthreaded)
		_pthread_mutex_unlock(lock);
}

/*
 * End spin lock.
 */
/******************************************************************************/
/*
 * Begin Utility functions/macros.
 */

/* Return the chunk address for allocation address a. */
#define	CHUNK_ADDR2BASE(a)						\
	((void *)((uintptr_t)(a) & ~chunksize_mask))

/* Return the chunk offset of address a. */
#define	CHUNK_ADDR2OFFSET(a)						\
	((size_t)((uintptr_t)(a) & chunksize_mask))

/* Return the smallest chunk multiple that is >= s. */
#define	CHUNK_CEILING(s)						\
	(((s) + chunksize_mask) & ~chunksize_mask)

/* Return the smallest quantum multiple that is >= a. */
#define	QUANTUM_CEILING(a)						\
	(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)

/* Return the smallest cacheline multiple that is >= s. */
#define	CACHELINE_CEILING(s)						\
	(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)

/* Return the smallest subpage multiple that is >= s. */
#define	SUBPAGE_CEILING(s)						\
	(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)

/* Return the smallest medium size class that is >= s. */
#define	MEDIUM_CEILING(s)						\
	(((s) + mspace_mask) & ~mspace_mask)

/* Return the smallest pagesize multiple that is >= s. */
#define	PAGE_CEILING(s)							\
	(((s) + PAGE_MASK) & ~PAGE_MASK)

#ifdef MALLOC_TINY
/* Compute the smallest power of 2 that is >= x. */
static size_t
pow2_ceil(size_t x)
{

	x--;
	x |= x >> 1;
	x |= x >> 2;
	x |= x >> 4;
	x |= x >> 8;
	x |= x >> 16;
#if (SIZEOF_PTR == 8)
	x |= x >> 32;
#endif
	x++;
	return (x);
}
#endif

/******************************************************************************/

#ifdef MALLOC_DSS
static bool
base_pages_alloc_dss(size_t minsize)
{

	/*
	 * Do special DSS allocation here, since base allocations don't need to
	 * be chunk-aligned.
	 */
	malloc_mutex_lock(&dss_mtx);
	if (dss_prev != (void *)-1) {
		intptr_t incr;
		size_t csize = CHUNK_CEILING(minsize);

		do {
			/* Get the current end of the DSS. */
			dss_max = sbrk(0);

			/*
			 * Calculate how much padding is necessary to
			 * chunk-align the end of the DSS.  Don't worry about
			 * dss_max not being chunk-aligned though.
			 */
			incr = (intptr_t)chunksize
			    - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
			assert(incr >= 0);
			if ((size_t)incr < minsize)
				incr += csize;

			dss_prev = sbrk(incr);
			if (dss_prev == dss_max) {
				/* Success. */
				dss_max = (void *)((intptr_t)dss_prev + incr);
				base_pages = dss_prev;
				base_next_addr = base_pages;
				base_past_addr = dss_max;
#ifdef MALLOC_STATS
				base_mapped += incr;
#endif
				malloc_mutex_unlock(&dss_mtx);
				return (false);
			}
		} while (dss_prev != (void *)-1);
	}
	malloc_mutex_unlock(&dss_mtx);

	return (true);
}
#endif

static bool
base_pages_alloc_mmap(size_t minsize)
{
	size_t csize;

	assert(minsize != 0);
	csize = PAGE_CEILING(minsize);
	base_pages = pages_map(NULL, csize);
	if (base_pages == NULL)
		return (true);
	base_next_addr = base_pages;
	base_past_addr = (void *)((uintptr_t)base_pages + csize);
#ifdef MALLOC_STATS
	base_mapped += csize;
#endif

	return (false);
}

static bool
base_pages_alloc(size_t minsize)
{

#ifdef MALLOC_DSS
	if (opt_mmap && minsize != 0)
#endif
	{
		if (base_pages_alloc_mmap(minsize) == false)
			return (false);
	}

#ifdef MALLOC_DSS
	if (opt_dss) {
		if (base_pages_alloc_dss(minsize) == false)
			return (false);
	}

#endif

	return (true);
}

static void *
base_alloc(size_t size)
{
	void *ret;
	size_t csize;

	/* Round size up to nearest multiple of the cacheline size. */
	csize = CACHELINE_CEILING(size);

	malloc_mutex_lock(&base_mtx);
	/* Make sure there's enough space for the allocation. */
	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
		if (base_pages_alloc(csize)) {
			malloc_mutex_unlock(&base_mtx);
			return (NULL);
		}
	}
	/* Allocate. */
	ret = base_next_addr;
	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
	malloc_mutex_unlock(&base_mtx);

	return (ret);
}

static void *
base_calloc(size_t number, size_t size)
{
	void *ret;

	ret = base_alloc(number * size);
	if (ret != NULL)
		memset(ret, 0, number * size);

	return (ret);
}

static extent_node_t *
base_node_alloc(void)
{
	extent_node_t *ret;

	malloc_mutex_lock(&base_mtx);
	if (base_nodes != NULL) {
		ret = base_nodes;
		base_nodes = *(extent_node_t **)ret;
		malloc_mutex_unlock(&base_mtx);
	} else {
		malloc_mutex_unlock(&base_mtx);
		ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
	}

	return (ret);
}

static void
base_node_dealloc(extent_node_t *node)
{

	malloc_mutex_lock(&base_mtx);
	*(extent_node_t **)node = base_nodes;
	base_nodes = node;
	malloc_mutex_unlock(&base_mtx);
}

/*
 * End Utility functions/macros.
 */
/******************************************************************************/
/*
 * Begin extent tree code.
 */

#ifdef MALLOC_DSS
static inline int
extent_szad_comp(extent_node_t *a, extent_node_t *b)
{
	int ret;
	size_t a_size = a->size;
	size_t b_size = b->size;

	ret = (a_size > b_size) - (a_size < b_size);
	if (ret == 0) {
		uintptr_t a_addr = (uintptr_t)a->addr;
		uintptr_t b_addr = (uintptr_t)b->addr;

		ret = (a_addr > b_addr) - (a_addr < b_addr);
	}

	return (ret);
}

/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, extent_tree_szad_, extent_tree_t, extent_node_t,
    link_szad, extent_szad_comp)
#endif

static inline int
extent_ad_comp(extent_node_t *a, extent_node_t *b)
{
	uintptr_t a_addr = (uintptr_t)a->addr;
	uintptr_t b_addr = (uintptr_t)b->addr;

	return ((a_addr > b_addr) - (a_addr < b_addr));
}

/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
    extent_ad_comp)

/*
 * End extent tree code.
 */
/******************************************************************************/
/*
 * Begin chunk management functions.
 */

static void *
pages_map(void *addr, size_t size)
{
	void *ret;

	/*
	 * We don't use MAP_FIXED here, because it can cause the *replacement*
	 * of existing mappings, and we only want to create new mappings.
	 */
	ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
	    -1, 0);
	assert(ret != NULL);

	if (ret == MAP_FAILED)
		ret = NULL;
	else if (addr != NULL && ret != addr) {
		/*
		 * We succeeded in mapping memory, but not in the right place.
		 */
		if (munmap(ret, size) == -1) {
			char buf[STRERROR_BUF];

			strerror_r(errno, buf, sizeof(buf));
			_malloc_message(_getprogname(),
			    ": (malloc) Error in munmap(): ", buf, "\n");
			if (opt_abort)
				abort();
		}
		ret = NULL;
	}

	assert(ret == NULL || (addr == NULL && ret != addr)
	    || (addr != NULL && ret == addr));
	return (ret);
}

static void
pages_unmap(void *addr, size_t size)
{

	if (munmap(addr, size) == -1) {
		char buf[STRERROR_BUF];

		strerror_r(errno, buf, sizeof(buf));
		_malloc_message(_getprogname(),
		    ": (malloc) Error in munmap(): ", buf, "\n");
		if (opt_abort)
			abort();
	}
}

#ifdef MALLOC_DSS
static void *
chunk_alloc_dss(size_t size, bool *zero)
{
	void *ret;

	ret = chunk_recycle_dss(size, zero);
	if (ret != NULL)
		return (ret);

	/*
	 * sbrk() uses a signed increment argument, so take care not to
	 * interpret a huge allocation request as a negative increment.
	 */
	if ((intptr_t)size < 0)
		return (NULL);

	malloc_mutex_lock(&dss_mtx);
	if (dss_prev != (void *)-1) {
		intptr_t incr;

		/*
		 * The loop is necessary to recover from races with other
		 * threads that are using the DSS for something other than
		 * malloc.
		 */
		do {
			/* Get the current end of the DSS. */
			dss_max = sbrk(0);

			/*
			 * Calculate how much padding is necessary to
			 * chunk-align the end of the DSS.
			 */
			incr = (intptr_t)size
			    - (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
			if (incr == (intptr_t)size)
				ret = dss_max;
			else {
				ret = (void *)((intptr_t)dss_max + incr);
				incr += size;
			}

			dss_prev = sbrk(incr);
			if (dss_prev == dss_max) {
				/* Success. */
				dss_max = (void *)((intptr_t)dss_prev + incr);
				malloc_mutex_unlock(&dss_mtx);
				*zero = true;
				return (ret);
			}
		} while (dss_prev != (void *)-1);
	}
	malloc_mutex_unlock(&dss_mtx);

	return (NULL);
}

static void *
chunk_recycle_dss(size_t size, bool *zero)
{
	extent_node_t *node, key;

	key.addr = NULL;
	key.size = size;
	malloc_mutex_lock(&dss_mtx);
	node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
	if (node != NULL) {
		void *ret = node->addr;

		/* Remove node from the tree. */
		extent_tree_szad_remove(&dss_chunks_szad, node);
		if (node->size == size) {
			extent_tree_ad_remove(&dss_chunks_ad, node);
			base_node_dealloc(node);
		} else {
			/*
			 * Insert the remainder of node's address range as a
			 * smaller chunk.  Its position within dss_chunks_ad
			 * does not change.
			 */
			assert(node->size > size);
			node->addr = (void *)((uintptr_t)node->addr + size);
			node->size -= size;
			extent_tree_szad_insert(&dss_chunks_szad, node);
		}
		malloc_mutex_unlock(&dss_mtx);

		if (*zero)
			memset(ret, 0, size);
		return (ret);
	}
	malloc_mutex_unlock(&dss_mtx);

	return (NULL);
}
#endif

static void *
chunk_alloc_mmap_slow(size_t size, bool unaligned)
{
	void *ret;
	size_t offset;

	/* Beware size_t wrap-around. */
	if (size + chunksize <= size)
		return (NULL);

	ret = pages_map(NULL, size + chunksize);
	if (ret == NULL)
		return (NULL);

	/* Clean up unneeded leading/trailing space. */
	offset = CHUNK_ADDR2OFFSET(ret);
	if (offset != 0) {
		/* Note that mmap() returned an unaligned mapping. */
		unaligned = true;

		/* Leading space. */
		pages_unmap(ret, chunksize - offset);

		ret = (void *)((uintptr_t)ret +
		    (chunksize - offset));

		/* Trailing space. */
		pages_unmap((void *)((uintptr_t)ret + size),
		    offset);
	} else {
		/* Trailing space only. */
		pages_unmap((void *)((uintptr_t)ret + size),
		    chunksize);
	}

	/*
	 * If mmap() returned an aligned mapping, reset mmap_unaligned so that
	 * the next chunk_alloc_mmap() execution tries the fast allocation
	 * method.
	 */
	if (unaligned == false)
		mmap_unaligned = false;

	return (ret);
}

static void *
chunk_alloc_mmap(size_t size)
{
	void *ret;

	/*
	 * Ideally, there would be a way to specify alignment to mmap() (like
	 * NetBSD has), but in the absence of such a feature, we have to work
	 * hard to efficiently create aligned mappings.  The reliable, but
	 * slow method is to create a mapping that is over-sized, then trim the
	 * excess.  However, that always results in at least one call to
	 * pages_unmap().
	 *
	 * A more optimistic approach is to try mapping precisely the right
	 * amount, then try to append another mapping if alignment is off.  In
	 * practice, this works out well as long as the application is not
	 * interleaving mappings via direct mmap() calls.  If we do run into a
	 * situation where there is an interleaved mapping and we are unable to
	 * extend an unaligned mapping, our best option is to switch to the
	 * slow method until mmap() returns another aligned mapping.  This will
	 * tend to leave a gap in the memory map that is too small to cause
	 * later problems for the optimistic method.
	 *
	 * Another possible confounding factor is address space layout
	 * randomization (ASLR), which causes mmap(2) to disregard the
	 * requested address.  mmap_unaligned tracks whether the previous
	 * chunk_alloc_mmap() execution received any unaligned or relocated
	 * mappings, and if so, the current execution will immediately fall
	 * back to the slow method.  However, we keep track of whether the fast
	 * method would have succeeded, and if so, we make a note to try the
	 * fast method next time.
	 */

	if (mmap_unaligned == false) {
		size_t offset;

		ret = pages_map(NULL, size);
		if (ret == NULL)
			return (NULL);

		offset = CHUNK_ADDR2OFFSET(ret);
		if (offset != 0) {
			mmap_unaligned = true;
			/* Try to extend chunk boundary. */
			if (pages_map((void *)((uintptr_t)ret + size),
			    chunksize - offset) == NULL) {
				/*
				 * Extension failed.  Clean up, then revert to
				 * the reliable-but-expensive method.
				 */
				pages_unmap(ret, size);
				ret = chunk_alloc_mmap_slow(size, true);
			} else {
				/* Clean up unneeded leading space. */
				pages_unmap(ret, chunksize - offset);
				ret = (void *)((uintptr_t)ret + (chunksize -
				    offset));
			}
		}
	} else
		ret = chunk_alloc_mmap_slow(size, false);

	return (ret);
}

/*
 * If the caller specifies (*zero == false), it is still possible to receive
 * zeroed memory, in which case *zero is toggled to true.  arena_chunk_alloc()
 * takes advantage of this to avoid demanding zeroed chunks, but taking
 * advantage of them if they are returned.
 */
static void *
chunk_alloc(size_t size, bool *zero)
{
	void *ret;

	assert(size != 0);
	assert((size & chunksize_mask) == 0);

#ifdef MALLOC_DSS
	if (opt_mmap)
#endif
	{
		ret = chunk_alloc_mmap(size);
		if (ret != NULL) {
			*zero = true;
			goto RETURN;
		}
	}

#ifdef MALLOC_DSS
	if (opt_dss) {
		ret = chunk_alloc_dss(size, zero);
		if (ret != NULL)
			goto RETURN;
	}
#endif

	/* All strategies for allocation failed. */
	ret = NULL;
RETURN:
#ifdef MALLOC_STATS
	if (ret != NULL) {
		malloc_mutex_lock(&chunks_mtx);
		stats_chunks.nchunks += (size / chunksize);
		stats_chunks.curchunks += (size / chunksize);
		if (stats_chunks.curchunks > stats_chunks.highchunks)
			stats_chunks.highchunks = stats_chunks.curchunks;
		malloc_mutex_unlock(&chunks_mtx);
	}
#endif

	assert(CHUNK_ADDR2BASE(ret) == ret);
	return (ret);
}

#ifdef MALLOC_DSS
static extent_node_t *
chunk_dealloc_dss_record(void *chunk, size_t size)
{
	extent_node_t *node, *prev, key;

	key.addr = (void *)((uintptr_t)chunk + size);
	node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
	/* Try to coalesce forward. */
	if (node != NULL && node->addr == key.addr) {
		/*
		 * Coalesce chunk with the following address range.  This does
		 * not change the position within dss_chunks_ad, so only
		 * remove/insert from/into dss_chunks_szad.
		 */
		extent_tree_szad_remove(&dss_chunks_szad, node);
		node->addr = chunk;
		node->size += size;
		extent_tree_szad_insert(&dss_chunks_szad, node);
	} else {
		/*
		 * Coalescing forward failed, so insert a new node.  Drop
		 * dss_mtx during node allocation, since it is possible that a
		 * new base chunk will be allocated.
		 */
		malloc_mutex_unlock(&dss_mtx);
		node = base_node_alloc();
		malloc_mutex_lock(&dss_mtx);
		if (node == NULL)
			return (NULL);
		node->addr = chunk;
		node->size = size;
		extent_tree_ad_insert(&dss_chunks_ad, node);
		extent_tree_szad_insert(&dss_chunks_szad, node);
	}

	/* Try to coalesce backward. */
	prev = extent_tree_ad_prev(&dss_chunks_ad, node);
	if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
	    chunk) {
		/*
		 * Coalesce chunk with the previous address range.  This does
		 * not change the position within dss_chunks_ad, so only
		 * remove/insert node from/into dss_chunks_szad.
		 */
		extent_tree_szad_remove(&dss_chunks_szad, prev);
		extent_tree_ad_remove(&dss_chunks_ad, prev);

		extent_tree_szad_remove(&dss_chunks_szad, node);
		node->addr = prev->addr;
		node->size += prev->size;
		extent_tree_szad_insert(&dss_chunks_szad, node);

		base_node_dealloc(prev);
	}

	return (node);
}

static bool
chunk_dealloc_dss(void *chunk, size_t size)
{
	bool ret;

	malloc_mutex_lock(&dss_mtx);
	if ((uintptr_t)chunk >= (uintptr_t)dss_base
	    && (uintptr_t)chunk < (uintptr_t)dss_max) {
		extent_node_t *node;

		/* Try to coalesce with other unused chunks. */
		node = chunk_dealloc_dss_record(chunk, size);
		if (node != NULL) {
			chunk = node->addr;
			size = node->size;
		}

		/* Get the current end of the DSS. */
		dss_max = sbrk(0);

		/*
		 * Try to shrink the DSS if this chunk is at the end of the
		 * DSS.  The sbrk() call here is subject to a race condition
		 * with threads that use brk(2) or sbrk(2) directly, but the
		 * alternative would be to leak memory for the sake of poorly
		 * designed multi-threaded programs.
		 */
		if ((void *)((uintptr_t)chunk + size) == dss_max
		    && (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
			/* Success. */
			dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);

			if (node != NULL) {
				extent_tree_szad_remove(&dss_chunks_szad, node);
				extent_tree_ad_remove(&dss_chunks_ad, node);
				base_node_dealloc(node);
			}
		} else
			madvise(chunk, size, MADV_FREE);

		ret = false;
		goto RETURN;
	}

	ret = true;
RETURN:
	malloc_mutex_unlock(&dss_mtx);
	return (ret);
}
#endif

static void
chunk_dealloc_mmap(void *chunk, size_t size)
{

	pages_unmap(chunk, size);
}

static void
chunk_dealloc(void *chunk, size_t size)
{

	assert(chunk != NULL);
	assert(CHUNK_ADDR2BASE(chunk) == chunk);
	assert(size != 0);
	assert((size & chunksize_mask) == 0);

#ifdef MALLOC_STATS
	malloc_mutex_lock(&chunks_mtx);
	stats_chunks.curchunks -= (size / chunksize);
	malloc_mutex_unlock(&chunks_mtx);
#endif

#ifdef MALLOC_DSS
	if (opt_dss) {
		if (chunk_dealloc_dss(chunk, size) == false)
			return;
	}

	if (opt_mmap)
#endif
		chunk_dealloc_mmap(chunk, size);
}

/*
 * End chunk management functions.
 */
/******************************************************************************/
/*
 * Begin arena.
 */

/*
 * Choose an arena based on a per-thread value (fast-path code, calls slow-path
 * code if necessary).
 */
static inline arena_t *
choose_arena(void)
{
	arena_t *ret;

	/*
	 * We can only use TLS if this is a PIC library, since for the static
	 * library version, libc's malloc is used by TLS allocation, which
	 * introduces a bootstrapping issue.
	 */
#ifndef NO_TLS
	if (__isthreaded == false) {
	    /* Avoid the overhead of TLS for single-threaded operation. */
	    return (arenas[0]);
	}

	ret = arenas_map;
	if (ret == NULL) {
		ret = choose_arena_hard();
		assert(ret != NULL);
	}
#else
	if (__isthreaded && narenas > 1) {
		unsigned long ind;

		/*
		 * Hash _pthread_self() to one of the arenas.  There is a prime
		 * number of arenas, so this has a reasonable chance of
		 * working.  Even so, the hashing can be easily thwarted by
		 * inconvenient _pthread_self() values.  Without specific
		 * knowledge of how _pthread_self() calculates values, we can't
		 * easily do much better than this.
		 */
		ind = (unsigned long) _pthread_self() % narenas;

		/*
		 * Optimistially assume that arenas[ind] has been initialized.
		 * At worst, we find out that some other thread has already
		 * done so, after acquiring the lock in preparation.  Note that
		 * this lazy locking also has the effect of lazily forcing
		 * cache coherency; without the lock acquisition, there's no
		 * guarantee that modification of arenas[ind] by another thread
		 * would be seen on this CPU for an arbitrary amount of time.
		 *
		 * In general, this approach to modifying a synchronized value
		 * isn't a good idea, but in this case we only ever modify the
		 * value once, so things work out well.
		 */
		ret = arenas[ind];
		if (ret == NULL) {
			/*
			 * Avoid races with another thread that may have already
			 * initialized arenas[ind].
			 */
			malloc_spin_lock(&arenas_lock);
			if (arenas[ind] == NULL)
				ret = arenas_extend((unsigned)ind);
			else
				ret = arenas[ind];
			malloc_spin_unlock(&arenas_lock);
		}
	} else
		ret = arenas[0];
#endif

	assert(ret != NULL);
	return (ret);
}

#ifndef NO_TLS
/*
 * Choose an arena based on a per-thread value (slow-path code only, called
 * only by choose_arena()).
 */
static arena_t *
choose_arena_hard(void)
{
	arena_t *ret;

	assert(__isthreaded);

	if (narenas > 1) {
		malloc_spin_lock(&arenas_lock);
		if ((ret = arenas[next_arena]) == NULL)
			ret = arenas_extend(next_arena);
		next_arena = (next_arena + 1) % narenas;
		malloc_spin_unlock(&arenas_lock);
	} else
		ret = arenas[0];

	arenas_map = ret;

	return (ret);
}
#endif

static inline int
arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
{
	uintptr_t a_chunk = (uintptr_t)a;
	uintptr_t b_chunk = (uintptr_t)b;

	assert(a != NULL);
	assert(b != NULL);

	return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
}

/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
    arena_chunk_t, link_dirty, arena_chunk_comp)

static inline int
arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
{
	uintptr_t a_mapelm = (uintptr_t)a;
	uintptr_t b_mapelm = (uintptr_t)b;

	assert(a != NULL);
	assert(b != NULL);

	return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
}

/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t,
    link, arena_run_comp)

static inline int
arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
{
	int ret;
	size_t a_size = a->bits & ~PAGE_MASK;
	size_t b_size = b->bits & ~PAGE_MASK;

	ret = (a_size > b_size) - (a_size < b_size);
	if (ret == 0) {
		uintptr_t a_mapelm, b_mapelm;

		if ((a->bits & CHUNK_MAP_KEY) != CHUNK_MAP_KEY)
			a_mapelm = (uintptr_t)a;
		else {
			/*
			 * Treat keys as though they are lower than anything
			 * else.
			 */
			a_mapelm = 0;
		}
		b_mapelm = (uintptr_t)b;

		ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
	}

	return (ret);
}

/* Wrap red-black tree macros in functions. */
rb_gen(__unused static, arena_avail_tree_, arena_avail_tree_t,
    arena_chunk_map_t, link, arena_avail_comp)

static inline void
arena_run_rc_incr(arena_run_t *run, arena_bin_t *bin, const void *ptr)
{
	arena_chunk_t *chunk;
	arena_t *arena;
	size_t pagebeg, pageend, i;

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
	arena = chunk->arena;
	pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
	pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) -
	    (uintptr_t)chunk) >> PAGE_SHIFT;

	for (i = pagebeg; i <= pageend; i++) {
		size_t mapbits = chunk->map[i].bits;

		if (mapbits & CHUNK_MAP_DIRTY) {
			assert((mapbits & CHUNK_MAP_RC_MASK) == 0);
			chunk->ndirty--;
			arena->ndirty--;
			mapbits ^= CHUNK_MAP_DIRTY;
		}
		assert((mapbits & CHUNK_MAP_RC_MASK) != CHUNK_MAP_RC_MASK);
		mapbits += CHUNK_MAP_RC_ONE;
		chunk->map[i].bits = mapbits;
	}
}

static inline void
arena_run_rc_decr(arena_run_t *run, arena_bin_t *bin, const void *ptr)
{
	arena_chunk_t *chunk;
	arena_t *arena;
	size_t pagebeg, pageend, mapbits, i;
	bool dirtier = false;

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
	arena = chunk->arena;
	pagebeg = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
	pageend = ((uintptr_t)ptr + (uintptr_t)(bin->reg_size - 1) -
	    (uintptr_t)chunk) >> PAGE_SHIFT;

	/* First page. */
	mapbits = chunk->map[pagebeg].bits;
	mapbits -= CHUNK_MAP_RC_ONE;
	if ((mapbits & CHUNK_MAP_RC_MASK) == 0) {
		dirtier = true;
		assert((mapbits & CHUNK_MAP_DIRTY) == 0);
		mapbits |= CHUNK_MAP_DIRTY;
		chunk->ndirty++;
		arena->ndirty++;
	}
	chunk->map[pagebeg].bits = mapbits;

	if (pageend - pagebeg >= 1) {
		/*
		 * Interior pages are completely consumed by the object being
		 * deallocated, which means that the pages can be
		 * unconditionally marked dirty.
		 */
		for (i = pagebeg + 1; i < pageend; i++) {
			mapbits = chunk->map[i].bits;
			mapbits -= CHUNK_MAP_RC_ONE;
			assert((mapbits & CHUNK_MAP_RC_MASK) == 0);
			dirtier = true;
			assert((mapbits & CHUNK_MAP_DIRTY) == 0);
			mapbits |= CHUNK_MAP_DIRTY;
			chunk->ndirty++;
			arena->ndirty++;
			chunk->map[i].bits = mapbits;
		}

		/* Last page. */
		mapbits = chunk->map[pageend].bits;
		mapbits -= CHUNK_MAP_RC_ONE;
		if ((mapbits & CHUNK_MAP_RC_MASK) == 0) {
			dirtier = true;
			assert((mapbits & CHUNK_MAP_DIRTY) == 0);
			mapbits |= CHUNK_MAP_DIRTY;
			chunk->ndirty++;
			arena->ndirty++;
		}
		chunk->map[pageend].bits = mapbits;
	}

	if (dirtier) {
		if (chunk->dirtied == false) {
			arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
			    chunk);
			chunk->dirtied = true;
		}

		/* Enforce opt_lg_dirty_mult. */
		if (opt_lg_dirty_mult >= 0 && (arena->nactive >>
		    opt_lg_dirty_mult) < arena->ndirty)
			arena_purge(arena);
	}
}

static inline void *
arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
{
	void *ret;
	unsigned i, mask, bit, regind;

	assert(run->magic == ARENA_RUN_MAGIC);
	assert(run->regs_minelm < bin->regs_mask_nelms);

	/*
	 * Move the first check outside the loop, so that run->regs_minelm can
	 * be updated unconditionally, without the possibility of updating it
	 * multiple times.
	 */
	i = run->regs_minelm;
	mask = run->regs_mask[i];
	if (mask != 0) {
		/* Usable allocation found. */
		bit = ffs((int)mask) - 1;

		regind = ((i << (LG_SIZEOF_INT + 3)) + bit);
		assert(regind < bin->nregs);
		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
		    + (bin->reg_size * regind));

		/* Clear bit. */
		mask ^= (1U << bit);
		run->regs_mask[i] = mask;

		arena_run_rc_incr(run, bin, ret);

		return (ret);
	}

	for (i++; i < bin->regs_mask_nelms; i++) {
		mask = run->regs_mask[i];
		if (mask != 0) {
			/* Usable allocation found. */
			bit = ffs((int)mask) - 1;

			regind = ((i << (LG_SIZEOF_INT + 3)) + bit);
			assert(regind < bin->nregs);
			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
			    + (bin->reg_size * regind));

			/* Clear bit. */
			mask ^= (1U << bit);
			run->regs_mask[i] = mask;

			/*
			 * Make a note that nothing before this element
			 * contains a free region.
			 */
			run->regs_minelm = i; /* Low payoff: + (mask == 0); */

			arena_run_rc_incr(run, bin, ret);

			return (ret);
		}
	}
	/* Not reached. */
	assert(0);
	return (NULL);
}

static inline void
arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
{
	unsigned shift, diff, regind, elm, bit;

	assert(run->magic == ARENA_RUN_MAGIC);

	/*
	 * Avoid doing division with a variable divisor if possible.  Using
	 * actual division here can reduce allocator throughput by over 20%!
	 */
	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);

	/* Rescale (factor powers of 2 out of the numerator and denominator). */
	shift = ffs(size) - 1;
	diff >>= shift;
	size >>= shift;

	if (size == 1) {
		/* The divisor was a power of 2. */
		regind = diff;
	} else {
		/*
		 * To divide by a number D that is not a power of two we
		 * multiply by (2^21 / D) and then right shift by 21 positions.
		 *
		 *   X / D
		 *
		 * becomes
		 *
		 *   (X * size_invs[D - 3]) >> SIZE_INV_SHIFT
		 *
		 * We can omit the first three elements, because we never
		 * divide by 0, and 1 and 2 are both powers of two, which are
		 * handled above.
		 */
#define	SIZE_INV_SHIFT 21
#define	SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
		static const unsigned size_invs[] = {
		    SIZE_INV(3),
		    SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
		    SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
		    SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
		    SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
		    SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
		    SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
		    SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
		};

		if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + 2))
			regind = (diff * size_invs[size - 3]) >> SIZE_INV_SHIFT;
		else
			regind = diff / size;
#undef SIZE_INV
#undef SIZE_INV_SHIFT
	}
	assert(diff == regind * size);
	assert(regind < bin->nregs);

	elm = regind >> (LG_SIZEOF_INT + 3);
	if (elm < run->regs_minelm)
		run->regs_minelm = elm;
	bit = regind - (elm << (LG_SIZEOF_INT + 3));
	assert((run->regs_mask[elm] & (1U << bit)) == 0);
	run->regs_mask[elm] |= (1U << bit);

	arena_run_rc_decr(run, bin, ptr);
}

static void
arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
    bool zero)
{
	arena_chunk_t *chunk;
	size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
	old_ndirty = chunk->ndirty;
	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
	    >> PAGE_SHIFT);
	total_pages = (chunk->map[run_ind].bits & ~PAGE_MASK) >>
	    PAGE_SHIFT;
	need_pages = (size >> PAGE_SHIFT);
	assert(need_pages > 0);
	assert(need_pages <= total_pages);
	rem_pages = total_pages - need_pages;

	arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
	arena->nactive += need_pages;

	/* Keep track of trailing unused pages for later use. */
	if (rem_pages > 0) {
		chunk->map[run_ind+need_pages].bits = (rem_pages <<
		    PAGE_SHIFT) | (chunk->map[run_ind+need_pages].bits &
		    CHUNK_MAP_FLAGS_MASK);
		chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
		    PAGE_SHIFT) | (chunk->map[run_ind+total_pages-1].bits &
		    CHUNK_MAP_FLAGS_MASK);
		arena_avail_tree_insert(&arena->runs_avail,
		    &chunk->map[run_ind+need_pages]);
	}

	for (i = 0; i < need_pages; i++) {
		/* Zero if necessary. */
		if (zero) {
			if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
			    == 0) {
				memset((void *)((uintptr_t)chunk + ((run_ind
				    + i) << PAGE_SHIFT)), 0, PAGE_SIZE);
				/* CHUNK_MAP_ZEROED is cleared below. */
			}
		}

		/* Update dirty page accounting. */
		if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
			chunk->ndirty--;
			arena->ndirty--;
			/* CHUNK_MAP_DIRTY is cleared below. */
		}

		/* Initialize the chunk map. */
		if (large) {
			chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
			    | CHUNK_MAP_ALLOCATED;
		} else {
			chunk->map[run_ind + i].bits = (i << CHUNK_MAP_PG_SHIFT)
			    | CHUNK_MAP_ALLOCATED;
		}
	}

	if (large) {
		/*
		 * Set the run size only in the first element for large runs.
		 * This is primarily a debugging aid, since the lack of size
		 * info for trailing pages only matters if the application
		 * tries to operate on an interior pointer.
		 */
		chunk->map[run_ind].bits |= size;
	} else {
		/*
		 * Initialize the first page's refcount to 1, so that the run
		 * header is protected from dirty page purging.
		 */
		chunk->map[run_ind].bits += CHUNK_MAP_RC_ONE;
	}
}

static arena_chunk_t *
arena_chunk_alloc(arena_t *arena)
{
	arena_chunk_t *chunk;
	size_t i;

	if (arena->spare != NULL) {
		chunk = arena->spare;
		arena->spare = NULL;
	} else {
		bool zero;
		size_t zeroed;

		zero = false;
		chunk = (arena_chunk_t *)chunk_alloc(chunksize, &zero);
		if (chunk == NULL)
			return (NULL);
#ifdef MALLOC_STATS
		arena->stats.mapped += chunksize;
#endif

		chunk->arena = arena;
		chunk->dirtied = false;

		/*
		 * Claim that no pages are in use, since the header is merely
		 * overhead.
		 */
		chunk->ndirty = 0;

		/*
		 * Initialize the map to contain one maximal free untouched run.
		 * Mark the pages as zeroed iff chunk_alloc() returned a zeroed
		 * chunk.
		 */
		zeroed = zero ? CHUNK_MAP_ZEROED : 0;
		for (i = 0; i < arena_chunk_header_npages; i++)
			chunk->map[i].bits = 0;
		chunk->map[i].bits = arena_maxclass | zeroed;
		for (i++; i < chunk_npages-1; i++)
			chunk->map[i].bits = zeroed;
		chunk->map[chunk_npages-1].bits = arena_maxclass | zeroed;
	}

	/* Insert the run into the runs_avail tree. */
	arena_avail_tree_insert(&arena->runs_avail,
	    &chunk->map[arena_chunk_header_npages]);

	return (chunk);
}

static void
arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
{

	if (arena->spare != NULL) {
		if (arena->spare->dirtied) {
			arena_chunk_tree_dirty_remove(
			    &chunk->arena->chunks_dirty, arena->spare);
			arena->ndirty -= arena->spare->ndirty;
		}
		chunk_dealloc((void *)arena->spare, chunksize);
#ifdef MALLOC_STATS
		arena->stats.mapped -= chunksize;
#endif
	}

	/*
	 * Remove run from runs_avail, regardless of whether this chunk
	 * will be cached, so that the arena does not use it.  Dirty page
	 * flushing only uses the chunks_dirty tree, so leaving this chunk in
	 * the chunks_* trees is sufficient for that purpose.
	 */
	arena_avail_tree_remove(&arena->runs_avail,
	    &chunk->map[arena_chunk_header_npages]);

	arena->spare = chunk;
}

static arena_run_t *
arena_run_alloc(arena_t *arena, size_t size, bool large, bool zero)
{
	arena_chunk_t *chunk;
	arena_run_t *run;
	arena_chunk_map_t *mapelm, key;

	assert(size <= arena_maxclass);
	assert((size & PAGE_MASK) == 0);

	/* Search the arena's chunks for the lowest best fit. */
	key.bits = size | CHUNK_MAP_KEY;
	mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
	if (mapelm != NULL) {
		arena_chunk_t *run_chunk = CHUNK_ADDR2BASE(mapelm);
		size_t pageind = ((uintptr_t)mapelm - (uintptr_t)run_chunk->map)
		    / sizeof(arena_chunk_map_t);

		run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
		    << PAGE_SHIFT));
		arena_run_split(arena, run, size, large, zero);
		return (run);
	}

	/*
	 * No usable runs.  Create a new chunk from which to allocate the run.
	 */
	chunk = arena_chunk_alloc(arena);
	if (chunk == NULL)
		return (NULL);
	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
	    PAGE_SHIFT));
	/* Update page map. */
	arena_run_split(arena, run, size, large, zero);
	return (run);
}

#ifdef MALLOC_DEBUG
static arena_chunk_t *
chunks_dirty_iter_cb(arena_chunk_tree_t *tree, arena_chunk_t *chunk, void *arg)
{
	size_t *ndirty = (size_t *)arg;

	assert(chunk->dirtied);
	*ndirty += chunk->ndirty;
	return (NULL);
}
#endif

static void
arena_purge(arena_t *arena)
{
	arena_chunk_t *chunk;
	size_t i, npages;
#ifdef MALLOC_DEBUG
	size_t ndirty = 0;

	arena_chunk_tree_dirty_iter(&arena->chunks_dirty, NULL,
	    chunks_dirty_iter_cb, (void *)&ndirty);
	assert(ndirty == arena->ndirty);
#endif
	assert((arena->nactive >> opt_lg_dirty_mult) < arena->ndirty);

#ifdef MALLOC_STATS
	arena->stats.npurge++;
#endif

	/*
	 * Iterate downward through chunks until enough dirty memory has been
	 * purged.  Terminate as soon as possible in order to minimize the
	 * number of system calls, even if a chunk has only been partially
	 * purged.
	 */

	while ((arena->nactive >> (opt_lg_dirty_mult + 1)) < arena->ndirty) {
		chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
		assert(chunk != NULL);

		for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
			assert(i >= arena_chunk_header_npages);
			if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
				chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
				/* Find adjacent dirty run(s). */
				for (npages = 1; i > arena_chunk_header_npages
				    && (chunk->map[i - 1].bits &
				    CHUNK_MAP_DIRTY); npages++) {
					i--;
					chunk->map[i].bits ^= CHUNK_MAP_DIRTY;
				}
				chunk->ndirty -= npages;
				arena->ndirty -= npages;

				madvise((void *)((uintptr_t)chunk + (i <<
				    PAGE_SHIFT)), (npages << PAGE_SHIFT),
				    MADV_FREE);
#ifdef MALLOC_STATS
				arena->stats.nmadvise++;
				arena->stats.purged += npages;
#endif
				if ((arena->nactive >> (opt_lg_dirty_mult + 1))
				    >= arena->ndirty)
					break;
			}
		}

		if (chunk->ndirty == 0) {
			arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
			    chunk);
			chunk->dirtied = false;
		}
	}
}

static void
arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
{
	arena_chunk_t *chunk;
	size_t size, run_ind, run_pages;

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
	run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
	    >> PAGE_SHIFT);
	assert(run_ind >= arena_chunk_header_npages);
	assert(run_ind < chunk_npages);
	if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
		size = chunk->map[run_ind].bits & ~PAGE_MASK;
	else
		size = run->bin->run_size;
	run_pages = (size >> PAGE_SHIFT);
	arena->nactive -= run_pages;

	/* Mark pages as unallocated in the chunk map. */
	if (dirty) {
		size_t i;

		for (i = 0; i < run_pages; i++) {
			/*
			 * When (dirty == true), *all* pages within the run
			 * need to have their dirty bits set, because only
			 * small runs can create a mixture of clean/dirty
			 * pages, but such runs are passed to this function
			 * with (dirty == false).
			 */
			assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
			    == 0);
			chunk->ndirty++;
			arena->ndirty++;
			chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
		}
	} else {
		size_t i;

		for (i = 0; i < run_pages; i++) {
			chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
			    CHUNK_MAP_ALLOCATED);
		}
	}
	chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
	    CHUNK_MAP_FLAGS_MASK);
	chunk->map[run_ind+run_pages-1].bits = size |
	    (chunk->map[run_ind+run_pages-1].bits & CHUNK_MAP_FLAGS_MASK);

	/* Try to coalesce forward. */
	if (run_ind + run_pages < chunk_npages &&
	    (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
		size_t nrun_size = chunk->map[run_ind+run_pages].bits &
		    ~PAGE_MASK;

		/*
		 * Remove successor from runs_avail; the coalesced run is
		 * inserted later.
		 */
		arena_avail_tree_remove(&arena->runs_avail,
		    &chunk->map[run_ind+run_pages]);

		size += nrun_size;
		run_pages = size >> PAGE_SHIFT;

		assert((chunk->map[run_ind+run_pages-1].bits & ~PAGE_MASK)
		    == nrun_size);
		chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
		    CHUNK_MAP_FLAGS_MASK);
		chunk->map[run_ind+run_pages-1].bits = size |
		    (chunk->map[run_ind+run_pages-1].bits &
		    CHUNK_MAP_FLAGS_MASK);
	}

	/* Try to coalesce backward. */
	if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
	    CHUNK_MAP_ALLOCATED) == 0) {
		size_t prun_size = chunk->map[run_ind-1].bits & ~PAGE_MASK;

		run_ind -= prun_size >> PAGE_SHIFT;

		/*
		 * Remove predecessor from runs_avail; the coalesced run is
		 * inserted later.
		 */
		arena_avail_tree_remove(&arena->runs_avail,
		    &chunk->map[run_ind]);

		size += prun_size;
		run_pages = size >> PAGE_SHIFT;

		assert((chunk->map[run_ind].bits & ~PAGE_MASK) == prun_size);
		chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
		    CHUNK_MAP_FLAGS_MASK);
		chunk->map[run_ind+run_pages-1].bits = size |
		    (chunk->map[run_ind+run_pages-1].bits &
		    CHUNK_MAP_FLAGS_MASK);
	}

	/* Insert into runs_avail, now that coalescing is complete. */
	arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);

	/*
	 * Deallocate chunk if it is now completely unused.  The bit
	 * manipulation checks whether the first run is unallocated and extends
	 * to the end of the chunk.
	 */
	if ((chunk->map[arena_chunk_header_npages].bits & (~PAGE_MASK |
	    CHUNK_MAP_ALLOCATED)) == arena_maxclass)
		arena_chunk_dealloc(arena, chunk);

	/*
	 * It is okay to do dirty page processing even if the chunk was
	 * deallocated above, since in that case it is the spare.  Waiting
	 * until after possible chunk deallocation to do dirty processing
	 * allows for an old spare to be fully deallocated, thus decreasing the
	 * chances of spuriously crossing the dirty page purging threshold.
	 */
	if (dirty) {
		if (chunk->dirtied == false) {
			arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
			    chunk);
			chunk->dirtied = true;
		}

		/* Enforce opt_lg_dirty_mult. */
		if (opt_lg_dirty_mult >= 0 && (arena->nactive >>
		    opt_lg_dirty_mult) < arena->ndirty)
			arena_purge(arena);
	}
}

static void
arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
    size_t oldsize, size_t newsize)
{
	size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
	size_t head_npages = (oldsize - newsize) >> PAGE_SHIFT;

	assert(oldsize > newsize);

	/*
	 * Update the chunk map so that arena_run_dalloc() can treat the
	 * leading run as separately allocated.
	 */
	assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0);
	chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
	    CHUNK_MAP_ALLOCATED;
	assert((chunk->map[pageind+head_npages].bits & CHUNK_MAP_DIRTY) == 0);
	chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
	    CHUNK_MAP_ALLOCATED;

	arena_run_dalloc(arena, run, false);
}

static void
arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
    size_t oldsize, size_t newsize, bool dirty)
{
	size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT;
	size_t npages = newsize >> PAGE_SHIFT;

	assert(oldsize > newsize);

	/*
	 * Update the chunk map so that arena_run_dalloc() can treat the
	 * trailing run as separately allocated.
	 */
	assert((chunk->map[pageind].bits & CHUNK_MAP_DIRTY) == 0);
	chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
	    CHUNK_MAP_ALLOCATED;
	assert((chunk->map[pageind+npages].bits & CHUNK_MAP_DIRTY) == 0);
	chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
	    | CHUNK_MAP_ALLOCATED;

	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
	    dirty);
}

static arena_run_t *
arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
{
	arena_chunk_map_t *mapelm;
	arena_run_t *run;
	unsigned i, remainder;

	/* Look for a usable run. */
	mapelm = arena_run_tree_first(&bin->runs);
	if (mapelm != NULL) {
		arena_chunk_t *chunk;
		size_t pageind;

		/* run is guaranteed to have available space. */
		arena_run_tree_remove(&bin->runs, mapelm);

		chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(mapelm);
		pageind = (((uintptr_t)mapelm - (uintptr_t)chunk->map) /
		    sizeof(arena_chunk_map_t));
		run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
		    ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT))
		    << PAGE_SHIFT));
#ifdef MALLOC_STATS
		bin->stats.reruns++;
#endif
		return (run);
	}
	/* No existing runs have any space available. */

	/* Allocate a new run. */
	run = arena_run_alloc(arena, bin->run_size, false, false);
	if (run == NULL)
		return (NULL);

	/* Initialize run internals. */
	run->bin = bin;

	for (i = 0; i < bin->regs_mask_nelms - 1; i++)
		run->regs_mask[i] = UINT_MAX;
	remainder = bin->nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1);
	if (remainder == 0)
		run->regs_mask[i] = UINT_MAX;
	else {
		/* The last element has spare bits that need to be unset. */
		run->regs_mask[i] = (UINT_MAX >> ((1U << (LG_SIZEOF_INT + 3))
		    - remainder));
	}

	run->regs_minelm = 0;

	run->nfree = bin->nregs;
#ifdef MALLOC_DEBUG
	run->magic = ARENA_RUN_MAGIC;
#endif

#ifdef MALLOC_STATS
	bin->stats.nruns++;
	bin->stats.curruns++;
	if (bin->stats.curruns > bin->stats.highruns)
		bin->stats.highruns = bin->stats.curruns;
#endif
	return (run);
}

/* bin->runcur must have space available before this function is called. */
static inline void *
arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
{
	void *ret;

	assert(run->magic == ARENA_RUN_MAGIC);
	assert(run->nfree > 0);

	ret = arena_run_reg_alloc(run, bin);
	assert(ret != NULL);
	run->nfree--;

	return (ret);
}

/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
static void *
arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
{

	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
	if (bin->runcur == NULL)
		return (NULL);
	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
	assert(bin->runcur->nfree > 0);

	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
}

/*
 * Calculate bin->run_size such that it meets the following constraints:
 *
 *   *) bin->run_size >= min_run_size
 *   *) bin->run_size <= arena_maxclass
 *   *) bin->run_size <= RUN_MAX_SMALL
 *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
 *   *) run header size < PAGE_SIZE
 *
 * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
 * also calculated here, since these settings are all interdependent.
 */
static size_t
arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
{
	size_t try_run_size, good_run_size;
	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
	unsigned try_nregs, try_mask_nelms, try_reg0_offset;

	assert(min_run_size >= PAGE_SIZE);
	assert(min_run_size <= arena_maxclass);
	assert(min_run_size <= RUN_MAX_SMALL);

	/*
	 * Calculate known-valid settings before entering the run_size
	 * expansion loop, so that the first part of the loop always copies
	 * valid settings.
	 *
	 * The do..while loop iteratively reduces the number of regions until
	 * the run header and the regions no longer overlap.  A closed formula
	 * would be quite messy, since there is an interdependency between the
	 * header's mask length and the number of regions.
	 */
	try_run_size = min_run_size;
	try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
	    + 1; /* Counter-act try_nregs-- in loop. */
	do {
		try_nregs--;
		try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) +
		    ((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ? 1 : 0);
		try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
	    > try_reg0_offset);

	/* run_size expansion loop. */
	do {
		/*
		 * Copy valid settings before trying more aggressive settings.
		 */
		good_run_size = try_run_size;
		good_nregs = try_nregs;
		good_mask_nelms = try_mask_nelms;
		good_reg0_offset = try_reg0_offset;

		/* Try more aggressive settings. */
		try_run_size += PAGE_SIZE;
		try_nregs = ((try_run_size - sizeof(arena_run_t)) /
		    bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
		do {
			try_nregs--;
			try_mask_nelms = (try_nregs >> (LG_SIZEOF_INT + 3)) +
			    ((try_nregs & ((1U << (LG_SIZEOF_INT + 3)) - 1)) ?
			    1 : 0);
			try_reg0_offset = try_run_size - (try_nregs *
			    bin->reg_size);
		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
		    (try_mask_nelms - 1)) > try_reg0_offset);
	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
	    && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
	    && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size
	    && (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)))
	    < PAGE_SIZE);

	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
	    <= good_reg0_offset);
	assert((good_mask_nelms << (LG_SIZEOF_INT + 3)) >= good_nregs);

	/* Copy final settings. */
	bin->run_size = good_run_size;
	bin->nregs = good_nregs;
	bin->regs_mask_nelms = good_mask_nelms;
	bin->reg0_offset = good_reg0_offset;

	return (good_run_size);
}

#ifdef MALLOC_TCACHE
static inline void
tcache_event(tcache_t *tcache)
{

	if (tcache_gc_incr == 0)
		return;

	tcache->ev_cnt++;
	assert(tcache->ev_cnt <= tcache_gc_incr);
	if (tcache->ev_cnt >= tcache_gc_incr) {
		size_t binind = tcache->next_gc_bin;
		tcache_bin_t *tbin = tcache->tbins[binind];

		if (tbin != NULL) {
			if (tbin->high_water == 0) {
				/*
				 * This bin went completely unused for an
				 * entire GC cycle, so throw away the tbin.
				 */
				assert(tbin->ncached == 0);
				tcache_bin_destroy(tcache, tbin, binind);
				tcache->tbins[binind] = NULL;
			} else {
				if (tbin->low_water > 0) {
					/*
					 * Flush (ceiling) half of the objects
					 * below the low water mark.
					 */
					tcache_bin_flush(tbin, binind,
					    tbin->ncached - (tbin->low_water >>
					    1) - (tbin->low_water & 1));
				}
				tbin->low_water = tbin->ncached;
				tbin->high_water = tbin->ncached;
			}
		}

		tcache->next_gc_bin++;
		if (tcache->next_gc_bin == nbins)
			tcache->next_gc_bin = 0;
		tcache->ev_cnt = 0;
	}
}

static inline void *
tcache_bin_alloc(tcache_bin_t *tbin)
{

	if (tbin->ncached == 0)
		return (NULL);
	tbin->ncached--;
	if (tbin->ncached < tbin->low_water)
		tbin->low_water = tbin->ncached;
	return (tbin->slots[tbin->ncached]);
}

static void
tcache_bin_fill(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
{
	arena_t *arena;
	arena_bin_t *bin;
	arena_run_t *run;
	void *ptr;
	unsigned i;

	assert(tbin->ncached == 0);

	arena = tcache->arena;
	bin = &arena->bins[binind];
	malloc_spin_lock(&arena->lock);
	for (i = 0; i < (tcache_nslots >> 1); i++) {
		if ((run = bin->runcur) != NULL && run->nfree > 0)
			ptr = arena_bin_malloc_easy(arena, bin, run);
		else
			ptr = arena_bin_malloc_hard(arena, bin);
		if (ptr == NULL)
			break;
		/*
		 * Fill tbin such that the objects lowest in memory are used
		 * first.
		 */
		tbin->slots[(tcache_nslots >> 1) - 1 - i] = ptr;
	}
#ifdef MALLOC_STATS
	bin->stats.nfills++;
	bin->stats.nrequests += tbin->tstats.nrequests;
	if (bin->reg_size <= small_maxclass) {
		arena->stats.nmalloc_small += (i - tbin->ncached);
		arena->stats.allocated_small += (i - tbin->ncached) *
		    bin->reg_size;
		arena->stats.nmalloc_small += tbin->tstats.nrequests;
	} else {
		arena->stats.nmalloc_medium += (i - tbin->ncached);
		arena->stats.allocated_medium += (i - tbin->ncached) *
		    bin->reg_size;
		arena->stats.nmalloc_medium += tbin->tstats.nrequests;
	}
	tbin->tstats.nrequests = 0;
#endif
	malloc_spin_unlock(&arena->lock);
	tbin->ncached = i;
	if (tbin->ncached > tbin->high_water)
		tbin->high_water = tbin->ncached;
}

static inline void *
tcache_alloc(tcache_t *tcache, size_t size, bool zero)
{
	void *ret;
	tcache_bin_t *tbin;
	size_t binind;

	if (size <= small_maxclass)
		binind = small_size2bin[size];
	else {
		binind = mbin0 + ((MEDIUM_CEILING(size) - medium_min) >>
		    lg_mspace);
	}
	assert(binind < nbins);
	tbin = tcache->tbins[binind];
	if (tbin == NULL) {
		tbin = tcache_bin_create(tcache->arena);
		if (tbin == NULL)
			return (NULL);
		tcache->tbins[binind] = tbin;
	}

	ret = tcache_bin_alloc(tbin);
	if (ret == NULL) {
		ret = tcache_alloc_hard(tcache, tbin, binind);
		if (ret == NULL)
			return (NULL);
	}

	if (zero == false) {
		if (opt_junk)
			memset(ret, 0xa5, size);
		else if (opt_zero)
			memset(ret, 0, size);
	} else
		memset(ret, 0, size);

#ifdef MALLOC_STATS
	tbin->tstats.nrequests++;
#endif
	tcache_event(tcache);
	return (ret);
}

static void *
tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
{
	void *ret;

	tcache_bin_fill(tcache, tbin, binind);
	ret = tcache_bin_alloc(tbin);

	return (ret);
}
#endif

static inline void *
arena_malloc_small(arena_t *arena, size_t size, bool zero)
{
	void *ret;
	arena_bin_t *bin;
	arena_run_t *run;
	size_t binind;

	binind = small_size2bin[size];
	assert(binind < mbin0);
	bin = &arena->bins[binind];
	size = bin->reg_size;

	malloc_spin_lock(&arena->lock);
	if ((run = bin->runcur) != NULL && run->nfree > 0)
		ret = arena_bin_malloc_easy(arena, bin, run);
	else
		ret = arena_bin_malloc_hard(arena, bin);

	if (ret == NULL) {
		malloc_spin_unlock(&arena->lock);
		return (NULL);
	}

#ifdef MALLOC_STATS
#  ifdef MALLOC_TCACHE
	if (__isthreaded == false) {
#  endif
		bin->stats.nrequests++;
		arena->stats.nmalloc_small++;
#  ifdef MALLOC_TCACHE
	}
#  endif
	arena->stats.allocated_small += size;
#endif
	malloc_spin_unlock(&arena->lock);

	if (zero == false) {
		if (opt_junk)
			memset(ret, 0xa5, size);
		else if (opt_zero)
			memset(ret, 0, size);
	} else
		memset(ret, 0, size);

	return (ret);
}

static void *
arena_malloc_medium(arena_t *arena, size_t size, bool zero)
{
	void *ret;
	arena_bin_t *bin;
	arena_run_t *run;
	size_t binind;

	size = MEDIUM_CEILING(size);
	binind = mbin0 + ((size - medium_min) >> lg_mspace);
	assert(binind < nbins);
	bin = &arena->bins[binind];
	assert(bin->reg_size == size);

	malloc_spin_lock(&arena->lock);
	if ((run = bin->runcur) != NULL && run->nfree > 0)
		ret = arena_bin_malloc_easy(arena, bin, run);
	else
		ret = arena_bin_malloc_hard(arena, bin);

	if (ret == NULL) {
		malloc_spin_unlock(&arena->lock);
		return (NULL);
	}

#ifdef MALLOC_STATS
#  ifdef MALLOC_TCACHE
	if (__isthreaded == false) {
#  endif
		bin->stats.nrequests++;
		arena->stats.nmalloc_medium++;
#  ifdef MALLOC_TCACHE
	}
#  endif
	arena->stats.allocated_medium += size;
#endif
	malloc_spin_unlock(&arena->lock);

	if (zero == false) {
		if (opt_junk)
			memset(ret, 0xa5, size);
		else if (opt_zero)
			memset(ret, 0, size);
	} else
		memset(ret, 0, size);

	return (ret);
}

static void *
arena_malloc_large(arena_t *arena, size_t size, bool zero)
{
	void *ret;

	/* Large allocation. */
	size = PAGE_CEILING(size);
	malloc_spin_lock(&arena->lock);
	ret = (void *)arena_run_alloc(arena, size, true, zero);
	if (ret == NULL) {
		malloc_spin_unlock(&arena->lock);
		return (NULL);
	}
#ifdef MALLOC_STATS
	arena->stats.nmalloc_large++;
	arena->stats.allocated_large += size;
	arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
	arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
	if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
	    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
		arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
		    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
	}
#endif
	malloc_spin_unlock(&arena->lock);

	if (zero == false) {
		if (opt_junk)
			memset(ret, 0xa5, size);
		else if (opt_zero)
			memset(ret, 0, size);
	}

	return (ret);
}

static inline void *
arena_malloc(size_t size, bool zero)
{

	assert(size != 0);
	assert(QUANTUM_CEILING(size) <= arena_maxclass);

	if (size <= bin_maxclass) {
#ifdef MALLOC_TCACHE
		if (__isthreaded && tcache_nslots) {
			tcache_t *tcache = tcache_tls;
			if ((uintptr_t)tcache > (uintptr_t)1)
				return (tcache_alloc(tcache, size, zero));
			else if (tcache == NULL) {
				tcache = tcache_create(choose_arena());
				if (tcache == NULL)
					return (NULL);
				return (tcache_alloc(tcache, size, zero));
			}
		}
#endif
		if (size <= small_maxclass) {
			return (arena_malloc_small(choose_arena(), size,
			    zero));
		} else {
			return (arena_malloc_medium(choose_arena(),
			    size, zero));
		}
	} else
		return (arena_malloc_large(choose_arena(), size, zero));
}

static inline void *
imalloc(size_t size)
{

	assert(size != 0);

	if (size <= arena_maxclass)
		return (arena_malloc(size, false));
	else
		return (huge_malloc(size, false));
}

static inline void *
icalloc(size_t size)
{

	if (size <= arena_maxclass)
		return (arena_malloc(size, true));
	else
		return (huge_malloc(size, true));
}

/* Only handles large allocations that require more than page alignment. */
static void *
arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
{
	void *ret;
	size_t offset;
	arena_chunk_t *chunk;

	assert((size & PAGE_MASK) == 0);
	assert((alignment & PAGE_MASK) == 0);

	malloc_spin_lock(&arena->lock);
	ret = (void *)arena_run_alloc(arena, alloc_size, true, false);
	if (ret == NULL) {
		malloc_spin_unlock(&arena->lock);
		return (NULL);
	}

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);

	offset = (uintptr_t)ret & (alignment - 1);
	assert((offset & PAGE_MASK) == 0);
	assert(offset < alloc_size);
	if (offset == 0)
		arena_run_trim_tail(arena, chunk, ret, alloc_size, size, false);
	else {
		size_t leadsize, trailsize;

		leadsize = alignment - offset;
		if (leadsize > 0) {
			arena_run_trim_head(arena, chunk, ret, alloc_size,
			    alloc_size - leadsize);
			ret = (void *)((uintptr_t)ret + leadsize);
		}

		trailsize = alloc_size - leadsize - size;
		if (trailsize != 0) {
			/* Trim trailing space. */
			assert(trailsize < alloc_size);
			arena_run_trim_tail(arena, chunk, ret, size + trailsize,
			    size, false);
		}
	}

#ifdef MALLOC_STATS
	arena->stats.nmalloc_large++;
	arena->stats.allocated_large += size;
	arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
	arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
	if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
	    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
		arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
		    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
	}
#endif
	malloc_spin_unlock(&arena->lock);

	if (opt_junk)
		memset(ret, 0xa5, size);
	else if (opt_zero)
		memset(ret, 0, size);
	return (ret);
}

static inline void *
ipalloc(size_t alignment, size_t size)
{
	void *ret;
	size_t ceil_size;

	/*
	 * Round size up to the nearest multiple of alignment.
	 *
	 * This done, we can take advantage of the fact that for each small
	 * size class, every object is aligned at the smallest power of two
	 * that is non-zero in the base two representation of the size.  For
	 * example:
	 *
	 *   Size |   Base 2 | Minimum alignment
	 *   -----+----------+------------------
	 *     96 |  1100000 |  32
	 *    144 | 10100000 |  32
	 *    192 | 11000000 |  64
	 *
	 * Depending on runtime settings, it is possible that arena_malloc()
	 * will further round up to a power of two, but that never causes
	 * correctness issues.
	 */
	ceil_size = (size + (alignment - 1)) & (-alignment);
	/*
	 * (ceil_size < size) protects against the combination of maximal
	 * alignment and size greater than maximal alignment.
	 */
	if (ceil_size < size) {
		/* size_t overflow. */
		return (NULL);
	}

	if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE
	    && ceil_size <= arena_maxclass))
		ret = arena_malloc(ceil_size, false);
	else {
		size_t run_size;

		/*
		 * We can't achieve subpage alignment, so round up alignment
		 * permanently; it makes later calculations simpler.
		 */
		alignment = PAGE_CEILING(alignment);
		ceil_size = PAGE_CEILING(size);
		/*
		 * (ceil_size < size) protects against very large sizes within
		 * PAGE_SIZE of SIZE_T_MAX.
		 *
		 * (ceil_size + alignment < ceil_size) protects against the
		 * combination of maximal alignment and ceil_size large enough
		 * to cause overflow.  This is similar to the first overflow
		 * check above, but it needs to be repeated due to the new
		 * ceil_size value, which may now be *equal* to maximal
		 * alignment, whereas before we only detected overflow if the
		 * original size was *greater* than maximal alignment.
		 */
		if (ceil_size < size || ceil_size + alignment < ceil_size) {
			/* size_t overflow. */
			return (NULL);
		}

		/*
		 * Calculate the size of the over-size run that arena_palloc()
		 * would need to allocate in order to guarantee the alignment.
		 */
		if (ceil_size >= alignment)
			run_size = ceil_size + alignment - PAGE_SIZE;
		else {
			/*
			 * It is possible that (alignment << 1) will cause
			 * overflow, but it doesn't matter because we also
			 * subtract PAGE_SIZE, which in the case of overflow
			 * leaves us with a very large run_size.  That causes
			 * the first conditional below to fail, which means
			 * that the bogus run_size value never gets used for
			 * anything important.
			 */
			run_size = (alignment << 1) - PAGE_SIZE;
		}

		if (run_size <= arena_maxclass) {
			ret = arena_palloc(choose_arena(), alignment, ceil_size,
			    run_size);
		} else if (alignment <= chunksize)
			ret = huge_malloc(ceil_size, false);
		else
			ret = huge_palloc(alignment, ceil_size);
	}

	assert(((uintptr_t)ret & (alignment - 1)) == 0);
	return (ret);
}

static bool
arena_is_large(const void *ptr)
{
	arena_chunk_t *chunk;
	size_t pageind, mapbits;

	assert(ptr != NULL);
	assert(CHUNK_ADDR2BASE(ptr) != ptr);

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
	mapbits = chunk->map[pageind].bits;
	assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
	return ((mapbits & CHUNK_MAP_LARGE) != 0);
}

/* Return the size of the allocation pointed to by ptr. */
static size_t
arena_salloc(const void *ptr)
{
	size_t ret;
	arena_chunk_t *chunk;
	size_t pageind, mapbits;

	assert(ptr != NULL);
	assert(CHUNK_ADDR2BASE(ptr) != ptr);

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
	mapbits = chunk->map[pageind].bits;
	assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
	if ((mapbits & CHUNK_MAP_LARGE) == 0) {
		arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
		    (uintptr_t)((pageind - ((mapbits & CHUNK_MAP_PG_MASK) >>
		    CHUNK_MAP_PG_SHIFT)) << PAGE_SHIFT));
		assert(run->magic == ARENA_RUN_MAGIC);
		ret = run->bin->reg_size;
	} else {
		ret = mapbits & ~PAGE_MASK;
		assert(ret != 0);
	}

	return (ret);
}

static inline size_t
isalloc(const void *ptr)
{
	size_t ret;
	arena_chunk_t *chunk;

	assert(ptr != NULL);

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
	if (chunk != ptr) {
		/* Region. */
		assert(chunk->arena->magic == ARENA_MAGIC);

		ret = arena_salloc(ptr);
	} else {
		extent_node_t *node, key;

		/* Chunk (huge allocation). */

		malloc_mutex_lock(&huge_mtx);

		/* Extract from tree of huge allocations. */
		key.addr = __DECONST(void *, ptr);
		node = extent_tree_ad_search(&huge, &key);
		assert(node != NULL);

		ret = node->size;

		malloc_mutex_unlock(&huge_mtx);
	}

	return (ret);
}

static inline void
arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
    arena_chunk_map_t *mapelm)
{
	size_t pageind;
	arena_run_t *run;
	arena_bin_t *bin;
	size_t size;

	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
	run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
	    ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) <<
	    PAGE_SHIFT));
	assert(run->magic == ARENA_RUN_MAGIC);
	bin = run->bin;
	size = bin->reg_size;

	if (opt_junk)
		memset(ptr, 0x5a, size);

	arena_run_reg_dalloc(run, bin, ptr, size);
	run->nfree++;

	if (run->nfree == bin->nregs)
		arena_dalloc_bin_run(arena, chunk, run, bin);
	else if (run->nfree == 1 && run != bin->runcur) {
		/*
		 * Make sure that bin->runcur always refers to the lowest
		 * non-full run, if one exists.
		 */
		if (bin->runcur == NULL)
			bin->runcur = run;
		else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
			/* Switch runcur. */
			if (bin->runcur->nfree > 0) {
				arena_chunk_t *runcur_chunk =
				    CHUNK_ADDR2BASE(bin->runcur);
				size_t runcur_pageind =
				    (((uintptr_t)bin->runcur -
				    (uintptr_t)runcur_chunk)) >> PAGE_SHIFT;
				arena_chunk_map_t *runcur_mapelm =
				    &runcur_chunk->map[runcur_pageind];

				/* Insert runcur. */
				arena_run_tree_insert(&bin->runs,
				    runcur_mapelm);
			}
			bin->runcur = run;
		} else {
			size_t run_pageind = (((uintptr_t)run -
			    (uintptr_t)chunk)) >> PAGE_SHIFT;
			arena_chunk_map_t *run_mapelm =
			    &chunk->map[run_pageind];

			assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
			    NULL);
			arena_run_tree_insert(&bin->runs, run_mapelm);
		}
	}

#ifdef MALLOC_STATS
	if (size <= small_maxclass) {
		arena->stats.allocated_small -= size;
		arena->stats.ndalloc_small++;
	} else {
		arena->stats.allocated_medium -= size;
		arena->stats.ndalloc_medium++;
	}
#endif
}

static void
arena_dalloc_bin_run(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
    arena_bin_t *bin)
{
	size_t run_ind;

	/* Deallocate run. */
	if (run == bin->runcur)
		bin->runcur = NULL;
	else if (bin->nregs != 1) {
		size_t run_pageind = (((uintptr_t)run -
		    (uintptr_t)chunk)) >> PAGE_SHIFT;
		arena_chunk_map_t *run_mapelm =
		    &chunk->map[run_pageind];
		/*
		 * This block's conditional is necessary because if the
		 * run only contains one region, then it never gets
		 * inserted into the non-full runs tree.
		 */
		arena_run_tree_remove(&bin->runs, run_mapelm);
	}
	/*
	 * Mark the first page as dirty.  The dirty bit for every other page in
	 * the run is already properly set, which means we can call
	 * arena_run_dalloc(..., false), thus potentially avoiding the needless
	 * creation of many dirty pages.
	 */
	run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) >> PAGE_SHIFT);
	assert((chunk->map[run_ind].bits & CHUNK_MAP_DIRTY) == 0);
	chunk->map[run_ind].bits |= CHUNK_MAP_DIRTY;
	chunk->ndirty++;
	arena->ndirty++;

#ifdef MALLOC_DEBUG
	run->magic = 0;
#endif
	arena_run_dalloc(arena, run, false);
#ifdef MALLOC_STATS
	bin->stats.curruns--;
#endif

	if (chunk->dirtied == false) {
		arena_chunk_tree_dirty_insert(&arena->chunks_dirty, chunk);
		chunk->dirtied = true;
	}
	/* Enforce opt_lg_dirty_mult. */
	if (opt_lg_dirty_mult >= 0 && (arena->nactive >> opt_lg_dirty_mult) <
	    arena->ndirty)
		arena_purge(arena);
}

#ifdef MALLOC_STATS
static void
arena_stats_print(arena_t *arena)
{

	malloc_printf("dirty pages: %zu:%zu active:dirty, %"PRIu64" sweep%s,"
	    " %"PRIu64" madvise%s, %"PRIu64" purged\n",
	    arena->nactive, arena->ndirty,
	    arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
	    arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
	    arena->stats.purged);

	malloc_printf("            allocated      nmalloc      ndalloc\n");
	malloc_printf("small:   %12zu %12"PRIu64" %12"PRIu64"\n",
	    arena->stats.allocated_small, arena->stats.nmalloc_small,
	    arena->stats.ndalloc_small);
	malloc_printf("medium:  %12zu %12"PRIu64" %12"PRIu64"\n",
	    arena->stats.allocated_medium, arena->stats.nmalloc_medium,
	    arena->stats.ndalloc_medium);
	malloc_printf("large:   %12zu %12"PRIu64" %12"PRIu64"\n",
	    arena->stats.allocated_large, arena->stats.nmalloc_large,
	    arena->stats.ndalloc_large);
	malloc_printf("total:   %12zu %12"PRIu64" %12"PRIu64"\n",
	    arena->stats.allocated_small + arena->stats.allocated_medium +
	    arena->stats.allocated_large, arena->stats.nmalloc_small +
	    arena->stats.nmalloc_medium + arena->stats.nmalloc_large,
	    arena->stats.ndalloc_small + arena->stats.ndalloc_medium +
	    arena->stats.ndalloc_large);
	malloc_printf("mapped:  %12zu\n", arena->stats.mapped);

	if (arena->stats.nmalloc_small + arena->stats.nmalloc_medium > 0) {
		unsigned i, gap_start;
#ifdef MALLOC_TCACHE
		malloc_printf("bins:     bin    size regs pgs  requests    "
		    "nfills  nflushes   newruns    reruns maxruns curruns\n");
#else
		malloc_printf("bins:     bin    size regs pgs  requests   "
		    "newruns    reruns maxruns curruns\n");
#endif
		for (i = 0, gap_start = UINT_MAX; i < nbins; i++) {
			if (arena->bins[i].stats.nruns == 0) {
				if (gap_start == UINT_MAX)
					gap_start = i;
			} else {
				if (gap_start != UINT_MAX) {
					if (i > gap_start + 1) {
						/*
						 * Gap of more than one size
						 * class.
						 */
						malloc_printf("[%u..%u]\n",
						    gap_start, i - 1);
					} else {
						/* Gap of one size class. */
						malloc_printf("[%u]\n",
						    gap_start);
					}
					gap_start = UINT_MAX;
				}
				malloc_printf(
				    "%13u %1s %5u %4u %3u %9"PRIu64" %9"PRIu64
#ifdef MALLOC_TCACHE
				    " %9"PRIu64" %9"PRIu64
#endif
				    " %9"PRIu64" %7zu %7zu\n",
				    i,
				    i < ntbins ? "T" : i < ntbins + nqbins ?
				    "Q" : i < ntbins + nqbins + ncbins ? "C" :
				    i < ntbins + nqbins + ncbins + nsbins ? "S"
				    : "M",
				    arena->bins[i].reg_size,
				    arena->bins[i].nregs,
				    arena->bins[i].run_size >> PAGE_SHIFT,
				    arena->bins[i].stats.nrequests,
#ifdef MALLOC_TCACHE
				    arena->bins[i].stats.nfills,
				    arena->bins[i].stats.nflushes,
#endif
				    arena->bins[i].stats.nruns,
				    arena->bins[i].stats.reruns,
				    arena->bins[i].stats.highruns,
				    arena->bins[i].stats.curruns);
			}
		}
		if (gap_start != UINT_MAX) {
			if (i > gap_start + 1) {
				/* Gap of more than one size class. */
				malloc_printf("[%u..%u]\n", gap_start, i - 1);
			} else {
				/* Gap of one size class. */
				malloc_printf("[%u]\n", gap_start);
			}
		}
	}

	if (arena->stats.nmalloc_large > 0) {
		size_t i;
		ssize_t gap_start;
		size_t nlclasses = (chunksize - PAGE_SIZE) >> PAGE_SHIFT;

		malloc_printf(
		    "large:   size pages nrequests   maxruns   curruns\n");

		for (i = 0, gap_start = -1; i < nlclasses; i++) {
			if (arena->stats.lstats[i].nrequests == 0) {
				if (gap_start == -1)
					gap_start = i;
			} else {
				if (gap_start != -1) {
					malloc_printf("[%zu]\n", i - gap_start);
					gap_start = -1;
				}
				malloc_printf(
				    "%13zu %5zu %9"PRIu64" %9zu %9zu\n",
				    (i+1) << PAGE_SHIFT, i+1,
				    arena->stats.lstats[i].nrequests,
				    arena->stats.lstats[i].highruns,
				    arena->stats.lstats[i].curruns);
			}
		}
		if (gap_start != -1)
			malloc_printf("[%zu]\n", i - gap_start);
	}
}
#endif

static void
stats_print_atexit(void)
{

#if (defined(MALLOC_TCACHE) && defined(MALLOC_STATS))
	unsigned i;

	/*
	 * Merge stats from extant threads.  This is racy, since individual
	 * threads do not lock when recording tcache stats events.  As a
	 * consequence, the final stats may be slightly out of date by the time
	 * they are reported, if other threads continue to allocate.
	 */
	for (i = 0; i < narenas; i++) {
		arena_t *arena = arenas[i];
		if (arena != NULL) {
			tcache_t *tcache;

			malloc_spin_lock(&arena->lock);
			ql_foreach(tcache, &arena->tcache_ql, link) {
				tcache_stats_merge(tcache, arena);
			}
			malloc_spin_unlock(&arena->lock);
		}
	}
#endif
	malloc_stats_print();
}

#ifdef MALLOC_TCACHE
static void
tcache_bin_flush(tcache_bin_t *tbin, size_t binind, unsigned rem)
{
	arena_chunk_t *chunk;
	arena_t *arena;
	void *ptr;
	unsigned i, ndeferred, ncached;

	for (ndeferred = tbin->ncached - rem; ndeferred > 0;) {
		ncached = ndeferred;
		/* Lock the arena associated with the first object. */
		chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(tbin->slots[0]);
		arena = chunk->arena;
		malloc_spin_lock(&arena->lock);
		/* Deallocate every object that belongs to the locked arena. */
		for (i = ndeferred = 0; i < ncached; i++) {
			ptr = tbin->slots[i];
			chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
			if (chunk->arena == arena) {
				size_t pageind = (((uintptr_t)ptr -
				    (uintptr_t)chunk) >> PAGE_SHIFT);
				arena_chunk_map_t *mapelm =
				    &chunk->map[pageind];
				arena_dalloc_bin(arena, chunk, ptr, mapelm);
			} else {
				/*
				 * This object was allocated via a different
				 * arena than the one that is currently locked.
				 * Stash the object, so that it can be handled
				 * in a future pass.
				 */
				tbin->slots[ndeferred] = ptr;
				ndeferred++;
			}
		}
#ifdef MALLOC_STATS
		arena->bins[binind].stats.nflushes++;
		{
			arena_bin_t *bin = &arena->bins[binind];
			bin->stats.nrequests += tbin->tstats.nrequests;
			if (bin->reg_size <= small_maxclass) {
				arena->stats.nmalloc_small +=
				    tbin->tstats.nrequests;
			} else {
				arena->stats.nmalloc_medium +=
				    tbin->tstats.nrequests;
			}
			tbin->tstats.nrequests = 0;
		}
#endif
		malloc_spin_unlock(&arena->lock);
	}

	if (rem > 0) {
		/*
		 * Shift the remaining valid pointers to the base of the slots
		 * array.
		 */
		memmove(&tbin->slots[0], &tbin->slots[tbin->ncached - rem],
		    rem * sizeof(void *));
	}
	tbin->ncached = rem;
}

static inline void
tcache_dalloc(tcache_t *tcache, void *ptr)
{
	arena_t *arena;
	arena_chunk_t *chunk;
	arena_run_t *run;
	arena_bin_t *bin;
	tcache_bin_t *tbin;
	size_t pageind, binind;
	arena_chunk_map_t *mapelm;

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
	arena = chunk->arena;
	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
	mapelm = &chunk->map[pageind];
	run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
	    ((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) <<
	    PAGE_SHIFT));
	assert(run->magic == ARENA_RUN_MAGIC);
	bin = run->bin;
	binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
	    sizeof(arena_bin_t);
	assert(binind < nbins);

	if (opt_junk)
		memset(ptr, 0x5a, arena->bins[binind].reg_size);

	tbin = tcache->tbins[binind];
	if (tbin == NULL) {
		tbin = tcache_bin_create(choose_arena());
		if (tbin == NULL) {
			malloc_spin_lock(&arena->lock);
			arena_dalloc_bin(arena, chunk, ptr, mapelm);
			malloc_spin_unlock(&arena->lock);
			return;
		}
		tcache->tbins[binind] = tbin;
	}

	if (tbin->ncached == tcache_nslots)
		tcache_bin_flush(tbin, binind, (tcache_nslots >> 1));
	assert(tbin->ncached < tcache_nslots);
	tbin->slots[tbin->ncached] = ptr;
	tbin->ncached++;
	if (tbin->ncached > tbin->high_water)
		tbin->high_water = tbin->ncached;

	tcache_event(tcache);
}
#endif

static void
arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
{

	/* Large allocation. */
	malloc_spin_lock(&arena->lock);

#ifndef MALLOC_STATS
	if (opt_junk)
#endif
	{
		size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
		    PAGE_SHIFT;
		size_t size = chunk->map[pageind].bits & ~PAGE_MASK;

#ifdef MALLOC_STATS
		if (opt_junk)
#endif
			memset(ptr, 0x5a, size);
#ifdef MALLOC_STATS
		arena->stats.ndalloc_large++;
		arena->stats.allocated_large -= size;
		arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns--;
#endif
	}

	arena_run_dalloc(arena, (arena_run_t *)ptr, true);
	malloc_spin_unlock(&arena->lock);
}

static inline void
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
{
	size_t pageind;
	arena_chunk_map_t *mapelm;

	assert(arena != NULL);
	assert(arena->magic == ARENA_MAGIC);
	assert(chunk->arena == arena);
	assert(ptr != NULL);
	assert(CHUNK_ADDR2BASE(ptr) != ptr);

	pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
	mapelm = &chunk->map[pageind];
	assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
	if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
		/* Small allocation. */
#ifdef MALLOC_TCACHE
		if (__isthreaded && tcache_nslots) {
			tcache_t *tcache = tcache_tls;
			if ((uintptr_t)tcache > (uintptr_t)1)
				tcache_dalloc(tcache, ptr);
			else {
				arena_dalloc_hard(arena, chunk, ptr, mapelm,
				    tcache);
			}
		} else {
#endif
			malloc_spin_lock(&arena->lock);
			arena_dalloc_bin(arena, chunk, ptr, mapelm);
			malloc_spin_unlock(&arena->lock);
#ifdef MALLOC_TCACHE
		}
#endif
	} else
		arena_dalloc_large(arena, chunk, ptr);
}

#ifdef MALLOC_TCACHE
static void
arena_dalloc_hard(arena_t *arena, arena_chunk_t *chunk, void *ptr,
    arena_chunk_map_t *mapelm, tcache_t *tcache)
{

	if (tcache == NULL) {
		tcache = tcache_create(arena);
		if (tcache == NULL) {
			malloc_spin_lock(&arena->lock);
			arena_dalloc_bin(arena, chunk, ptr, mapelm);
			malloc_spin_unlock(&arena->lock);
		} else
			tcache_dalloc(tcache, ptr);
	} else {
		/* This thread is currently exiting, so directly deallocate. */
		assert(tcache == (void *)(uintptr_t)1);
		malloc_spin_lock(&arena->lock);
		arena_dalloc_bin(arena, chunk, ptr, mapelm);
		malloc_spin_unlock(&arena->lock);
	}
}
#endif

static inline void
idalloc(void *ptr)
{
	arena_chunk_t *chunk;

	assert(ptr != NULL);

	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
	if (chunk != ptr)
		arena_dalloc(chunk->arena, chunk, ptr);
	else
		huge_dalloc(ptr);
}

static void
arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
    size_t size, size_t oldsize)
{

	assert(size < oldsize);

	/*
	 * Shrink the run, and make trailing pages available for other
	 * allocations.
	 */
	malloc_spin_lock(&arena->lock);
	arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
	    true);
#ifdef MALLOC_STATS
	arena->stats.ndalloc_large++;
	arena->stats.allocated_large -= oldsize;
	arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--;

	arena->stats.nmalloc_large++;
	arena->stats.allocated_large += size;
	arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
	arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
	if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
	    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
		arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
		    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
	}
#endif
	malloc_spin_unlock(&arena->lock);
}

static bool
arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
    size_t size, size_t oldsize)
{
	size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
	size_t npages = oldsize >> PAGE_SHIFT;

	assert(oldsize == (chunk->map[pageind].bits & ~PAGE_MASK));

	/* Try to extend the run. */
	assert(size > oldsize);
	malloc_spin_lock(&arena->lock);
	if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
	    & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
	    ~PAGE_MASK) >= size - oldsize) {
		/*
		 * The next run is available and sufficiently large.  Split the
		 * following run, then merge the first part with the existing
		 * allocation.
		 */
		arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
		    ((pageind+npages) << PAGE_SHIFT)), size - oldsize, true,
		    false);

		chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
		    CHUNK_MAP_ALLOCATED;
		chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
		    CHUNK_MAP_ALLOCATED;

#ifdef MALLOC_STATS
		arena->stats.ndalloc_large++;
		arena->stats.allocated_large -= oldsize;
		arena->stats.lstats[(oldsize >> PAGE_SHIFT) - 1].curruns--;

		arena->stats.nmalloc_large++;
		arena->stats.allocated_large += size;
		arena->stats.lstats[(size >> PAGE_SHIFT) - 1].nrequests++;
		arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns++;
		if (arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns >
		    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns) {
			arena->stats.lstats[(size >> PAGE_SHIFT) - 1].highruns =
			    arena->stats.lstats[(size >> PAGE_SHIFT) - 1].curruns;
		}
#endif
		malloc_spin_unlock(&arena->lock);
		return (false);
	}
	malloc_spin_unlock(&arena->lock);

	return (true);
}

/*
 * Try to resize a large allocation, in order to avoid copying.  This will
 * always fail if growing an object, and the following run is already in use.
 */
static bool
arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
{
	size_t psize;

	psize = PAGE_CEILING(size);
	if (psize == oldsize) {
		/* Same size class. */
		if (opt_junk && size < oldsize) {
			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
			    size);
		}
		return (false);
	} else {
		arena_chunk_t *chunk;
		arena_t *arena;

		chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
		arena = chunk->arena;
		assert(arena->magic == ARENA_MAGIC);

		if (psize < oldsize) {
			/* Fill before shrinking in order avoid a race. */
			if (opt_junk) {
				memset((void *)((uintptr_t)ptr + size), 0x5a,
				    oldsize - size);
			}
			arena_ralloc_large_shrink(arena, chunk, ptr, psize,
			    oldsize);
			return (false);
		} else {
			bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
			    psize, oldsize);
			if (ret == false && opt_zero) {
				memset((void *)((uintptr_t)ptr + oldsize), 0,
				    size - oldsize);
			}
			return (ret);
		}
	}
}

static void *
arena_ralloc(void *ptr, size_t size, size_t oldsize)
{
	void *ret;
	size_t copysize;

	/*
	 * Try to avoid moving the allocation.
	 *
	 * posix_memalign() can cause allocation of "large" objects that are
	 * smaller than bin_maxclass (in order to meet alignment requirements).
	 * Therefore, do not assume that (oldsize <= bin_maxclass) indicates
	 * ptr refers to a bin-allocated object.
	 */
	if (oldsize <= arena_maxclass) {
		if (arena_is_large(ptr) == false ) {
			if (size <= small_maxclass) {
				if (oldsize <= small_maxclass &&
				    small_size2bin[size] ==
				    small_size2bin[oldsize])
					goto IN_PLACE;
			} else if (size <= bin_maxclass) {
				if (small_maxclass < oldsize && oldsize <=
				    bin_maxclass && MEDIUM_CEILING(size) ==
				    MEDIUM_CEILING(oldsize))
					goto IN_PLACE;
			}
		} else {
			assert(size <= arena_maxclass);
			if (size > bin_maxclass) {
				if (arena_ralloc_large(ptr, size, oldsize) ==
				    false)
					return (ptr);
			}
		}
	}

	/* Try to avoid moving the allocation. */
	if (size <= small_maxclass) {
		if (oldsize <= small_maxclass && small_size2bin[size] ==
		    small_size2bin[oldsize])
			goto IN_PLACE;
	} else if (size <= bin_maxclass) {
		if (small_maxclass < oldsize && oldsize <= bin_maxclass &&
		    MEDIUM_CEILING(size) == MEDIUM_CEILING(oldsize))
			goto IN_PLACE;
	} else {
		if (bin_maxclass < oldsize && oldsize <= arena_maxclass) {
			assert(size > bin_maxclass);
			if (arena_ralloc_large(ptr, size, oldsize) == false)
				return (ptr);
		}
	}

	/*
	 * If we get here, then size and oldsize are different enough that we
	 * need to move the object.  In that case, fall back to allocating new
	 * space and copying.
	 */
	ret = arena_malloc(size, false);
	if (ret == NULL)
		return (NULL);

	/* Junk/zero-filling were already done by arena_malloc(). */
	copysize = (size < oldsize) ? size : oldsize;
	memcpy(ret, ptr, copysize);
	idalloc(ptr);
	return (ret);
IN_PLACE:
	if (opt_junk && size < oldsize)
		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
	else if (opt_zero && size > oldsize)
		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
	return (ptr);
}

static inline void *
iralloc(void *ptr, size_t size)
{
	size_t oldsize;

	assert(ptr != NULL);
	assert(size != 0);

	oldsize = isalloc(ptr);

	if (size <= arena_maxclass)
		return (arena_ralloc(ptr, size, oldsize));
	else
		return (huge_ralloc(ptr, size, oldsize));
}

static bool
arena_new(arena_t *arena, unsigned ind)
{
	unsigned i;
	arena_bin_t *bin;
	size_t prev_run_size;

	if (malloc_spin_init(&arena->lock))
		return (true);

#ifdef MALLOC_STATS
	memset(&arena->stats, 0, sizeof(arena_stats_t));
	arena->stats.lstats = (malloc_large_stats_t *)base_alloc(
	    sizeof(malloc_large_stats_t) * ((chunksize - PAGE_SIZE) >>
	        PAGE_SHIFT));
	if (arena->stats.lstats == NULL)
		return (true);
	memset(arena->stats.lstats, 0, sizeof(malloc_large_stats_t) *
	    ((chunksize - PAGE_SIZE) >> PAGE_SHIFT));
#  ifdef MALLOC_TCACHE
	ql_new(&arena->tcache_ql);
#  endif
#endif

	/* Initialize chunks. */
	arena_chunk_tree_dirty_new(&arena->chunks_dirty);
	arena->spare = NULL;

	arena->nactive = 0;
	arena->ndirty = 0;

	arena_avail_tree_new(&arena->runs_avail);

	/* Initialize bins. */
	prev_run_size = PAGE_SIZE;

	i = 0;
#ifdef MALLOC_TINY
	/* (2^n)-spaced tiny bins. */
	for (; i < ntbins; i++) {
		bin = &arena->bins[i];
		bin->runcur = NULL;
		arena_run_tree_new(&bin->runs);

		bin->reg_size = (1U << (LG_TINY_MIN + i));

		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);

#ifdef MALLOC_STATS
		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
	}
#endif

	/* Quantum-spaced bins. */
	for (; i < ntbins + nqbins; i++) {
		bin = &arena->bins[i];
		bin->runcur = NULL;
		arena_run_tree_new(&bin->runs);

		bin->reg_size = (i - ntbins + 1) << LG_QUANTUM;

		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);

#ifdef MALLOC_STATS
		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
	}

	/* Cacheline-spaced bins. */
	for (; i < ntbins + nqbins + ncbins; i++) {
		bin = &arena->bins[i];
		bin->runcur = NULL;
		arena_run_tree_new(&bin->runs);

		bin->reg_size = cspace_min + ((i - (ntbins + nqbins)) <<
		    LG_CACHELINE);

		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);

#ifdef MALLOC_STATS
		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
	}

	/* Subpage-spaced bins. */
	for (; i < ntbins + nqbins + ncbins + nsbins; i++) {
		bin = &arena->bins[i];
		bin->runcur = NULL;
		arena_run_tree_new(&bin->runs);

		bin->reg_size = sspace_min + ((i - (ntbins + nqbins + ncbins))
		    << LG_SUBPAGE);

		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);

#ifdef MALLOC_STATS
		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
	}

	/* Medium bins. */
	for (; i < nbins; i++) {
		bin = &arena->bins[i];
		bin->runcur = NULL;
		arena_run_tree_new(&bin->runs);

		bin->reg_size = medium_min + ((i - (ntbins + nqbins + ncbins +
		    nsbins)) << lg_mspace);

		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);

#ifdef MALLOC_STATS
		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
#endif
	}

#ifdef MALLOC_DEBUG
	arena->magic = ARENA_MAGIC;
#endif

	return (false);
}

/* Create a new arena and insert it into the arenas array at index ind. */
static arena_t *
arenas_extend(unsigned ind)
{
	arena_t *ret;

	/* Allocate enough space for trailing bins. */
	ret = (arena_t *)base_alloc(sizeof(arena_t)
	    + (sizeof(arena_bin_t) * (nbins - 1)));
	if (ret != NULL && arena_new(ret, ind) == false) {
		arenas[ind] = ret;
		return (ret);
	}
	/* Only reached if there is an OOM error. */

	/*
	 * OOM here is quite inconvenient to propagate, since dealing with it
	 * would require a check for failure in the fast path.  Instead, punt
	 * by using arenas[0].  In practice, this is an extremely unlikely
	 * failure.
	 */
	_malloc_message(_getprogname(),
	    ": (malloc) Error initializing arena\n", "", "");
	if (opt_abort)
		abort();

	return (arenas[0]);
}

#ifdef MALLOC_TCACHE
static tcache_bin_t *
tcache_bin_create(arena_t *arena)
{
	tcache_bin_t *ret;
	size_t tsize;

	tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
	if (tsize <= small_maxclass)
		ret = (tcache_bin_t *)arena_malloc_small(arena, tsize, false);
	else if (tsize <= bin_maxclass)
		ret = (tcache_bin_t *)arena_malloc_medium(arena, tsize, false);
	else
		ret = (tcache_bin_t *)imalloc(tsize);
	if (ret == NULL)
		return (NULL);
#ifdef MALLOC_STATS
	memset(&ret->tstats, 0, sizeof(tcache_bin_stats_t));
#endif
	ret->low_water = 0;
	ret->high_water = 0;
	ret->ncached = 0;

	return (ret);
}

static void
tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin, unsigned binind)
{
	arena_t *arena;
	arena_chunk_t *chunk;
	size_t pageind, tsize;
	arena_chunk_map_t *mapelm;

	chunk = CHUNK_ADDR2BASE(tbin);
	arena = chunk->arena;
	pageind = (((uintptr_t)tbin - (uintptr_t)chunk) >> PAGE_SHIFT);
	mapelm = &chunk->map[pageind];

#ifdef MALLOC_STATS
	if (tbin->tstats.nrequests != 0) {
		arena_t *arena = tcache->arena;
		arena_bin_t *bin = &arena->bins[binind];
		malloc_spin_lock(&arena->lock);
		bin->stats.nrequests += tbin->tstats.nrequests;
		if (bin->reg_size <= small_maxclass)
			arena->stats.nmalloc_small += tbin->tstats.nrequests;
		else
			arena->stats.nmalloc_medium += tbin->tstats.nrequests;
		malloc_spin_unlock(&arena->lock);
	}
#endif

	assert(tbin->ncached == 0);
	tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
	if (tsize <= bin_maxclass) {
		malloc_spin_lock(&arena->lock);
		arena_dalloc_bin(arena, chunk, tbin, mapelm);
		malloc_spin_unlock(&arena->lock);
	} else
		idalloc(tbin);
}

#ifdef MALLOC_STATS
static void
tcache_stats_merge(tcache_t *tcache, arena_t *arena)
{
	unsigned i;

	/* Merge and reset tcache stats. */
	for (i = 0; i < mbin0; i++) {
		arena_bin_t *bin = &arena->bins[i];
		tcache_bin_t *tbin = tcache->tbins[i];
		if (tbin != NULL) {
			bin->stats.nrequests += tbin->tstats.nrequests;
			arena->stats.nmalloc_small += tbin->tstats.nrequests;
			tbin->tstats.nrequests = 0;
		}
	}
	for (; i < nbins; i++) {
		arena_bin_t *bin = &arena->bins[i];
		tcache_bin_t *tbin = tcache->tbins[i];
		if (tbin != NULL) {
			bin->stats.nrequests += tbin->tstats.nrequests;
			arena->stats.nmalloc_medium += tbin->tstats.nrequests;
			tbin->tstats.nrequests = 0;
		}
	}
}
#endif

static tcache_t *
tcache_create(arena_t *arena)
{
	tcache_t *tcache;

	if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
	    small_maxclass) {
		tcache = (tcache_t *)arena_malloc_small(arena, sizeof(tcache_t)
		    + (sizeof(tcache_bin_t *) * (nbins - 1)), true);
	} else if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
	    bin_maxclass) {
		tcache = (tcache_t *)arena_malloc_medium(arena, sizeof(tcache_t)
		    + (sizeof(tcache_bin_t *) * (nbins - 1)), true);
	} else {
		tcache = (tcache_t *)icalloc(sizeof(tcache_t) +
		    (sizeof(tcache_bin_t *) * (nbins - 1)));
	}

	if (tcache == NULL)
		return (NULL);

#ifdef MALLOC_STATS
	/* Link into list of extant tcaches. */
	malloc_spin_lock(&arena->lock);
	ql_elm_new(tcache, link);
	ql_tail_insert(&arena->tcache_ql, tcache, link);
	malloc_spin_unlock(&arena->lock);
#endif

	tcache->arena = arena;

	tcache_tls = tcache;

	return (tcache);
}

static void
tcache_destroy(tcache_t *tcache)
{
	unsigned i;

#ifdef MALLOC_STATS
	/* Unlink from list of extant tcaches. */
	malloc_spin_lock(&tcache->arena->lock);
	ql_remove(&tcache->arena->tcache_ql, tcache, link);
	tcache_stats_merge(tcache, tcache->arena);
	malloc_spin_unlock(&tcache->arena->lock);
#endif

	for (i = 0; i < nbins; i++) {
		tcache_bin_t *tbin = tcache->tbins[i];
		if (tbin != NULL) {
			tcache_bin_flush(tbin, i, 0);
			tcache_bin_destroy(tcache, tbin, i);
		}
	}

	if (arena_salloc(tcache) <= bin_maxclass) {
		arena_chunk_t *chunk = CHUNK_ADDR2BASE(tcache);
		arena_t *arena = chunk->arena;
		size_t pageind = (((uintptr_t)tcache - (uintptr_t)chunk) >>
		    PAGE_SHIFT);
		arena_chunk_map_t *mapelm = &chunk->map[pageind];

		malloc_spin_lock(&arena->lock);
		arena_dalloc_bin(arena, chunk, tcache, mapelm);
		malloc_spin_unlock(&arena->lock);
	} else
		idalloc(tcache);
}
#endif

/*
 * End arena.
 */
/******************************************************************************/
/*
 * Begin general internal functions.
 */

static void *
huge_malloc(size_t size, bool zero)
{
	void *ret;
	size_t csize;
	extent_node_t *node;

	/* Allocate one or more contiguous chunks for this request. */

	csize = CHUNK_CEILING(size);
	if (csize == 0) {
		/* size is large enough to cause size_t wrap-around. */
		return (NULL);
	}

	/* Allocate an extent node with which to track the chunk. */
	node = base_node_alloc();
	if (node == NULL)
		return (NULL);

	ret = chunk_alloc(csize, &zero);
	if (ret == NULL) {
		base_node_dealloc(node);
		return (NULL);
	}

	/* Insert node into huge. */
	node->addr = ret;
	node->size = csize;

	malloc_mutex_lock(&huge_mtx);
	extent_tree_ad_insert(&huge, node);
#ifdef MALLOC_STATS
	huge_nmalloc++;
	huge_allocated += csize;
#endif
	malloc_mutex_unlock(&huge_mtx);

	if (zero == false) {
		if (opt_junk)
			memset(ret, 0xa5, csize);
		else if (opt_zero)
			memset(ret, 0, csize);
	}

	return (ret);
}

/* Only handles large allocations that require more than chunk alignment. */
static void *
huge_palloc(size_t alignment, size_t size)
{
	void *ret;
	size_t alloc_size, chunk_size, offset;
	extent_node_t *node;
	bool zero;

	/*
	 * This allocation requires alignment that is even larger than chunk
	 * alignment.  This means that huge_malloc() isn't good enough.
	 *
	 * Allocate almost twice as many chunks as are demanded by the size or
	 * alignment, in order to assure the alignment can be achieved, then
	 * unmap leading and trailing chunks.
	 */
	assert(alignment >= chunksize);

	chunk_size = CHUNK_CEILING(size);

	if (size >= alignment)
		alloc_size = chunk_size + alignment - chunksize;
	else
		alloc_size = (alignment << 1) - chunksize;

	/* Allocate an extent node with which to track the chunk. */
	node = base_node_alloc();
	if (node == NULL)
		return (NULL);

	zero = false;
	ret = chunk_alloc(alloc_size, &zero);
	if (ret == NULL) {
		base_node_dealloc(node);
		return (NULL);
	}

	offset = (uintptr_t)ret & (alignment - 1);
	assert((offset & chunksize_mask) == 0);
	assert(offset < alloc_size);
	if (offset == 0) {
		/* Trim trailing space. */
		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
		    - chunk_size);
	} else {
		size_t trailsize;

		/* Trim leading space. */
		chunk_dealloc(ret, alignment - offset);

		ret = (void *)((uintptr_t)ret + (alignment - offset));

		trailsize = alloc_size - (alignment - offset) - chunk_size;
		if (trailsize != 0) {
		    /* Trim trailing space. */
		    assert(trailsize < alloc_size);
		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
			trailsize);
		}
	}

	/* Insert node into huge. */
	node->addr = ret;
	node->size = chunk_size;

	malloc_mutex_lock(&huge_mtx);
	extent_tree_ad_insert(&huge, node);
#ifdef MALLOC_STATS
	huge_nmalloc++;
	huge_allocated += chunk_size;
#endif
	malloc_mutex_unlock(&huge_mtx);

	if (opt_junk)
		memset(ret, 0xa5, chunk_size);
	else if (opt_zero)
		memset(ret, 0, chunk_size);

	return (ret);
}

static void *
huge_ralloc(void *ptr, size_t size, size_t oldsize)
{
	void *ret;
	size_t copysize;

	/* Avoid moving the allocation if the size class would not change. */
	if (oldsize > arena_maxclass &&
	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
		if (opt_junk && size < oldsize) {
			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
			    - size);
		} else if (opt_zero && size > oldsize) {
			memset((void *)((uintptr_t)ptr + oldsize), 0, size
			    - oldsize);
		}
		return (ptr);
	}

	/*
	 * If we get here, then size and oldsize are different enough that we
	 * need to use a different size class.  In that case, fall back to
	 * allocating new space and copying.
	 */
	ret = huge_malloc(size, false);
	if (ret == NULL)
		return (NULL);

	copysize = (size < oldsize) ? size : oldsize;
	memcpy(ret, ptr, copysize);
	idalloc(ptr);
	return (ret);
}

static void
huge_dalloc(void *ptr)
{
	extent_node_t *node, key;

	malloc_mutex_lock(&huge_mtx);

	/* Extract from tree of huge allocations. */
	key.addr = ptr;
	node = extent_tree_ad_search(&huge, &key);
	assert(node != NULL);
	assert(node->addr == ptr);
	extent_tree_ad_remove(&huge, node);

#ifdef MALLOC_STATS
	huge_ndalloc++;
	huge_allocated -= node->size;
#endif

	malloc_mutex_unlock(&huge_mtx);

	/* Unmap chunk. */
#ifdef MALLOC_DSS
	if (opt_dss && opt_junk)
		memset(node->addr, 0x5a, node->size);
#endif
	chunk_dealloc(node->addr, node->size);

	base_node_dealloc(node);
}

static void
malloc_stats_print(void)
{
	char s[UMAX2S_BUFSIZE];

	_malloc_message("___ Begin malloc statistics ___\n", "", "", "");
	_malloc_message("Assertions ",
#ifdef NDEBUG
	    "disabled",
#else
	    "enabled",
#endif
	    "\n", "");
	_malloc_message("Boolean MALLOC_OPTIONS: ", opt_abort ? "A" : "a", "", "");
#ifdef MALLOC_DSS
	_malloc_message(opt_dss ? "D" : "d", "", "", "");
#endif
	_malloc_message(opt_junk ? "J" : "j", "", "", "");
#ifdef MALLOC_DSS
	_malloc_message(opt_mmap ? "M" : "m", "", "", "");
#endif
	_malloc_message("P", "", "", "");
	_malloc_message(opt_utrace ? "U" : "u", "", "", "");
	_malloc_message(opt_sysv ? "V" : "v", "", "", "");
	_malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
	_malloc_message(opt_zero ? "Z" : "z", "", "", "");
	_malloc_message("\n", "", "", "");

	_malloc_message("CPUs: ", umax2s(ncpus, 10, s), "\n", "");
	_malloc_message("Max arenas: ", umax2s(narenas, 10, s), "\n", "");
	_malloc_message("Pointer size: ", umax2s(sizeof(void *), 10, s), "\n", "");
	_malloc_message("Quantum size: ", umax2s(QUANTUM, 10, s), "\n", "");
	_malloc_message("Cacheline size (assumed): ",
	    umax2s(CACHELINE, 10, s), "\n", "");
	_malloc_message("Subpage spacing: ", umax2s(SUBPAGE, 10, s), "\n", "");
	_malloc_message("Medium spacing: ", umax2s((1U << lg_mspace), 10, s), "\n",
	    "");
#ifdef MALLOC_TINY
	_malloc_message("Tiny 2^n-spaced sizes: [", umax2s((1U << LG_TINY_MIN), 10,
	    s), "..", "");
	_malloc_message(umax2s((qspace_min >> 1), 10, s), "]\n", "", "");
#endif
	_malloc_message("Quantum-spaced sizes: [", umax2s(qspace_min, 10, s), "..",
	    "");
	_malloc_message(umax2s(qspace_max, 10, s), "]\n", "", "");
	_malloc_message("Cacheline-spaced sizes: [",
	    umax2s(cspace_min, 10, s), "..", "");
	_malloc_message(umax2s(cspace_max, 10, s), "]\n", "", "");
	_malloc_message("Subpage-spaced sizes: [", umax2s(sspace_min, 10, s), "..",
	    "");
	_malloc_message(umax2s(sspace_max, 10, s), "]\n", "", "");
	_malloc_message("Medium sizes: [", umax2s(medium_min, 10, s), "..", "");
	_malloc_message(umax2s(medium_max, 10, s), "]\n", "", "");
	if (opt_lg_dirty_mult >= 0) {
		_malloc_message("Min active:dirty page ratio per arena: ",
		    umax2s((1U << opt_lg_dirty_mult), 10, s), ":1\n", "");
	} else {
		_malloc_message("Min active:dirty page ratio per arena: N/A\n", "",
		    "", "");
	}
#ifdef MALLOC_TCACHE
	_malloc_message("Thread cache slots per size class: ",
	    tcache_nslots ? umax2s(tcache_nslots, 10, s) : "N/A", "\n", "");
	_malloc_message("Thread cache GC sweep interval: ",
	    (tcache_nslots && tcache_gc_incr > 0) ?
	    umax2s((1U << opt_lg_tcache_gc_sweep), 10, s) : "N/A", "", "");
	_malloc_message(" (increment interval: ",
	    (tcache_nslots && tcache_gc_incr > 0) ?  umax2s(tcache_gc_incr, 10, s)
	    : "N/A", ")\n", "");
#endif
	_malloc_message("Chunk size: ", umax2s(chunksize, 10, s), "", "");
	_malloc_message(" (2^", umax2s(opt_lg_chunk, 10, s), ")\n", "");

#ifdef MALLOC_STATS
	{
		size_t allocated, mapped;
		unsigned i;
		arena_t *arena;

		/* Calculate and print allocated/mapped stats. */

		/* arenas. */
		for (i = 0, allocated = 0; i < narenas; i++) {
			if (arenas[i] != NULL) {
				malloc_spin_lock(&arenas[i]->lock);
				allocated += arenas[i]->stats.allocated_small;
				allocated += arenas[i]->stats.allocated_large;
				malloc_spin_unlock(&arenas[i]->lock);
			}
		}

		/* huge/base. */
		malloc_mutex_lock(&huge_mtx);
		allocated += huge_allocated;
		mapped = stats_chunks.curchunks * chunksize;
		malloc_mutex_unlock(&huge_mtx);

		malloc_mutex_lock(&base_mtx);
		mapped += base_mapped;
		malloc_mutex_unlock(&base_mtx);

		malloc_printf("Allocated: %zu, mapped: %zu\n", allocated,
		    mapped);

		/* Print chunk stats. */
		{
			chunk_stats_t chunks_stats;

			malloc_mutex_lock(&huge_mtx);
			chunks_stats = stats_chunks;
			malloc_mutex_unlock(&huge_mtx);

			malloc_printf("chunks: nchunks   "
			    "highchunks    curchunks\n");
			malloc_printf("  %13"PRIu64"%13zu%13zu\n",
			    chunks_stats.nchunks, chunks_stats.highchunks,
			    chunks_stats.curchunks);
		}

		/* Print chunk stats. */
		malloc_printf(
		    "huge: nmalloc      ndalloc    allocated\n");
		malloc_printf(" %12"PRIu64" %12"PRIu64" %12zu\n", huge_nmalloc,
		    huge_ndalloc, huge_allocated);

		/* Print stats for each arena. */
		for (i = 0; i < narenas; i++) {
			arena = arenas[i];
			if (arena != NULL) {
				malloc_printf("\narenas[%u]:\n", i);
				malloc_spin_lock(&arena->lock);
				arena_stats_print(arena);
				malloc_spin_unlock(&arena->lock);
			}
		}
	}
#endif /* #ifdef MALLOC_STATS */
	_malloc_message("--- End malloc statistics ---\n", "", "", "");
}

#ifdef MALLOC_DEBUG
static void
small_size2bin_validate(void)
{
	size_t i, size, binind;

	assert(small_size2bin[0] == 0xffU);
	i = 1;
#  ifdef MALLOC_TINY
	/* Tiny. */
	for (; i < (1U << LG_TINY_MIN); i++) {
		size = pow2_ceil(1U << LG_TINY_MIN);
		binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
		assert(small_size2bin[i] == binind);
	}
	for (; i < qspace_min; i++) {
		size = pow2_ceil(i);
		binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
		assert(small_size2bin[i] == binind);
	}
#  endif
	/* Quantum-spaced. */
	for (; i <= qspace_max; i++) {
		size = QUANTUM_CEILING(i);
		binind = ntbins + (size >> LG_QUANTUM) - 1;
		assert(small_size2bin[i] == binind);
	}
	/* Cacheline-spaced. */
	for (; i <= cspace_max; i++) {
		size = CACHELINE_CEILING(i);
		binind = ntbins + nqbins + ((size - cspace_min) >>
		    LG_CACHELINE);
		assert(small_size2bin[i] == binind);
	}
	/* Sub-page. */
	for (; i <= sspace_max; i++) {
		size = SUBPAGE_CEILING(i);
		binind = ntbins + nqbins + ncbins + ((size - sspace_min)
		    >> LG_SUBPAGE);
		assert(small_size2bin[i] == binind);
	}
}
#endif

static bool
small_size2bin_init(void)
{

	if (opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT
	    || opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT
	    || sizeof(const_small_size2bin) != small_maxclass + 1)
		return (small_size2bin_init_hard());

	small_size2bin = const_small_size2bin;
#ifdef MALLOC_DEBUG
	assert(sizeof(const_small_size2bin) == small_maxclass + 1);
	small_size2bin_validate();
#endif
	return (false);
}

static bool
small_size2bin_init_hard(void)
{
	size_t i, size, binind;
	uint8_t *custom_small_size2bin;

	assert(opt_lg_qspace_max != LG_QSPACE_MAX_DEFAULT
	    || opt_lg_cspace_max != LG_CSPACE_MAX_DEFAULT
	    || sizeof(const_small_size2bin) != small_maxclass + 1);

	custom_small_size2bin = (uint8_t *)base_alloc(small_maxclass + 1);
	if (custom_small_size2bin == NULL)
		return (true);

	custom_small_size2bin[0] = 0xffU;
	i = 1;
#ifdef MALLOC_TINY
	/* Tiny. */
	for (; i < (1U << LG_TINY_MIN); i++) {
		size = pow2_ceil(1U << LG_TINY_MIN);
		binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
		custom_small_size2bin[i] = binind;
	}
	for (; i < qspace_min; i++) {
		size = pow2_ceil(i);
		binind = ffs((int)(size >> (LG_TINY_MIN + 1)));
		custom_small_size2bin[i] = binind;
	}
#endif
	/* Quantum-spaced. */
	for (; i <= qspace_max; i++) {
		size = QUANTUM_CEILING(i);
		binind = ntbins + (size >> LG_QUANTUM) - 1;
		custom_small_size2bin[i] = binind;
	}
	/* Cacheline-spaced. */
	for (; i <= cspace_max; i++) {
		size = CACHELINE_CEILING(i);
		binind = ntbins + nqbins + ((size - cspace_min) >>
		    LG_CACHELINE);
		custom_small_size2bin[i] = binind;
	}
	/* Sub-page. */
	for (; i <= sspace_max; i++) {
		size = SUBPAGE_CEILING(i);
		binind = ntbins + nqbins + ncbins + ((size - sspace_min) >>
		    LG_SUBPAGE);
		custom_small_size2bin[i] = binind;
	}

	small_size2bin = custom_small_size2bin;
#ifdef MALLOC_DEBUG
	small_size2bin_validate();
#endif
	return (false);
}

static unsigned
malloc_ncpus(void)
{
	int mib[2];
	unsigned ret;
	int error;
	size_t len;

	error = _elf_aux_info(AT_NCPUS, &ret, sizeof(ret));
	if (error != 0 || ret == 0) {
		mib[0] = CTL_HW;
		mib[1] = HW_NCPU;
		len = sizeof(ret);
		if (sysctl(mib, 2, &ret, &len, (void *)NULL, 0) == -1) {
			/* Error. */
			ret = 1;
		}
	}

	return (ret);
}

/*
 * FreeBSD's pthreads implementation calls malloc(3), so the malloc
 * implementation has to take pains to avoid infinite recursion during
 * initialization.
 */
static inline bool
malloc_init(void)
{

	if (malloc_initialized == false)
		return (malloc_init_hard());

	return (false);
}

static bool
malloc_init_hard(void)
{
	unsigned i;
	int linklen;
	char buf[PATH_MAX + 1];
	const char *opts;

	malloc_mutex_lock(&init_lock);
	if (malloc_initialized) {
		/*
		 * Another thread initialized the allocator before this one
		 * acquired init_lock.
		 */
		malloc_mutex_unlock(&init_lock);
		return (false);
	}

	/* Get number of CPUs. */
	ncpus = malloc_ncpus();

	/*
	 * Increase the chunk size to the largest page size that is greater
	 * than the default chunk size and less than or equal to 4MB.
	 */
	{
		size_t pagesizes[MAXPAGESIZES];
		int k, nsizes;

		nsizes = getpagesizes(pagesizes, MAXPAGESIZES);
		for (k = 0; k < nsizes; k++)
			if (pagesizes[k] <= (1LU << 22))
				while ((1LU << opt_lg_chunk) < pagesizes[k])
					opt_lg_chunk++;
	}

	for (i = 0; i < 3; i++) {
		unsigned j;

		/* Get runtime configuration. */
		switch (i) {
		case 0:
			if ((linklen = readlink("/etc/malloc.conf", buf,
						sizeof(buf) - 1)) != -1) {
				/*
				 * Use the contents of the "/etc/malloc.conf"
				 * symbolic link's name.
				 */
				buf[linklen] = '\0';
				opts = buf;
			} else {
				/* No configuration specified. */
				buf[0] = '\0';
				opts = buf;
			}
			break;
		case 1:
			if (issetugid() == 0 && (opts =
			    getenv("MALLOC_OPTIONS")) != NULL) {
				/*
				 * Do nothing; opts is already initialized to
				 * the value of the MALLOC_OPTIONS environment
				 * variable.
				 */
			} else {
				/* No configuration specified. */
				buf[0] = '\0';
				opts = buf;
			}
			break;
		case 2:
			if (_malloc_options != NULL) {
				/*
				 * Use options that were compiled into the
				 * program.
				 */
				opts = _malloc_options;
			} else {
				/* No configuration specified. */
				buf[0] = '\0';
				opts = buf;
			}
			break;
		default:
			/* NOTREACHED */
			assert(false);
			buf[0] = '\0';
			opts = buf;
		}

		for (j = 0; opts[j] != '\0'; j++) {
			unsigned k, nreps;
			bool nseen;

			/* Parse repetition count, if any. */
			for (nreps = 0, nseen = false;; j++, nseen = true) {
				switch (opts[j]) {
					case '0': case '1': case '2': case '3':
					case '4': case '5': case '6': case '7':
					case '8': case '9':
						nreps *= 10;
						nreps += opts[j] - '0';
						break;
					default:
						goto MALLOC_OUT;
				}
			}
MALLOC_OUT:
			if (nseen == false)
				nreps = 1;

			for (k = 0; k < nreps; k++) {
				switch (opts[j]) {
				case 'a':
					opt_abort = false;
					break;
				case 'A':
					opt_abort = true;
					break;
				case 'c':
					if (opt_lg_cspace_max - 1 >
					    opt_lg_qspace_max &&
					    opt_lg_cspace_max >
					    LG_CACHELINE)
						opt_lg_cspace_max--;
					break;
				case 'C':
					if (opt_lg_cspace_max < PAGE_SHIFT
					    - 1)
						opt_lg_cspace_max++;
					break;
				case 'd':
#ifdef MALLOC_DSS
					opt_dss = false;
#endif
					break;
				case 'D':
#ifdef MALLOC_DSS
					opt_dss = true;
#endif
					break;
				case 'e':
					if (opt_lg_medium_max > PAGE_SHIFT)
						opt_lg_medium_max--;
					break;
				case 'E':
					if (opt_lg_medium_max + 1 <
					    opt_lg_chunk)
						opt_lg_medium_max++;
					break;
				case 'f':
					if (opt_lg_dirty_mult + 1 <
					    (sizeof(size_t) << 3))
						opt_lg_dirty_mult++;
					break;
				case 'F':
					if (opt_lg_dirty_mult >= 0)
						opt_lg_dirty_mult--;
					break;
#ifdef MALLOC_TCACHE
				case 'g':
					if (opt_lg_tcache_gc_sweep >= 0)
						opt_lg_tcache_gc_sweep--;
					break;
				case 'G':
					if (opt_lg_tcache_gc_sweep + 1 <
					    (sizeof(size_t) << 3))
						opt_lg_tcache_gc_sweep++;
					break;
				case 'h':
					if (opt_lg_tcache_nslots > 0)
						opt_lg_tcache_nslots--;
					break;
				case 'H':
					if (opt_lg_tcache_nslots + 1 <
					    (sizeof(size_t) << 3))
						opt_lg_tcache_nslots++;
					break;
#endif
				case 'j':
					opt_junk = false;
					break;
				case 'J':
					opt_junk = true;
					break;
				case 'k':
					/*
					 * Chunks always require at least one
					 * header page, plus enough room to
					 * hold a run for the largest medium
					 * size class (one page more than the
					 * size).
					 */
					if ((1U << (opt_lg_chunk - 1)) >=
					    (2U << PAGE_SHIFT) + (1U <<
					    opt_lg_medium_max))
						opt_lg_chunk--;
					break;
				case 'K':
					if (opt_lg_chunk + 1 <
					    (sizeof(size_t) << 3))
						opt_lg_chunk++;
					break;
				case 'm':
#ifdef MALLOC_DSS
					opt_mmap = false;
#endif
					break;
				case 'M':
#ifdef MALLOC_DSS
					opt_mmap = true;
#endif
					break;
				case 'n':
					opt_narenas_lshift--;
					break;
				case 'N':
					opt_narenas_lshift++;
					break;
				case 'p':
					opt_stats_print = false;
					break;
				case 'P':
					opt_stats_print = true;
					break;
				case 'q':
					if (opt_lg_qspace_max > LG_QUANTUM)
						opt_lg_qspace_max--;
					break;
				case 'Q':
					if (opt_lg_qspace_max + 1 <
					    opt_lg_cspace_max)
						opt_lg_qspace_max++;
					break;
				case 'u':
					opt_utrace = false;
					break;
				case 'U':
					opt_utrace = true;
					break;
				case 'v':
					opt_sysv = false;
					break;
				case 'V':
					opt_sysv = true;
					break;
				case 'x':
					opt_xmalloc = false;
					break;
				case 'X':
					opt_xmalloc = true;
					break;
				case 'z':
					opt_zero = false;
					break;
				case 'Z':
					opt_zero = true;
					break;
				default: {
					char cbuf[2];

					cbuf[0] = opts[j];
					cbuf[1] = '\0';
					_malloc_message(_getprogname(),
					    ": (malloc) Unsupported character "
					    "in malloc options: '", cbuf,
					    "'\n");
				}
				}
			}
		}
	}

#ifdef MALLOC_DSS
	/* Make sure that there is some method for acquiring memory. */
	if (opt_dss == false && opt_mmap == false)
		opt_mmap = true;
#endif
	if (opt_stats_print) {
		/* Print statistics at exit. */
		atexit(stats_print_atexit);
	}


	/* Set variables according to the value of opt_lg_[qc]space_max. */
	qspace_max = (1U << opt_lg_qspace_max);
	cspace_min = CACHELINE_CEILING(qspace_max);
	if (cspace_min == qspace_max)
		cspace_min += CACHELINE;
	cspace_max = (1U << opt_lg_cspace_max);
	sspace_min = SUBPAGE_CEILING(cspace_max);
	if (sspace_min == cspace_max)
		sspace_min += SUBPAGE;
	assert(sspace_min < PAGE_SIZE);
	sspace_max = PAGE_SIZE - SUBPAGE;
	medium_max = (1U << opt_lg_medium_max);

#ifdef MALLOC_TINY
	assert(LG_QUANTUM >= LG_TINY_MIN);
#endif
	assert(ntbins <= LG_QUANTUM);
	nqbins = qspace_max >> LG_QUANTUM;
	ncbins = ((cspace_max - cspace_min) >> LG_CACHELINE) + 1;
	nsbins = ((sspace_max - sspace_min) >> LG_SUBPAGE) + 1;

	/*
	 * Compute medium size class spacing and the number of medium size
	 * classes.  Limit spacing to no more than pagesize, but if possible
	 * use the smallest spacing that does not exceed NMBINS_MAX medium size
	 * classes.
	 */
	lg_mspace = LG_SUBPAGE;
	nmbins = ((medium_max - medium_min) >> lg_mspace) + 1;
	while (lg_mspace < PAGE_SHIFT && nmbins > NMBINS_MAX) {
		lg_mspace = lg_mspace + 1;
		nmbins = ((medium_max - medium_min) >> lg_mspace) + 1;
	}
	mspace_mask = (1U << lg_mspace) - 1U;

	mbin0 = ntbins + nqbins + ncbins + nsbins;
	nbins = mbin0 + nmbins;
	/*
	 * The small_size2bin lookup table uses uint8_t to encode each bin
	 * index, so we cannot support more than 256 small size classes.  This
	 * limit is difficult to exceed (not even possible with 16B quantum and
	 * 4KiB pages), and such configurations are impractical, but
	 * nonetheless we need to protect against this case in order to avoid
	 * undefined behavior.
	 */
	if (mbin0 > 256) {
	    char line_buf[UMAX2S_BUFSIZE];
	    _malloc_message(_getprogname(),
	        ": (malloc) Too many small size classes (",
	        umax2s(mbin0, 10, line_buf), " > max 256)\n");
	    abort();
	}

	if (small_size2bin_init()) {
		malloc_mutex_unlock(&init_lock);
		return (true);
	}

#ifdef MALLOC_TCACHE
	if (opt_lg_tcache_nslots > 0) {
		tcache_nslots = (1U << opt_lg_tcache_nslots);

		/* Compute incremental GC event threshold. */
		if (opt_lg_tcache_gc_sweep >= 0) {
			tcache_gc_incr = ((1U << opt_lg_tcache_gc_sweep) /
			    nbins) + (((1U << opt_lg_tcache_gc_sweep) % nbins ==
			    0) ? 0 : 1);
		} else
			tcache_gc_incr = 0;
	} else
		tcache_nslots = 0;
#endif

	/* Set variables according to the value of opt_lg_chunk. */
	chunksize = (1LU << opt_lg_chunk);
	chunksize_mask = chunksize - 1;
	chunk_npages = (chunksize >> PAGE_SHIFT);
	{
		size_t header_size;

		/*
		 * Compute the header size such that it is large enough to
		 * contain the page map.
		 */
		header_size = sizeof(arena_chunk_t) +
		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
		arena_chunk_header_npages = (header_size >> PAGE_SHIFT) +
		    ((header_size & PAGE_MASK) != 0);
	}
	arena_maxclass = chunksize - (arena_chunk_header_npages <<
	    PAGE_SHIFT);

	UTRACE((void *)(intptr_t)(-1), 0, 0);

#ifdef MALLOC_STATS
	malloc_mutex_init(&chunks_mtx);
	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
#endif

	/* Various sanity checks that regard configuration. */
	assert(chunksize >= PAGE_SIZE);

	/* Initialize chunks data. */
	malloc_mutex_init(&huge_mtx);
	extent_tree_ad_new(&huge);
#ifdef MALLOC_DSS
	malloc_mutex_init(&dss_mtx);
	dss_base = sbrk(0);
	dss_prev = dss_base;
	dss_max = dss_base;
	extent_tree_szad_new(&dss_chunks_szad);
	extent_tree_ad_new(&dss_chunks_ad);
#endif
#ifdef MALLOC_STATS
	huge_nmalloc = 0;
	huge_ndalloc = 0;
	huge_allocated = 0;
#endif

	/* Initialize base allocation data structures. */
#ifdef MALLOC_STATS
	base_mapped = 0;
#endif
#ifdef MALLOC_DSS
	/*
	 * Allocate a base chunk here, since it doesn't actually have to be
	 * chunk-aligned.  Doing this before allocating any other chunks allows
	 * the use of space that would otherwise be wasted.
	 */
	if (opt_dss)
		base_pages_alloc(0);
#endif
	base_nodes = NULL;
	malloc_mutex_init(&base_mtx);

	if (ncpus > 1) {
		/*
		 * For SMP systems, create more than one arena per CPU by
		 * default.
		 */
#ifdef MALLOC_TCACHE
		if (tcache_nslots) {
			/*
			 * Only large object allocation/deallocation is
			 * guaranteed to acquire an arena mutex, so we can get
			 * away with fewer arenas than without thread caching.
			 */
			opt_narenas_lshift += 1;
		} else {
#endif
			/*
			 * All allocations must acquire an arena mutex, so use
			 * plenty of arenas.
			 */
			opt_narenas_lshift += 2;
#ifdef MALLOC_TCACHE
		}
#endif
	}

	/* Determine how many arenas to use. */
	narenas = ncpus;
	if (opt_narenas_lshift > 0) {
		if ((narenas << opt_narenas_lshift) > narenas)
			narenas <<= opt_narenas_lshift;
		/*
		 * Make sure not to exceed the limits of what base_alloc() can
		 * handle.
		 */
		if (narenas * sizeof(arena_t *) > chunksize)
			narenas = chunksize / sizeof(arena_t *);
	} else if (opt_narenas_lshift < 0) {
		if ((narenas >> -opt_narenas_lshift) < narenas)
			narenas >>= -opt_narenas_lshift;
		/* Make sure there is at least one arena. */
		if (narenas == 0)
			narenas = 1;
	}

#ifdef NO_TLS
	if (narenas > 1) {
		static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
		    23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
		    89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
		    151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
		    223, 227, 229, 233, 239, 241, 251, 257, 263};
		unsigned nprimes, parenas;

		/*
		 * Pick a prime number of hash arenas that is more than narenas
		 * so that direct hashing of pthread_self() pointers tends to
		 * spread allocations evenly among the arenas.
		 */
		assert((narenas & 1) == 0); /* narenas must be even. */
		nprimes = (sizeof(primes) >> LG_SIZEOF_INT);
		parenas = primes[nprimes - 1]; /* In case not enough primes. */
		for (i = 1; i < nprimes; i++) {
			if (primes[i] > narenas) {
				parenas = primes[i];
				break;
			}
		}
		narenas = parenas;
	}
#endif

#ifndef NO_TLS
	next_arena = 0;
#endif

	/* Allocate and initialize arenas. */
	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
	if (arenas == NULL) {
		malloc_mutex_unlock(&init_lock);
		return (true);
	}
	/*
	 * Zero the array.  In practice, this should always be pre-zeroed,
	 * since it was just mmap()ed, but let's be sure.
	 */
	memset(arenas, 0, sizeof(arena_t *) * narenas);

	/*
	 * Initialize one arena here.  The rest are lazily created in
	 * choose_arena_hard().
	 */
	arenas_extend(0);
	if (arenas[0] == NULL) {
		malloc_mutex_unlock(&init_lock);
		return (true);
	}
#ifndef NO_TLS
	/*
	 * Assign the initial arena to the initial thread, in order to avoid
	 * spurious creation of an extra arena if the application switches to
	 * threaded mode.
	 */
	arenas_map = arenas[0];
#endif
	malloc_spin_init(&arenas_lock);

	malloc_initialized = true;
	malloc_mutex_unlock(&init_lock);
	return (false);
}

/*
 * End general internal functions.
 */
/******************************************************************************/
/*
 * Begin malloc(3)-compatible functions.
 */

void *
malloc(size_t size)
{
	void *ret;

	if (malloc_init()) {
		ret = NULL;
		goto OOM;
	}

	if (size == 0) {
		if (opt_sysv == false)
			size = 1;
		else {
			if (opt_xmalloc) {
				_malloc_message(_getprogname(),
				    ": (malloc) Error in malloc(): "
				    "invalid size 0\n", "", "");
				abort();
			}
			ret = NULL;
			goto RETURN;
		}
	}

	ret = imalloc(size);

OOM:
	if (ret == NULL) {
		if (opt_xmalloc) {
			_malloc_message(_getprogname(),
			    ": (malloc) Error in malloc(): out of memory\n", "",
			    "");
			abort();
		}
		errno = ENOMEM;
	}

RETURN:
	UTRACE(0, size, ret);
	return (ret);
}

int
posix_memalign(void **memptr, size_t alignment, size_t size)
{
	int ret;
	void *result;

	if (malloc_init())
		result = NULL;
	else {
		if (size == 0) {
			if (opt_sysv == false)
				size = 1;
			else {
				if (opt_xmalloc) {
					_malloc_message(_getprogname(),
					    ": (malloc) Error in "
					    "posix_memalign(): invalid "
					    "size 0\n", "", "");
					abort();
				}
				result = NULL;
				*memptr = NULL;
				ret = 0;
				goto RETURN;
			}
		}

		/* Make sure that alignment is a large enough power of 2. */
		if (((alignment - 1) & alignment) != 0
		    || alignment < sizeof(void *)) {
			if (opt_xmalloc) {
				_malloc_message(_getprogname(),
				    ": (malloc) Error in posix_memalign(): "
				    "invalid alignment\n", "", "");
				abort();
			}
			result = NULL;
			ret = EINVAL;
			goto RETURN;
		}

		result = ipalloc(alignment, size);
	}

	if (result == NULL) {
		if (opt_xmalloc) {
			_malloc_message(_getprogname(),
			": (malloc) Error in posix_memalign(): out of memory\n",
			"", "");
			abort();
		}
		ret = ENOMEM;
		goto RETURN;
	}

	*memptr = result;
	ret = 0;

RETURN:
	UTRACE(0, size, result);
	return (ret);
}

void *
aligned_alloc(size_t alignment, size_t size)
{
	void *memptr;
	int ret;

	ret = posix_memalign(&memptr, alignment, size);
	if (ret != 0) {
		errno = ret;
		return (NULL);
	}
	return (memptr);
}

void *
calloc(size_t num, size_t size)
{
	void *ret;
	size_t num_size;

	if (malloc_init()) {
		num_size = 0;
		ret = NULL;
		goto RETURN;
	}

	num_size = num * size;
	if (num_size == 0) {
		if ((opt_sysv == false) && ((num == 0) || (size == 0)))
			num_size = 1;
		else {
			ret = NULL;
			goto RETURN;
		}
	/*
	 * Try to avoid division here.  We know that it isn't possible to
	 * overflow during multiplication if neither operand uses any of the
	 * most significant half of the bits in a size_t.
	 */
	} else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
	    && (num_size / size != num)) {
		/* size_t overflow. */
		ret = NULL;
		goto RETURN;
	}

	ret = icalloc(num_size);

RETURN:
	if (ret == NULL) {
		if (opt_xmalloc) {
			_malloc_message(_getprogname(),
			    ": (malloc) Error in calloc(): out of memory\n", "",
			    "");
			abort();
		}
		errno = ENOMEM;
	}

	UTRACE(0, num_size, ret);
	return (ret);
}

void *
realloc(void *ptr, size_t size)
{
	void *ret;

	if (size == 0) {
		if (opt_sysv == false)
			size = 1;
		else {
			if (ptr != NULL)
				idalloc(ptr);
			ret = NULL;
			goto RETURN;
		}
	}

	if (ptr != NULL) {
		assert(malloc_initialized);

		ret = iralloc(ptr, size);

		if (ret == NULL) {
			if (opt_xmalloc) {
				_malloc_message(_getprogname(),
				    ": (malloc) Error in realloc(): out of "
				    "memory\n", "", "");
				abort();
			}
			errno = ENOMEM;
		}
	} else {
		if (malloc_init())
			ret = NULL;
		else
			ret = imalloc(size);

		if (ret == NULL) {
			if (opt_xmalloc) {
				_malloc_message(_getprogname(),
				    ": (malloc) Error in realloc(): out of "
				    "memory\n", "", "");
				abort();
			}
			errno = ENOMEM;
		}
	}

RETURN:
	UTRACE(ptr, size, ret);
	return (ret);
}

void
free(void *ptr)
{

	UTRACE(ptr, 0, 0);
	if (ptr != NULL) {
		assert(malloc_initialized);

		idalloc(ptr);
	}
}

/*
 * End malloc(3)-compatible functions.
 */
/******************************************************************************/
/*
 * Begin non-standard functions.
 */

size_t
malloc_usable_size(const void *ptr)
{

	assert(ptr != NULL);

	return (isalloc(ptr));
}

/*
 * End non-standard functions.
 */
/******************************************************************************/
/*
 * Begin library-private functions.
 */

/*
 * We provide an unpublished interface in order to receive notifications from
 * the pthreads library whenever a thread exits.  This allows us to clean up
 * thread caches.
 */
void
_malloc_thread_cleanup(void)
{

#ifdef MALLOC_TCACHE
	tcache_t *tcache = tcache_tls;

	if (tcache != NULL) {
		assert(tcache != (void *)(uintptr_t)1);
		tcache_destroy(tcache);
		tcache_tls = (void *)(uintptr_t)1;
	}
#endif
}

/*
 * The following functions are used by threading libraries for protection of
 * malloc during fork().  These functions are only called if the program is
 * running in threaded mode, so there is no need to check whether the program
 * is threaded here.
 */

void
_malloc_prefork(void)
{
	unsigned i;

	/* Acquire all mutexes in a safe order. */
	malloc_spin_lock(&arenas_lock);
	for (i = 0; i < narenas; i++) {
		if (arenas[i] != NULL)
			malloc_spin_lock(&arenas[i]->lock);
	}

	malloc_mutex_lock(&base_mtx);

	malloc_mutex_lock(&huge_mtx);

#ifdef MALLOC_DSS
	malloc_mutex_lock(&dss_mtx);
#endif
}

void
_malloc_postfork(void)
{
	unsigned i;

	/* Release all mutexes, now that fork() has completed. */

#ifdef MALLOC_DSS
	malloc_mutex_unlock(&dss_mtx);
#endif

	malloc_mutex_unlock(&huge_mtx);

	malloc_mutex_unlock(&base_mtx);

	for (i = 0; i < narenas; i++) {
		if (arenas[i] != NULL)
			malloc_spin_unlock(&arenas[i]->lock);
	}
	malloc_spin_unlock(&arenas_lock);
}

/*
 * End library-private functions.
 */
/******************************************************************************/
OpenPOWER on IntegriCloud