summaryrefslogtreecommitdiffstats
path: root/lib/libc/gdtoa/_hdtoa.c
blob: deb65821952c394071617c069a67258a21e096f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*-
 * Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <float.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include "fpmath.h"
#include "gdtoaimp.h"

/* Strings values used by dtoa() */
#define	INFSTR	"Infinity"
#define	NANSTR	"NaN"

#define	DBL_BIAS	(DBL_MAX_EXP - 1)
#define	LDBL_BIAS	(LDBL_MAX_EXP - 1)

#ifdef	LDBL_IMPLICIT_NBIT
#define	LDBL_NBIT_ADJ	0
#else
#define	LDBL_NBIT_ADJ	1
#endif

/*
 * Efficiently compute the log2 of an integer.  Uses a combination of
 * arcane tricks found in fortune and arcane tricks not (yet) in
 * fortune.  This routine behaves similarly to fls(9).
 */
static int
log2_32(uint32_t n)
{

        n |= (n >> 1);
        n |= (n >> 2);
        n |= (n >> 4);
        n |= (n >> 8);
        n |= (n >> 16);

	n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1);
	n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2);
	n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4);
	n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8);
	n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16);
	return (n - 1);
}

#if (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32)

static int
log2_64(uint64_t n)
{

	if (n >> 32 != 0)
		return (log2_32((uint32_t)(n >> 32)) + 32);
	else
		return (log2_32((uint32_t)n));
}

#endif	/* (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32) */

/*
 * Round up the given digit string.  If the digit string is fff...f,
 * this procedure sets it to 100...0 and returns 1 to indicate that
 * the exponent needs to be bumped.  Otherwise, 0 is returned.
 */
static int
roundup(char *s0, int ndigits)
{
	char *s;

	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
		if (s == s0) {
			*s = 1;
			return (1);
		}
		++*s;
	}
	++*s;
	return (0);
}

/*
 * Round the given digit string to ndigits digits according to the
 * current rounding mode.  Note that this could produce a string whose
 * value is not representable in the corresponding floating-point
 * type.  The exponent pointed to by decpt is adjusted if necessary.
 */
static void
dorounding(char *s0, int ndigits, int sign, int *decpt)
{
	int adjust = 0;	/* do we need to adjust the exponent? */

	switch (FLT_ROUNDS) {
	case 0:		/* toward zero */
	default:	/* implementation-defined */
		break;
	case 1:		/* to nearest, halfway rounds to even */
		if ((s0[ndigits] > 8) ||
		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
			adjust = roundup(s0, ndigits);
		break;
	case 2:		/* toward +inf */
		if (sign == 0)
			adjust = roundup(s0, ndigits);
		break;
	case 3:		/* toward -inf */
		if (sign != 0)
			adjust = roundup(s0, ndigits);
		break;
	}

	if (adjust)
		*decpt += 4;
}

/*
 * This procedure converts a double-precision number in IEEE format
 * into a string of hexadecimal digits and an exponent of 2.  Its
 * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
 * following exceptions:
 *
 * - An ndigits < 0 causes it to use as many digits as necessary to
 *   represent the number exactly.
 * - The additional xdigs argument should point to either the string
 *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
 *   which case is desired.
 * - This routine does not repeat dtoa's mistake of setting decpt
 *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
 *   for this purpose instead.
 *
 * Note that the C99 standard does not specify what the leading digit
 * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
 * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
 * first digit so that subsequent digits are aligned on nibble
 * boundaries (before rounding).
 *
 * Inputs:	d, xdigs, ndigits
 * Outputs:	decpt, sign, rve
 */
char *
__hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
    char **rve)
{
	union IEEEd2bits u;
	char *s, *s0;
	int bufsize;
	int impnbit;	/* implicit normalization bit */
	int pos;
	int shift;	/* for subnormals, # of shifts required to normalize */
	int sigfigs;	/* number of significant hex figures in result */

	u.d = d;
	*sign = u.bits.sign;

	switch (fpclassify(d)) {
	case FP_NORMAL:
		sigfigs = (DBL_MANT_DIG + 3) / 4;
		impnbit = 1 << ((DBL_MANT_DIG - 1) % 4);
		*decpt = u.bits.exp - DBL_BIAS + 1 -
		    ((DBL_MANT_DIG - 1) % 4);
		break;
	case FP_ZERO:
		*decpt = 1;
		return (nrv_alloc("0", rve, 1));
	case FP_SUBNORMAL:
		/*
		 * The position of the highest-order bit tells us by
		 * how much to adjust the exponent (decpt).  The
		 * adjustment is raised to the next nibble boundary
		 * since we will later choose the leftmost hexadecimal
		 * digit so that all subsequent digits align on nibble
		 * boundaries.
		 */
		if (u.bits.manh != 0) {
			pos = log2_32(u.bits.manh);
			shift = DBL_MANH_SIZE - pos;
		} else {
			pos = log2_32(u.bits.manl);
			shift = DBL_MANH_SIZE + DBL_MANL_SIZE - pos;
		}
		sigfigs = (3 + DBL_MANT_DIG - shift) / 4;
		impnbit = 0;
		*decpt = DBL_MIN_EXP - ((shift + 3) & ~(4 - 1));
		break;
	case FP_INFINITE:
		*decpt = INT_MAX;
		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
	case FP_NAN:
		*decpt = INT_MAX;
		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
	default:
		abort();
	}

	/* FP_NORMAL or FP_SUBNORMAL */

	if (ndigits == 0)		/* dtoa() compatibility */
		ndigits = 1;

	/*
	 * For simplicity, we generate all the digits even if the
	 * caller has requested fewer.
	 */
	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
	s0 = rv_alloc(bufsize);

	/*
	 * We work from right to left, first adding any requested zero
	 * padding, then the least significant portion of the
	 * mantissa, followed by the most significant.  The buffer is
	 * filled with the byte values 0x0 through 0xf, which are
	 * converted to xdigs[0x0] through xdigs[0xf] after the
	 * rounding phase.
	 */
	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
		*s = 0;
	for (; s > s0 + sigfigs - (DBL_MANL_SIZE / 4) - 1 && s > s0; s--) {
		*s = u.bits.manl & 0xf;
		u.bits.manl >>= 4;
	}
	for (; s > s0; s--) {
		*s = u.bits.manh & 0xf;
		u.bits.manh >>= 4;
	}

	/*
	 * At this point, we have snarfed all the bits in the
	 * mantissa, with the possible exception of the highest-order
	 * (partial) nibble, which is dealt with by the next
	 * statement.  That nibble is usually in manh, but it could be
	 * in manl instead for small subnormals.  We also tack on the
	 * implicit normalization bit if appropriate.
	 */
	*s = u.bits.manh | u.bits.manl | impnbit;

	/* If ndigits < 0, we are expected to auto-size the precision. */
	if (ndigits < 0) {
		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
			;
	}

	if (sigfigs > ndigits && s0[ndigits] != 0)
		dorounding(s0, ndigits, u.bits.sign, decpt);

	s = s0 + ndigits;
	if (rve != NULL)
		*rve = s;
	*s-- = '\0';
	for (; s >= s0; s--)
		*s = xdigs[(unsigned int)*s];

	return (s0);
}

#if (LDBL_MANT_DIG > DBL_MANT_DIG)

/*
 * This is the long double version of __hdtoa().
 *
 * On architectures that have an explicit integer bit, unnormals and
 * pseudo-denormals cause problems in the conversion routine, so they
 * are ``fixed'' by effectively toggling the integer bit.  Although
 * this is not correct behavior, the hardware will not produce these
 * formats externally.
 */
char *
__hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    char **rve)
{
	union IEEEl2bits u;
	char *s, *s0;
	int bufsize;
	int impnbit;	/* implicit normalization bit */
	int pos;
	int shift;	/* for subnormals, # of shifts required to normalize */
	int sigfigs;	/* number of significant hex figures in result */

	u.e = e;
	*sign = u.bits.sign;

	switch (fpclassify(e)) {
	case FP_NORMAL:
		sigfigs = (LDBL_MANT_DIG + 3) / 4;
		impnbit = 1 << ((LDBL_MANT_DIG - 1) % 4);
		*decpt = u.bits.exp - LDBL_BIAS + 1 -
		    ((LDBL_MANT_DIG - 1) % 4);
		break;
	case FP_ZERO:
		*decpt = 1;
		return (nrv_alloc("0", rve, 1));
	case FP_SUBNORMAL:
		/*
		 * The position of the highest-order bit tells us by
		 * how much to adjust the exponent (decpt).  The
		 * adjustment is raised to the next nibble boundary
		 * since we will later choose the leftmost hexadecimal
		 * digit so that all subsequent digits align on nibble
		 * boundaries.
		 */
#ifdef	LDBL_IMPLICIT_NBIT
		/* Don't trust the normalization bit to be off. */
		u.bits.manh &= ~(~0ULL << (LDBL_MANH_SIZE - 1));
#endif
		if (u.bits.manh != 0) {
#if LDBL_MANH_SIZE > 32
			pos = log2_64(u.bits.manh);
#else
			pos = log2_32(u.bits.manh);
#endif
			shift = LDBL_MANH_SIZE - LDBL_NBIT_ADJ - pos;
		} else {
#if LDBL_MANL_SIZE > 32
			pos = log2_64(u.bits.manl);
#else
			pos = log2_32(u.bits.manl);
#endif
			shift = LDBL_MANH_SIZE + LDBL_MANL_SIZE -
			    LDBL_NBIT_ADJ - pos;
		}
		sigfigs = (3 + LDBL_MANT_DIG - LDBL_NBIT_ADJ - shift) / 4;
		*decpt = LDBL_MIN_EXP + LDBL_NBIT_ADJ -
		    ((shift + 3) & ~(4 - 1));
		impnbit = 0;
		break;
	case FP_INFINITE:
		*decpt = INT_MAX;
		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
	case FP_NAN:
		*decpt = INT_MAX;
		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
	default:
		abort();
	}

	/* FP_NORMAL or FP_SUBNORMAL */

	if (ndigits == 0)		/* dtoa() compatibility */
		ndigits = 1;

	/*
	 * For simplicity, we generate all the digits even if the
	 * caller has requested fewer.
	 */
	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
	s0 = rv_alloc(bufsize);

	/*
	 * We work from right to left, first adding any requested zero
	 * padding, then the least significant portion of the
	 * mantissa, followed by the most significant.  The buffer is
	 * filled with the byte values 0x0 through 0xf, which are
	 * converted to xdigs[0x0] through xdigs[0xf] after the
	 * rounding phase.
	 */
	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
		*s = 0;
	for (; s > s0 + sigfigs - (LDBL_MANL_SIZE / 4) - 1 && s > s0; s--) {
		*s = u.bits.manl & 0xf;
		u.bits.manl >>= 4;
	}
	for (; s > s0; s--) {
		*s = u.bits.manh & 0xf;
		u.bits.manh >>= 4;
	}

	/*
	 * At this point, we have snarfed all the bits in the
	 * mantissa, with the possible exception of the highest-order
	 * (partial) nibble, which is dealt with by the next
	 * statement.  That nibble is usually in manh, but it could be
	 * in manl instead for small subnormals.  We also tack on the
	 * implicit normalization bit if appropriate.
	 */
	*s = u.bits.manh | u.bits.manl | impnbit;

	/* If ndigits < 0, we are expected to auto-size the precision. */
	if (ndigits < 0) {
		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
			;
	}

	if (sigfigs > ndigits && s0[ndigits] != 0)
		dorounding(s0, ndigits, u.bits.sign, decpt);

	s = s0 + ndigits;
	if (rve != NULL)
		*rve = s;
	*s-- = '\0';
	for (; s >= s0; s--)
		*s = xdigs[(unsigned int)*s];

	return (s0);
}

#else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */

char *
__hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    char **rve)
{

	return (__hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
}

#endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
OpenPOWER on IntegriCloud