summaryrefslogtreecommitdiffstats
path: root/lib/Sema/SemaOverload.cpp
blob: ff59fc3a7d368682f262d685f1a5ed82769124b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides Sema routines for C++ overloading.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "Lookup.h"
#include "SemaInit.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>

namespace clang {

/// GetConversionCategory - Retrieve the implicit conversion
/// category corresponding to the given implicit conversion kind.
ImplicitConversionCategory
GetConversionCategory(ImplicitConversionKind Kind) {
  static const ImplicitConversionCategory
    Category[(int)ICK_Num_Conversion_Kinds] = {
    ICC_Identity,
    ICC_Lvalue_Transformation,
    ICC_Lvalue_Transformation,
    ICC_Lvalue_Transformation,
    ICC_Identity,
    ICC_Qualification_Adjustment,
    ICC_Promotion,
    ICC_Promotion,
    ICC_Promotion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion,
    ICC_Conversion
  };
  return Category[(int)Kind];
}

/// GetConversionRank - Retrieve the implicit conversion rank
/// corresponding to the given implicit conversion kind.
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
  static const ImplicitConversionRank
    Rank[(int)ICK_Num_Conversion_Kinds] = {
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Exact_Match,
    ICR_Promotion,
    ICR_Promotion,
    ICR_Promotion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Conversion,
    ICR_Complex_Real_Conversion
  };
  return Rank[(int)Kind];
}

/// GetImplicitConversionName - Return the name of this kind of
/// implicit conversion.
const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
    "No conversion",
    "Lvalue-to-rvalue",
    "Array-to-pointer",
    "Function-to-pointer",
    "Noreturn adjustment",
    "Qualification",
    "Integral promotion",
    "Floating point promotion",
    "Complex promotion",
    "Integral conversion",
    "Floating conversion",
    "Complex conversion",
    "Floating-integral conversion",
    "Complex-real conversion",
    "Pointer conversion",
    "Pointer-to-member conversion",
    "Boolean conversion",
    "Compatible-types conversion",
    "Derived-to-base conversion"
  };
  return Name[Kind];
}

/// StandardConversionSequence - Set the standard conversion
/// sequence to the identity conversion.
void StandardConversionSequence::setAsIdentityConversion() {
  First = ICK_Identity;
  Second = ICK_Identity;
  Third = ICK_Identity;
  DeprecatedStringLiteralToCharPtr = false;
  ReferenceBinding = false;
  DirectBinding = false;
  RRefBinding = false;
  CopyConstructor = 0;
}

/// getRank - Retrieve the rank of this standard conversion sequence
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
/// implicit conversions.
ImplicitConversionRank StandardConversionSequence::getRank() const {
  ImplicitConversionRank Rank = ICR_Exact_Match;
  if  (GetConversionRank(First) > Rank)
    Rank = GetConversionRank(First);
  if  (GetConversionRank(Second) > Rank)
    Rank = GetConversionRank(Second);
  if  (GetConversionRank(Third) > Rank)
    Rank = GetConversionRank(Third);
  return Rank;
}

/// isPointerConversionToBool - Determines whether this conversion is
/// a conversion of a pointer or pointer-to-member to bool. This is
/// used as part of the ranking of standard conversion sequences
/// (C++ 13.3.3.2p4).
bool StandardConversionSequence::isPointerConversionToBool() const {
  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer or function-to-pointer implicit conversions, so
  // check for their presence as well as checking whether FromType is
  // a pointer.
  if (getToType(1)->isBooleanType() &&
      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
    return true;

  return false;
}

/// isPointerConversionToVoidPointer - Determines whether this
/// conversion is a conversion of a pointer to a void pointer. This is
/// used as part of the ranking of standard conversion sequences (C++
/// 13.3.3.2p4).
bool
StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext& Context) const {
  QualType FromType = getFromType();
  QualType ToType = getToType(1);

  // Note that FromType has not necessarily been transformed by the
  // array-to-pointer implicit conversion, so check for its presence
  // and redo the conversion to get a pointer.
  if (First == ICK_Array_To_Pointer)
    FromType = Context.getArrayDecayedType(FromType);

  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
      return ToPtrType->getPointeeType()->isVoidType();

  return false;
}

/// DebugPrint - Print this standard conversion sequence to standard
/// error. Useful for debugging overloading issues.
void StandardConversionSequence::DebugPrint() const {
  llvm::raw_ostream &OS = llvm::errs();
  bool PrintedSomething = false;
  if (First != ICK_Identity) {
    OS << GetImplicitConversionName(First);
    PrintedSomething = true;
  }

  if (Second != ICK_Identity) {
    if (PrintedSomething) {
      OS << " -> ";
    }
    OS << GetImplicitConversionName(Second);

    if (CopyConstructor) {
      OS << " (by copy constructor)";
    } else if (DirectBinding) {
      OS << " (direct reference binding)";
    } else if (ReferenceBinding) {
      OS << " (reference binding)";
    }
    PrintedSomething = true;
  }

  if (Third != ICK_Identity) {
    if (PrintedSomething) {
      OS << " -> ";
    }
    OS << GetImplicitConversionName(Third);
    PrintedSomething = true;
  }

  if (!PrintedSomething) {
    OS << "No conversions required";
  }
}

/// DebugPrint - Print this user-defined conversion sequence to standard
/// error. Useful for debugging overloading issues.
void UserDefinedConversionSequence::DebugPrint() const {
  llvm::raw_ostream &OS = llvm::errs();
  if (Before.First || Before.Second || Before.Third) {
    Before.DebugPrint();
    OS << " -> ";
  }
  OS << "'" << ConversionFunction->getNameAsString() << "'";
  if (After.First || After.Second || After.Third) {
    OS << " -> ";
    After.DebugPrint();
  }
}

/// DebugPrint - Print this implicit conversion sequence to standard
/// error. Useful for debugging overloading issues.
void ImplicitConversionSequence::DebugPrint() const {
  llvm::raw_ostream &OS = llvm::errs();
  switch (ConversionKind) {
  case StandardConversion:
    OS << "Standard conversion: ";
    Standard.DebugPrint();
    break;
  case UserDefinedConversion:
    OS << "User-defined conversion: ";
    UserDefined.DebugPrint();
    break;
  case EllipsisConversion:
    OS << "Ellipsis conversion";
    break;
  case AmbiguousConversion:
    OS << "Ambiguous conversion";
    break;
  case BadConversion:
    OS << "Bad conversion";
    break;
  }

  OS << "\n";
}

void AmbiguousConversionSequence::construct() {
  new (&conversions()) ConversionSet();
}

void AmbiguousConversionSequence::destruct() {
  conversions().~ConversionSet();
}

void
AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
  FromTypePtr = O.FromTypePtr;
  ToTypePtr = O.ToTypePtr;
  new (&conversions()) ConversionSet(O.conversions());
}


// IsOverload - Determine whether the given New declaration is an
// overload of the declarations in Old. This routine returns false if
// New and Old cannot be overloaded, e.g., if New has the same
// signature as some function in Old (C++ 1.3.10) or if the Old
// declarations aren't functions (or function templates) at all. When
// it does return false, MatchedDecl will point to the decl that New
// cannot be overloaded with.  This decl may be a UsingShadowDecl on
// top of the underlying declaration.
//
// Example: Given the following input:
//
//   void f(int, float); // #1
//   void f(int, int); // #2
//   int f(int, int); // #3
//
// When we process #1, there is no previous declaration of "f",
// so IsOverload will not be used.
//
// When we process #2, Old contains only the FunctionDecl for #1.  By
// comparing the parameter types, we see that #1 and #2 are overloaded
// (since they have different signatures), so this routine returns
// false; MatchedDecl is unchanged.
//
// When we process #3, Old is an overload set containing #1 and #2. We
// compare the signatures of #3 to #1 (they're overloaded, so we do
// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
// identical (return types of functions are not part of the
// signature), IsOverload returns false and MatchedDecl will be set to
// point to the FunctionDecl for #2.
Sema::OverloadKind
Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
                    NamedDecl *&Match) {
  for (LookupResult::iterator I = Old.begin(), E = Old.end();
         I != E; ++I) {
    NamedDecl *OldD = (*I)->getUnderlyingDecl();
    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
      if (!IsOverload(New, OldT->getTemplatedDecl())) {
        Match = *I;
        return Ovl_Match;
      }
    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
      if (!IsOverload(New, OldF)) {
        Match = *I;
        return Ovl_Match;
      }
    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
      // We can overload with these, which can show up when doing
      // redeclaration checks for UsingDecls.
      assert(Old.getLookupKind() == LookupUsingDeclName);
    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
      // Optimistically assume that an unresolved using decl will
      // overload; if it doesn't, we'll have to diagnose during
      // template instantiation.
    } else {
      // (C++ 13p1):
      //   Only function declarations can be overloaded; object and type
      //   declarations cannot be overloaded.
      Match = *I;
      return Ovl_NonFunction;
    }
  }

  return Ovl_Overload;
}

bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();

  // C++ [temp.fct]p2:
  //   A function template can be overloaded with other function templates
  //   and with normal (non-template) functions.
  if ((OldTemplate == 0) != (NewTemplate == 0))
    return true;

  // Is the function New an overload of the function Old?
  QualType OldQType = Context.getCanonicalType(Old->getType());
  QualType NewQType = Context.getCanonicalType(New->getType());

  // Compare the signatures (C++ 1.3.10) of the two functions to
  // determine whether they are overloads. If we find any mismatch
  // in the signature, they are overloads.

  // If either of these functions is a K&R-style function (no
  // prototype), then we consider them to have matching signatures.
  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
    return false;

  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);

  // The signature of a function includes the types of its
  // parameters (C++ 1.3.10), which includes the presence or absence
  // of the ellipsis; see C++ DR 357).
  if (OldQType != NewQType &&
      (OldType->getNumArgs() != NewType->getNumArgs() ||
       OldType->isVariadic() != NewType->isVariadic() ||
       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
                   NewType->arg_type_begin())))
    return true;

  // C++ [temp.over.link]p4:
  //   The signature of a function template consists of its function
  //   signature, its return type and its template parameter list. The names
  //   of the template parameters are significant only for establishing the
  //   relationship between the template parameters and the rest of the
  //   signature.
  //
  // We check the return type and template parameter lists for function
  // templates first; the remaining checks follow.
  if (NewTemplate &&
      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
                                       OldTemplate->getTemplateParameters(),
                                       false, TPL_TemplateMatch) ||
       OldType->getResultType() != NewType->getResultType()))
    return true;

  // If the function is a class member, its signature includes the
  // cv-qualifiers (if any) on the function itself.
  //
  // As part of this, also check whether one of the member functions
  // is static, in which case they are not overloads (C++
  // 13.1p2). While not part of the definition of the signature,
  // this check is important to determine whether these functions
  // can be overloaded.
  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
  if (OldMethod && NewMethod &&
      !OldMethod->isStatic() && !NewMethod->isStatic() &&
      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
    return true;
  
  // The signatures match; this is not an overload.
  return false;
}

/// TryImplicitConversion - Attempt to perform an implicit conversion
/// from the given expression (Expr) to the given type (ToType). This
/// function returns an implicit conversion sequence that can be used
/// to perform the initialization. Given
///
///   void f(float f);
///   void g(int i) { f(i); }
///
/// this routine would produce an implicit conversion sequence to
/// describe the initialization of f from i, which will be a standard
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
//
/// Note that this routine only determines how the conversion can be
/// performed; it does not actually perform the conversion. As such,
/// it will not produce any diagnostics if no conversion is available,
/// but will instead return an implicit conversion sequence of kind
/// "BadConversion".
///
/// If @p SuppressUserConversions, then user-defined conversions are
/// not permitted.
/// If @p AllowExplicit, then explicit user-defined conversions are
/// permitted.
/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
/// no matter its actual lvalueness.
/// If @p UserCast, the implicit conversion is being done for a user-specified
/// cast.
ImplicitConversionSequence
Sema::TryImplicitConversion(Expr* From, QualType ToType,
                            bool SuppressUserConversions,
                            bool AllowExplicit, bool ForceRValue,
                            bool InOverloadResolution,
                            bool UserCast) {
  ImplicitConversionSequence ICS;
  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
    ICS.setStandard();
    return ICS;
  }

  if (!getLangOptions().CPlusPlus) {
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
    return ICS;
  }

  OverloadCandidateSet Conversions(From->getExprLoc());
  OverloadingResult UserDefResult
    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
                              !SuppressUserConversions, AllowExplicit,
                              ForceRValue, UserCast);

  if (UserDefResult == OR_Success) {
    ICS.setUserDefined();
    // C++ [over.ics.user]p4:
    //   A conversion of an expression of class type to the same class
    //   type is given Exact Match rank, and a conversion of an
    //   expression of class type to a base class of that type is
    //   given Conversion rank, in spite of the fact that a copy
    //   constructor (i.e., a user-defined conversion function) is
    //   called for those cases.
    if (CXXConstructorDecl *Constructor
          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
      QualType FromCanon
        = Context.getCanonicalType(From->getType().getUnqualifiedType());
      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
      if (Constructor->isCopyConstructor() &&
          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
        // Turn this into a "standard" conversion sequence, so that it
        // gets ranked with standard conversion sequences.
        ICS.setStandard();
        ICS.Standard.setAsIdentityConversion();
        ICS.Standard.setFromType(From->getType());
        ICS.Standard.setAllToTypes(ToType);
        ICS.Standard.CopyConstructor = Constructor;
        if (ToCanon != FromCanon)
          ICS.Standard.Second = ICK_Derived_To_Base;
      }
    }

    // C++ [over.best.ics]p4:
    //   However, when considering the argument of a user-defined
    //   conversion function that is a candidate by 13.3.1.3 when
    //   invoked for the copying of the temporary in the second step
    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
    //   13.3.1.6 in all cases, only standard conversion sequences and
    //   ellipsis conversion sequences are allowed.
    if (SuppressUserConversions && ICS.isUserDefined()) {
      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
    }
  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
    ICS.setAmbiguous();
    ICS.Ambiguous.setFromType(From->getType());
    ICS.Ambiguous.setToType(ToType);
    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
         Cand != Conversions.end(); ++Cand)
      if (Cand->Viable)
        ICS.Ambiguous.addConversion(Cand->Function);
  } else {
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
  }

  return ICS;
}

/// \brief Determine whether the conversion from FromType to ToType is a valid 
/// conversion that strips "noreturn" off the nested function type.
static bool IsNoReturnConversion(ASTContext &Context, QualType FromType, 
                                 QualType ToType, QualType &ResultTy) {
  if (Context.hasSameUnqualifiedType(FromType, ToType))
    return false;
  
  // Strip the noreturn off the type we're converting from; noreturn can
  // safely be removed.
  FromType = Context.getNoReturnType(FromType, false);
  if (!Context.hasSameUnqualifiedType(FromType, ToType))
    return false;

  ResultTy = FromType;
  return true;
}
  
/// IsStandardConversion - Determines whether there is a standard
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
/// expression From to the type ToType. Standard conversion sequences
/// only consider non-class types; for conversions that involve class
/// types, use TryImplicitConversion. If a conversion exists, SCS will
/// contain the standard conversion sequence required to perform this
/// conversion and this routine will return true. Otherwise, this
/// routine will return false and the value of SCS is unspecified.
bool
Sema::IsStandardConversion(Expr* From, QualType ToType,
                           bool InOverloadResolution,
                           StandardConversionSequence &SCS) {
  QualType FromType = From->getType();

  // Standard conversions (C++ [conv])
  SCS.setAsIdentityConversion();
  SCS.DeprecatedStringLiteralToCharPtr = false;
  SCS.IncompatibleObjC = false;
  SCS.setFromType(FromType);
  SCS.CopyConstructor = 0;

  // There are no standard conversions for class types in C++, so
  // abort early. When overloading in C, however, we do permit
  if (FromType->isRecordType() || ToType->isRecordType()) {
    if (getLangOptions().CPlusPlus)
      return false;

    // When we're overloading in C, we allow, as standard conversions,
  }

  // The first conversion can be an lvalue-to-rvalue conversion,
  // array-to-pointer conversion, or function-to-pointer conversion
  // (C++ 4p1).

  // Lvalue-to-rvalue conversion (C++ 4.1):
  //   An lvalue (3.10) of a non-function, non-array type T can be
  //   converted to an rvalue.
  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
  if (argIsLvalue == Expr::LV_Valid &&
      !FromType->isFunctionType() && !FromType->isArrayType() &&
      Context.getCanonicalType(FromType) != Context.OverloadTy) {
    SCS.First = ICK_Lvalue_To_Rvalue;

    // If T is a non-class type, the type of the rvalue is the
    // cv-unqualified version of T. Otherwise, the type of the rvalue
    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
    // just strip the qualifiers because they don't matter.
    FromType = FromType.getUnqualifiedType();
  } else if (FromType->isArrayType()) {
    // Array-to-pointer conversion (C++ 4.2)
    SCS.First = ICK_Array_To_Pointer;

    // An lvalue or rvalue of type "array of N T" or "array of unknown
    // bound of T" can be converted to an rvalue of type "pointer to
    // T" (C++ 4.2p1).
    FromType = Context.getArrayDecayedType(FromType);

    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
      // This conversion is deprecated. (C++ D.4).
      SCS.DeprecatedStringLiteralToCharPtr = true;

      // For the purpose of ranking in overload resolution
      // (13.3.3.1.1), this conversion is considered an
      // array-to-pointer conversion followed by a qualification
      // conversion (4.4). (C++ 4.2p2)
      SCS.Second = ICK_Identity;
      SCS.Third = ICK_Qualification;
      SCS.setAllToTypes(FromType);
      return true;
    }
  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
    // Function-to-pointer conversion (C++ 4.3).
    SCS.First = ICK_Function_To_Pointer;

    // An lvalue of function type T can be converted to an rvalue of
    // type "pointer to T." The result is a pointer to the
    // function. (C++ 4.3p1).
    FromType = Context.getPointerType(FromType);
  } else if (FunctionDecl *Fn
               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
    // Address of overloaded function (C++ [over.over]).
    SCS.First = ICK_Function_To_Pointer;

    // We were able to resolve the address of the overloaded function,
    // so we can convert to the type of that function.
    FromType = Fn->getType();
    if (ToType->isLValueReferenceType())
      FromType = Context.getLValueReferenceType(FromType);
    else if (ToType->isRValueReferenceType())
      FromType = Context.getRValueReferenceType(FromType);
    else if (ToType->isMemberPointerType()) {
      // Resolve address only succeeds if both sides are member pointers,
      // but it doesn't have to be the same class. See DR 247.
      // Note that this means that the type of &Derived::fn can be
      // Ret (Base::*)(Args) if the fn overload actually found is from the
      // base class, even if it was brought into the derived class via a
      // using declaration. The standard isn't clear on this issue at all.
      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
      FromType = Context.getMemberPointerType(FromType,
                    Context.getTypeDeclType(M->getParent()).getTypePtr());
    } else
      FromType = Context.getPointerType(FromType);
  } else {
    // We don't require any conversions for the first step.
    SCS.First = ICK_Identity;
  }
  SCS.setToType(0, FromType);

  // The second conversion can be an integral promotion, floating
  // point promotion, integral conversion, floating point conversion,
  // floating-integral conversion, pointer conversion,
  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
  // For overloading in C, this can also be a "compatible-type"
  // conversion.
  bool IncompatibleObjC = false;
  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
    // The unqualified versions of the types are the same: there's no
    // conversion to do.
    SCS.Second = ICK_Identity;
  } else if (IsIntegralPromotion(From, FromType, ToType)) {
    // Integral promotion (C++ 4.5).
    SCS.Second = ICK_Integral_Promotion;
    FromType = ToType.getUnqualifiedType();
  } else if (IsFloatingPointPromotion(FromType, ToType)) {
    // Floating point promotion (C++ 4.6).
    SCS.Second = ICK_Floating_Promotion;
    FromType = ToType.getUnqualifiedType();
  } else if (IsComplexPromotion(FromType, ToType)) {
    // Complex promotion (Clang extension)
    SCS.Second = ICK_Complex_Promotion;
    FromType = ToType.getUnqualifiedType();
  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
    // Integral conversions (C++ 4.7).
    SCS.Second = ICK_Integral_Conversion;
    FromType = ToType.getUnqualifiedType();
  } else if (FromType->isComplexType() && ToType->isComplexType()) {
    // Complex conversions (C99 6.3.1.6)
    SCS.Second = ICK_Complex_Conversion;
    FromType = ToType.getUnqualifiedType();
  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
             (ToType->isComplexType() && FromType->isArithmeticType())) {
    // Complex-real conversions (C99 6.3.1.7)
    SCS.Second = ICK_Complex_Real;
    FromType = ToType.getUnqualifiedType();
  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
    // Floating point conversions (C++ 4.8).
    SCS.Second = ICK_Floating_Conversion;
    FromType = ToType.getUnqualifiedType();
  } else if ((FromType->isFloatingType() &&
              ToType->isIntegralType() && (!ToType->isBooleanType() &&
                                           !ToType->isEnumeralType())) ||
             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
              ToType->isFloatingType())) {
    // Floating-integral conversions (C++ 4.9).
    SCS.Second = ICK_Floating_Integral;
    FromType = ToType.getUnqualifiedType();
  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
                                 FromType, IncompatibleObjC)) {
    // Pointer conversions (C++ 4.10).
    SCS.Second = ICK_Pointer_Conversion;
    SCS.IncompatibleObjC = IncompatibleObjC;
  } else if (IsMemberPointerConversion(From, FromType, ToType, 
                                       InOverloadResolution, FromType)) {
    // Pointer to member conversions (4.11).
    SCS.Second = ICK_Pointer_Member;
  } else if (ToType->isBooleanType() &&
             (FromType->isArithmeticType() ||
              FromType->isEnumeralType() ||
              FromType->isAnyPointerType() ||
              FromType->isBlockPointerType() ||
              FromType->isMemberPointerType() ||
              FromType->isNullPtrType())) {
    // Boolean conversions (C++ 4.12).
    SCS.Second = ICK_Boolean_Conversion;
    FromType = Context.BoolTy;
  } else if (!getLangOptions().CPlusPlus &&
             Context.typesAreCompatible(ToType, FromType)) {
    // Compatible conversions (Clang extension for C function overloading)
    SCS.Second = ICK_Compatible_Conversion;
  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
    // Treat a conversion that strips "noreturn" as an identity conversion.
    SCS.Second = ICK_NoReturn_Adjustment;
  } else {
    // No second conversion required.
    SCS.Second = ICK_Identity;
  }
  SCS.setToType(1, FromType);

  QualType CanonFrom;
  QualType CanonTo;
  // The third conversion can be a qualification conversion (C++ 4p1).
  if (IsQualificationConversion(FromType, ToType)) {
    SCS.Third = ICK_Qualification;
    FromType = ToType;
    CanonFrom = Context.getCanonicalType(FromType);
    CanonTo = Context.getCanonicalType(ToType);
  } else {
    // No conversion required
    SCS.Third = ICK_Identity;

    // C++ [over.best.ics]p6:
    //   [...] Any difference in top-level cv-qualification is
    //   subsumed by the initialization itself and does not constitute
    //   a conversion. [...]
    CanonFrom = Context.getCanonicalType(FromType);
    CanonTo = Context.getCanonicalType(ToType);
    if (CanonFrom.getLocalUnqualifiedType() 
                                       == CanonTo.getLocalUnqualifiedType() &&
        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
      FromType = ToType;
      CanonFrom = CanonTo;
    }
  }
  SCS.setToType(2, FromType);

  // If we have not converted the argument type to the parameter type,
  // this is a bad conversion sequence.
  if (CanonFrom != CanonTo)
    return false;

  return true;
}

/// IsIntegralPromotion - Determines whether the conversion from the
/// expression From (whose potentially-adjusted type is FromType) to
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
/// sets PromotedType to the promoted type.
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
  const BuiltinType *To = ToType->getAs<BuiltinType>();
  // All integers are built-in.
  if (!To) {
    return false;
  }

  // An rvalue of type char, signed char, unsigned char, short int, or
  // unsigned short int can be converted to an rvalue of type int if
  // int can represent all the values of the source type; otherwise,
  // the source rvalue can be converted to an rvalue of type unsigned
  // int (C++ 4.5p1).
  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
      !FromType->isEnumeralType()) {
    if (// We can promote any signed, promotable integer type to an int
        (FromType->isSignedIntegerType() ||
         // We can promote any unsigned integer type whose size is
         // less than int to an int.
         (!FromType->isSignedIntegerType() &&
          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
      return To->getKind() == BuiltinType::Int;
    }

    return To->getKind() == BuiltinType::UInt;
  }

  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
  // can be converted to an rvalue of the first of the following types
  // that can represent all the values of its underlying type: int,
  // unsigned int, long, or unsigned long (C++ 4.5p2).

  // We pre-calculate the promotion type for enum types.
  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
    if (ToType->isIntegerType())
      return Context.hasSameUnqualifiedType(ToType,
                                FromEnumType->getDecl()->getPromotionType());

  if (FromType->isWideCharType() && ToType->isIntegerType()) {
    // Determine whether the type we're converting from is signed or
    // unsigned.
    bool FromIsSigned;
    uint64_t FromSize = Context.getTypeSize(FromType);
    
    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
    FromIsSigned = true;

    // The types we'll try to promote to, in the appropriate
    // order. Try each of these types.
    QualType PromoteTypes[6] = {
      Context.IntTy, Context.UnsignedIntTy,
      Context.LongTy, Context.UnsignedLongTy ,
      Context.LongLongTy, Context.UnsignedLongLongTy
    };
    for (int Idx = 0; Idx < 6; ++Idx) {
      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
      if (FromSize < ToSize ||
          (FromSize == ToSize &&
           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
        // We found the type that we can promote to. If this is the
        // type we wanted, we have a promotion. Otherwise, no
        // promotion.
        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
      }
    }
  }

  // An rvalue for an integral bit-field (9.6) can be converted to an
  // rvalue of type int if int can represent all the values of the
  // bit-field; otherwise, it can be converted to unsigned int if
  // unsigned int can represent all the values of the bit-field. If
  // the bit-field is larger yet, no integral promotion applies to
  // it. If the bit-field has an enumerated type, it is treated as any
  // other value of that type for promotion purposes (C++ 4.5p3).
  // FIXME: We should delay checking of bit-fields until we actually perform the
  // conversion.
  using llvm::APSInt;
  if (From)
    if (FieldDecl *MemberDecl = From->getBitField()) {
      APSInt BitWidth;
      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
        ToSize = Context.getTypeSize(ToType);

        // Are we promoting to an int from a bitfield that fits in an int?
        if (BitWidth < ToSize ||
            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
          return To->getKind() == BuiltinType::Int;
        }

        // Are we promoting to an unsigned int from an unsigned bitfield
        // that fits into an unsigned int?
        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
          return To->getKind() == BuiltinType::UInt;
        }

        return false;
      }
    }

  // An rvalue of type bool can be converted to an rvalue of type int,
  // with false becoming zero and true becoming one (C++ 4.5p4).
  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
    return true;
  }

  return false;
}

/// IsFloatingPointPromotion - Determines whether the conversion from
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
/// returns true and sets PromotedType to the promoted type.
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
  /// An rvalue of type float can be converted to an rvalue of type
  /// double. (C++ 4.6p1).
  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
      if (FromBuiltin->getKind() == BuiltinType::Float &&
          ToBuiltin->getKind() == BuiltinType::Double)
        return true;

      // C99 6.3.1.5p1:
      //   When a float is promoted to double or long double, or a
      //   double is promoted to long double [...].
      if (!getLangOptions().CPlusPlus &&
          (FromBuiltin->getKind() == BuiltinType::Float ||
           FromBuiltin->getKind() == BuiltinType::Double) &&
          (ToBuiltin->getKind() == BuiltinType::LongDouble))
        return true;
    }

  return false;
}

/// \brief Determine if a conversion is a complex promotion.
///
/// A complex promotion is defined as a complex -> complex conversion
/// where the conversion between the underlying real types is a
/// floating-point or integral promotion.
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
  if (!FromComplex)
    return false;

  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
  if (!ToComplex)
    return false;

  return IsFloatingPointPromotion(FromComplex->getElementType(),
                                  ToComplex->getElementType()) ||
    IsIntegralPromotion(0, FromComplex->getElementType(),
                        ToComplex->getElementType());
}

/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
/// the pointer type FromPtr to a pointer to type ToPointee, with the
/// same type qualifiers as FromPtr has on its pointee type. ToType,
/// if non-empty, will be a pointer to ToType that may or may not have
/// the right set of qualifiers on its pointee.
static QualType
BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
                                   QualType ToPointee, QualType ToType,
                                   ASTContext &Context) {
  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
  Qualifiers Quals = CanonFromPointee.getQualifiers();

  // Exact qualifier match -> return the pointer type we're converting to.
  if (CanonToPointee.getLocalQualifiers() == Quals) {
    // ToType is exactly what we need. Return it.
    if (!ToType.isNull())
      return ToType;

    // Build a pointer to ToPointee. It has the right qualifiers
    // already.
    return Context.getPointerType(ToPointee);
  }

  // Just build a canonical type that has the right qualifiers.
  return Context.getPointerType(
         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 
                                  Quals));
}

/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
/// the FromType, which is an objective-c pointer, to ToType, which may or may
/// not have the right set of qualifiers.
static QualType
BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
                                             QualType ToType,
                                             ASTContext &Context) {
  QualType CanonFromType = Context.getCanonicalType(FromType);
  QualType CanonToType = Context.getCanonicalType(ToType);
  Qualifiers Quals = CanonFromType.getQualifiers();
    
  // Exact qualifier match -> return the pointer type we're converting to.
  if (CanonToType.getLocalQualifiers() == Quals)
    return ToType;
  
  // Just build a canonical type that has the right qualifiers.
  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
}
  
static bool isNullPointerConstantForConversion(Expr *Expr,
                                               bool InOverloadResolution,
                                               ASTContext &Context) {
  // Handle value-dependent integral null pointer constants correctly.
  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
      Expr->getType()->isIntegralType())
    return !InOverloadResolution;

  return Expr->isNullPointerConstant(Context,
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
                                        : Expr::NPC_ValueDependentIsNull);
}

/// IsPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType,
/// can be converted to the type ToType via a pointer conversion (C++
/// 4.10). If so, returns true and places the converted type (that
/// might differ from ToType in its cv-qualifiers at some level) into
/// ConvertedType.
///
/// This routine also supports conversions to and from block pointers
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
/// pointers to interfaces. FIXME: Once we've determined the
/// appropriate overloading rules for Objective-C, we may want to
/// split the Objective-C checks into a different routine; however,
/// GCC seems to consider all of these conversions to be pointer
/// conversions, so for now they live here. IncompatibleObjC will be
/// set if the conversion is an allowed Objective-C conversion that
/// should result in a warning.
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
                               bool InOverloadResolution,
                               QualType& ConvertedType,
                               bool &IncompatibleObjC) {
  IncompatibleObjC = false;
  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
    return true;

  // Conversion from a null pointer constant to any Objective-C pointer type.
  if (ToType->isObjCObjectPointerType() &&
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  // Blocks: Block pointers can be converted to void*.
  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
    ConvertedType = ToType;
    return true;
  }
  // Blocks: A null pointer constant can be converted to a block
  // pointer type.
  if (ToType->isBlockPointerType() &&
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  // If the left-hand-side is nullptr_t, the right side can be a null
  // pointer constant.
  if (ToType->isNullPtrType() &&
      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
  if (!ToTypePtr)
    return false;

  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
    ConvertedType = ToType;
    return true;
  }

  // Beyond this point, both types need to be pointers 
  // , including objective-c pointers.
  QualType ToPointeeType = ToTypePtr->getPointeeType();
  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
                                                       ToType, Context);
    return true;
    
  }
  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
  if (!FromTypePtr)
    return false;

  QualType FromPointeeType = FromTypePtr->getPointeeType();

  // An rvalue of type "pointer to cv T," where T is an object type,
  // can be converted to an rvalue of type "pointer to cv void" (C++
  // 4.10p2).
  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  // When we're overloading in C, we allow a special kind of pointer
  // conversion for compatible-but-not-identical pointee types.
  if (!getLangOptions().CPlusPlus &&
      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  // C++ [conv.ptr]p3:
  //
  //   An rvalue of type "pointer to cv D," where D is a class type,
  //   can be converted to an rvalue of type "pointer to cv B," where
  //   B is a base class (clause 10) of D. If B is an inaccessible
  //   (clause 11) or ambiguous (10.2) base class of D, a program that
  //   necessitates this conversion is ill-formed. The result of the
  //   conversion is a pointer to the base class sub-object of the
  //   derived class object. The null pointer value is converted to
  //   the null pointer value of the destination type.
  //
  // Note that we do not check for ambiguity or inaccessibility
  // here. That is handled by CheckPointerConversion.
  if (getLangOptions().CPlusPlus &&
      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
                                                       ToPointeeType,
                                                       ToType, Context);
    return true;
  }

  return false;
}

/// isObjCPointerConversion - Determines whether this is an
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
/// with the same arguments and return values.
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
                                   QualType& ConvertedType,
                                   bool &IncompatibleObjC) {
  if (!getLangOptions().ObjC1)
    return false;
 
  // First, we handle all conversions on ObjC object pointer types.
  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
  const ObjCObjectPointerType *FromObjCPtr =
    FromType->getAs<ObjCObjectPointerType>();

  if (ToObjCPtr && FromObjCPtr) {
    // Objective C++: We're able to convert between "id" or "Class" and a
    // pointer to any interface (in both directions).
    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
      ConvertedType = ToType;
      return true;
    }
    // Conversions with Objective-C's id<...>.
    if ((FromObjCPtr->isObjCQualifiedIdType() ||
         ToObjCPtr->isObjCQualifiedIdType()) &&
        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
                                                  /*compare=*/false)) {
      ConvertedType = ToType;
      return true;
    }
    // Objective C++: We're able to convert from a pointer to an
    // interface to a pointer to a different interface.
    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
      ConvertedType = ToType;
      return true;
    }

    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
      // Okay: this is some kind of implicit downcast of Objective-C
      // interfaces, which is permitted. However, we're going to
      // complain about it.
      IncompatibleObjC = true;
      ConvertedType = FromType;
      return true;
    }
  }
  // Beyond this point, both types need to be C pointers or block pointers.
  QualType ToPointeeType;
  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
    ToPointeeType = ToCPtr->getPointeeType();
  else if (const BlockPointerType *ToBlockPtr = 
            ToType->getAs<BlockPointerType>()) {
    // Objective C++: We're able to convert from a pointer to any object
    // to a block pointer type.
    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
      ConvertedType = ToType;
      return true;
    }
    ToPointeeType = ToBlockPtr->getPointeeType();
  }
  else if (FromType->getAs<BlockPointerType>() && 
           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
    // Objective C++: We're able to convert from a block pointer type to a 
    // pointer to any object.
    ConvertedType = ToType;
    return true;
  }
  else
    return false;

  QualType FromPointeeType;
  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
    FromPointeeType = FromCPtr->getPointeeType();
  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
    FromPointeeType = FromBlockPtr->getPointeeType();
  else
    return false;

  // If we have pointers to pointers, recursively check whether this
  // is an Objective-C conversion.
  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
                              IncompatibleObjC)) {
    // We always complain about this conversion.
    IncompatibleObjC = true;
    ConvertedType = ToType;
    return true;
  }
  // Allow conversion of pointee being objective-c pointer to another one;
  // as in I* to id.
  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
      ToPointeeType->getAs<ObjCObjectPointerType>() &&
      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
                              IncompatibleObjC)) {
    ConvertedType = ToType;
    return true;
  }
  
  // If we have pointers to functions or blocks, check whether the only
  // differences in the argument and result types are in Objective-C
  // pointer conversions. If so, we permit the conversion (but
  // complain about it).
  const FunctionProtoType *FromFunctionType
    = FromPointeeType->getAs<FunctionProtoType>();
  const FunctionProtoType *ToFunctionType
    = ToPointeeType->getAs<FunctionProtoType>();
  if (FromFunctionType && ToFunctionType) {
    // If the function types are exactly the same, this isn't an
    // Objective-C pointer conversion.
    if (Context.getCanonicalType(FromPointeeType)
          == Context.getCanonicalType(ToPointeeType))
      return false;

    // Perform the quick checks that will tell us whether these
    // function types are obviously different.
    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
      return false;

    bool HasObjCConversion = false;
    if (Context.getCanonicalType(FromFunctionType->getResultType())
          == Context.getCanonicalType(ToFunctionType->getResultType())) {
      // Okay, the types match exactly. Nothing to do.
    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
                                       ToFunctionType->getResultType(),
                                       ConvertedType, IncompatibleObjC)) {
      // Okay, we have an Objective-C pointer conversion.
      HasObjCConversion = true;
    } else {
      // Function types are too different. Abort.
      return false;
    }

    // Check argument types.
    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
         ArgIdx != NumArgs; ++ArgIdx) {
      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
      if (Context.getCanonicalType(FromArgType)
            == Context.getCanonicalType(ToArgType)) {
        // Okay, the types match exactly. Nothing to do.
      } else if (isObjCPointerConversion(FromArgType, ToArgType,
                                         ConvertedType, IncompatibleObjC)) {
        // Okay, we have an Objective-C pointer conversion.
        HasObjCConversion = true;
      } else {
        // Argument types are too different. Abort.
        return false;
      }
    }

    if (HasObjCConversion) {
      // We had an Objective-C conversion. Allow this pointer
      // conversion, but complain about it.
      ConvertedType = ToType;
      IncompatibleObjC = true;
      return true;
    }
  }

  return false;
}

/// CheckPointerConversion - Check the pointer conversion from the
/// expression From to the type ToType. This routine checks for
/// ambiguous or inaccessible derived-to-base pointer
/// conversions for which IsPointerConversion has already returned
/// true. It returns true and produces a diagnostic if there was an
/// error, or returns false otherwise.
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
                                  CastExpr::CastKind &Kind,
                                  bool IgnoreBaseAccess) {
  QualType FromType = From->getType();

  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
      QualType FromPointeeType = FromPtrType->getPointeeType(),
               ToPointeeType   = ToPtrType->getPointeeType();

      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
        // We must have a derived-to-base conversion. Check an
        // ambiguous or inaccessible conversion.
        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
                                         From->getExprLoc(),
                                         From->getSourceRange(),
                                         IgnoreBaseAccess))
          return true;
        
        // The conversion was successful.
        Kind = CastExpr::CK_DerivedToBase;
      }
    }
  if (const ObjCObjectPointerType *FromPtrType =
        FromType->getAs<ObjCObjectPointerType>())
    if (const ObjCObjectPointerType *ToPtrType =
          ToType->getAs<ObjCObjectPointerType>()) {
      // Objective-C++ conversions are always okay.
      // FIXME: We should have a different class of conversions for the
      // Objective-C++ implicit conversions.
      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
        return false;

  }
  return false;
}

/// IsMemberPointerConversion - Determines whether the conversion of the
/// expression From, which has the (possibly adjusted) type FromType, can be
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
/// If so, returns true and places the converted type (that might differ from
/// ToType in its cv-qualifiers at some level) into ConvertedType.
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
                                     QualType ToType, 
                                     bool InOverloadResolution,
                                     QualType &ConvertedType) {
  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
  if (!ToTypePtr)
    return false;

  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
  if (From->isNullPointerConstant(Context,
                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
                                        : Expr::NPC_ValueDependentIsNull)) {
    ConvertedType = ToType;
    return true;
  }

  // Otherwise, both types have to be member pointers.
  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
  if (!FromTypePtr)
    return false;

  // A pointer to member of B can be converted to a pointer to member of D,
  // where D is derived from B (C++ 4.11p2).
  QualType FromClass(FromTypePtr->getClass(), 0);
  QualType ToClass(ToTypePtr->getClass(), 0);
  // FIXME: What happens when these are dependent? Is this function even called?

  if (IsDerivedFrom(ToClass, FromClass)) {
    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
                                                 ToClass.getTypePtr());
    return true;
  }

  return false;
}
  
/// CheckMemberPointerConversion - Check the member pointer conversion from the
/// expression From to the type ToType. This routine checks for ambiguous or
/// virtual or inaccessible base-to-derived member pointer conversions
/// for which IsMemberPointerConversion has already returned true. It returns
/// true and produces a diagnostic if there was an error, or returns false
/// otherwise.
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
                                        CastExpr::CastKind &Kind,
                                        bool IgnoreBaseAccess) {
  QualType FromType = From->getType();
  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
  if (!FromPtrType) {
    // This must be a null pointer to member pointer conversion
    assert(From->isNullPointerConstant(Context, 
                                       Expr::NPC_ValueDependentIsNull) &&
           "Expr must be null pointer constant!");
    Kind = CastExpr::CK_NullToMemberPointer;
    return false;
  }

  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
  assert(ToPtrType && "No member pointer cast has a target type "
                      "that is not a member pointer.");

  QualType FromClass = QualType(FromPtrType->getClass(), 0);
  QualType ToClass   = QualType(ToPtrType->getClass(), 0);

  // FIXME: What about dependent types?
  assert(FromClass->isRecordType() && "Pointer into non-class.");
  assert(ToClass->isRecordType() && "Pointer into non-class.");

  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
                     /*DetectVirtual=*/true);
  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
  assert(DerivationOkay &&
         "Should not have been called if derivation isn't OK.");
  (void)DerivationOkay;

  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
                                  getUnqualifiedType())) {
    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
    return true;
  }

  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
      << FromClass << ToClass << QualType(VBase, 0)
      << From->getSourceRange();
    return true;
  }

  if (!IgnoreBaseAccess)
    CheckBaseClassAccess(From->getExprLoc(), /*BaseToDerived*/ true,
                         FromClass, ToClass, Paths.front());

  // Must be a base to derived member conversion.
  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
  return false;
}

/// IsQualificationConversion - Determines whether the conversion from
/// an rvalue of type FromType to ToType is a qualification conversion
/// (C++ 4.4).
bool
Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
  FromType = Context.getCanonicalType(FromType);
  ToType = Context.getCanonicalType(ToType);

  // If FromType and ToType are the same type, this is not a
  // qualification conversion.
  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
    return false;

  // (C++ 4.4p4):
  //   A conversion can add cv-qualifiers at levels other than the first
  //   in multi-level pointers, subject to the following rules: [...]
  bool PreviousToQualsIncludeConst = true;
  bool UnwrappedAnyPointer = false;
  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
    // Within each iteration of the loop, we check the qualifiers to
    // determine if this still looks like a qualification
    // conversion. Then, if all is well, we unwrap one more level of
    // pointers or pointers-to-members and do it all again
    // until there are no more pointers or pointers-to-members left to
    // unwrap.
    UnwrappedAnyPointer = true;

    //   -- for every j > 0, if const is in cv 1,j then const is in cv
    //      2,j, and similarly for volatile.
    if (!ToType.isAtLeastAsQualifiedAs(FromType))
      return false;

    //   -- if the cv 1,j and cv 2,j are different, then const is in
    //      every cv for 0 < k < j.
    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
        && !PreviousToQualsIncludeConst)
      return false;

    // Keep track of whether all prior cv-qualifiers in the "to" type
    // include const.
    PreviousToQualsIncludeConst
      = PreviousToQualsIncludeConst && ToType.isConstQualified();
  }

  // We are left with FromType and ToType being the pointee types
  // after unwrapping the original FromType and ToType the same number
  // of types. If we unwrapped any pointers, and if FromType and
  // ToType have the same unqualified type (since we checked
  // qualifiers above), then this is a qualification conversion.
  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
}

/// Determines whether there is a user-defined conversion sequence
/// (C++ [over.ics.user]) that converts expression From to the type
/// ToType. If such a conversion exists, User will contain the
/// user-defined conversion sequence that performs such a conversion
/// and this routine will return true. Otherwise, this routine returns
/// false and User is unspecified.
///
/// \param AllowConversionFunctions true if the conversion should
/// consider conversion functions at all. If false, only constructors
/// will be considered.
///
/// \param AllowExplicit  true if the conversion should consider C++0x
/// "explicit" conversion functions as well as non-explicit conversion
/// functions (C++0x [class.conv.fct]p2).
///
/// \param ForceRValue  true if the expression should be treated as an rvalue
/// for overload resolution.
/// \param UserCast true if looking for user defined conversion for a static
/// cast.
OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
                                          UserDefinedConversionSequence& User,
                                            OverloadCandidateSet& CandidateSet,
                                                bool AllowConversionFunctions,
                                                bool AllowExplicit, 
                                                bool ForceRValue,
                                                bool UserCast) {
  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
      // We're not going to find any constructors.
    } else if (CXXRecordDecl *ToRecordDecl
                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
      // C++ [over.match.ctor]p1:
      //   When objects of class type are direct-initialized (8.5), or
      //   copy-initialized from an expression of the same or a
      //   derived class type (8.5), overload resolution selects the
      //   constructor. [...] For copy-initialization, the candidate
      //   functions are all the converting constructors (12.3.1) of
      //   that class. The argument list is the expression-list within
      //   the parentheses of the initializer.
      bool SuppressUserConversions = !UserCast;
      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
          IsDerivedFrom(From->getType(), ToType)) {
        SuppressUserConversions = false;
        AllowConversionFunctions = false;
      }
          
      DeclarationName ConstructorName
        = Context.DeclarationNames.getCXXConstructorName(
                          Context.getCanonicalType(ToType).getUnqualifiedType());
      DeclContext::lookup_iterator Con, ConEnd;
      for (llvm::tie(Con, ConEnd)
             = ToRecordDecl->lookup(ConstructorName);
           Con != ConEnd; ++Con) {
        // Find the constructor (which may be a template).
        CXXConstructorDecl *Constructor = 0;
        FunctionTemplateDecl *ConstructorTmpl
          = dyn_cast<FunctionTemplateDecl>(*Con);
        if (ConstructorTmpl)
          Constructor
            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
        else
          Constructor = cast<CXXConstructorDecl>(*Con);
        
        if (!Constructor->isInvalidDecl() &&
            Constructor->isConvertingConstructor(AllowExplicit)) {
          if (ConstructorTmpl)
            AddTemplateOverloadCandidate(ConstructorTmpl,
                                         ConstructorTmpl->getAccess(),
                                         /*ExplicitArgs*/ 0,
                                         &From, 1, CandidateSet, 
                                         SuppressUserConversions, ForceRValue);
          else
            // Allow one user-defined conversion when user specifies a
            // From->ToType conversion via an static cast (c-style, etc).
            AddOverloadCandidate(Constructor, Constructor->getAccess(),
                                 &From, 1, CandidateSet,
                                 SuppressUserConversions, ForceRValue);
        }
      }
    }
  }

  if (!AllowConversionFunctions) {
    // Don't allow any conversion functions to enter the overload set.
  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
                                 PDiag(0)
                                   << From->getSourceRange())) {
    // No conversion functions from incomplete types.
  } else if (const RecordType *FromRecordType
               = From->getType()->getAs<RecordType>()) {
    if (CXXRecordDecl *FromRecordDecl
         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
      // Add all of the conversion functions as candidates.
      const UnresolvedSetImpl *Conversions
        = FromRecordDecl->getVisibleConversionFunctions();
      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
             E = Conversions->end(); I != E; ++I) {
        NamedDecl *D = *I;
        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
        if (isa<UsingShadowDecl>(D))
          D = cast<UsingShadowDecl>(D)->getTargetDecl();

        CXXConversionDecl *Conv;
        FunctionTemplateDecl *ConvTemplate;
        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
        else
          Conv = dyn_cast<CXXConversionDecl>(*I);

        if (AllowExplicit || !Conv->isExplicit()) {
          if (ConvTemplate)
            AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
                                           ActingContext, From, ToType,
                                           CandidateSet);
          else
            AddConversionCandidate(Conv, I.getAccess(), ActingContext,
                                   From, ToType, CandidateSet);
        }
      }
    }
  }

  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
    case OR_Success:
      // Record the standard conversion we used and the conversion function.
      if (CXXConstructorDecl *Constructor
            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
        // C++ [over.ics.user]p1:
        //   If the user-defined conversion is specified by a
        //   constructor (12.3.1), the initial standard conversion
        //   sequence converts the source type to the type required by
        //   the argument of the constructor.
        //
        QualType ThisType = Constructor->getThisType(Context);
        if (Best->Conversions[0].isEllipsis())
          User.EllipsisConversion = true;
        else {
          User.Before = Best->Conversions[0].Standard;
          User.EllipsisConversion = false;
        }
        User.ConversionFunction = Constructor;
        User.After.setAsIdentityConversion();
        User.After.setFromType(
          ThisType->getAs<PointerType>()->getPointeeType());
        User.After.setAllToTypes(ToType);
        return OR_Success;
      } else if (CXXConversionDecl *Conversion
                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
        // C++ [over.ics.user]p1:
        //
        //   [...] If the user-defined conversion is specified by a
        //   conversion function (12.3.2), the initial standard
        //   conversion sequence converts the source type to the
        //   implicit object parameter of the conversion function.
        User.Before = Best->Conversions[0].Standard;
        User.ConversionFunction = Conversion;
        User.EllipsisConversion = false;

        // C++ [over.ics.user]p2:
        //   The second standard conversion sequence converts the
        //   result of the user-defined conversion to the target type
        //   for the sequence. Since an implicit conversion sequence
        //   is an initialization, the special rules for
        //   initialization by user-defined conversion apply when
        //   selecting the best user-defined conversion for a
        //   user-defined conversion sequence (see 13.3.3 and
        //   13.3.3.1).
        User.After = Best->FinalConversion;
        return OR_Success;
      } else {
        assert(false && "Not a constructor or conversion function?");
        return OR_No_Viable_Function;
      }

    case OR_No_Viable_Function:
      return OR_No_Viable_Function;
    case OR_Deleted:
      // No conversion here! We're done.
      return OR_Deleted;

    case OR_Ambiguous:
      return OR_Ambiguous;
    }

  return OR_No_Viable_Function;
}
  
bool
Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
  ImplicitConversionSequence ICS;
  OverloadCandidateSet CandidateSet(From->getExprLoc());
  OverloadingResult OvResult = 
    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
                            CandidateSet, true, false, false);
  if (OvResult == OR_Ambiguous)
    Diag(From->getSourceRange().getBegin(),
         diag::err_typecheck_ambiguous_condition)
          << From->getType() << ToType << From->getSourceRange();
  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
    Diag(From->getSourceRange().getBegin(),
         diag::err_typecheck_nonviable_condition)
    << From->getType() << ToType << From->getSourceRange();
  else
    return false;
  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
  return true;  
}

/// CompareImplicitConversionSequences - Compare two implicit
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2).
ImplicitConversionSequence::CompareKind
Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
                                         const ImplicitConversionSequence& ICS2)
{
  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
  // conversion sequences (as defined in 13.3.3.1)
  //   -- a standard conversion sequence (13.3.3.1.1) is a better
  //      conversion sequence than a user-defined conversion sequence or
  //      an ellipsis conversion sequence, and
  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
  //      conversion sequence than an ellipsis conversion sequence
  //      (13.3.3.1.3).
  //
  // C++0x [over.best.ics]p10:
  //   For the purpose of ranking implicit conversion sequences as
  //   described in 13.3.3.2, the ambiguous conversion sequence is
  //   treated as a user-defined sequence that is indistinguishable
  //   from any other user-defined conversion sequence.
  if (ICS1.getKind() < ICS2.getKind()) {
    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
      return ImplicitConversionSequence::Better;
  } else if (ICS2.getKind() < ICS1.getKind()) {
    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
      return ImplicitConversionSequence::Worse;
  }

  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
    return ImplicitConversionSequence::Indistinguishable;

  // Two implicit conversion sequences of the same form are
  // indistinguishable conversion sequences unless one of the
  // following rules apply: (C++ 13.3.3.2p3):
  if (ICS1.isStandard())
    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
  else if (ICS1.isUserDefined()) {
    // User-defined conversion sequence U1 is a better conversion
    // sequence than another user-defined conversion sequence U2 if
    // they contain the same user-defined conversion function or
    // constructor and if the second standard conversion sequence of
    // U1 is better than the second standard conversion sequence of
    // U2 (C++ 13.3.3.2p3).
    if (ICS1.UserDefined.ConversionFunction ==
          ICS2.UserDefined.ConversionFunction)
      return CompareStandardConversionSequences(ICS1.UserDefined.After,
                                                ICS2.UserDefined.After);
  }

  return ImplicitConversionSequence::Indistinguishable;
}

// Per 13.3.3.2p3, compare the given standard conversion sequences to
// determine if one is a proper subset of the other.
static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext &Context,
                                 const StandardConversionSequence& SCS1,
                                 const StandardConversionSequence& SCS2) {
  ImplicitConversionSequence::CompareKind Result
    = ImplicitConversionSequence::Indistinguishable;

  if (SCS1.Second != SCS2.Second) {
    if (SCS1.Second == ICK_Identity)
      Result = ImplicitConversionSequence::Better;
    else if (SCS2.Second == ICK_Identity)
      Result = ImplicitConversionSequence::Worse;
    else
      return ImplicitConversionSequence::Indistinguishable;
  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
    return ImplicitConversionSequence::Indistinguishable;

  if (SCS1.Third == SCS2.Third) {
    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
                             : ImplicitConversionSequence::Indistinguishable;
  }

  if (SCS1.Third == ICK_Identity)
    return Result == ImplicitConversionSequence::Worse
             ? ImplicitConversionSequence::Indistinguishable
             : ImplicitConversionSequence::Better;

  if (SCS2.Third == ICK_Identity)
    return Result == ImplicitConversionSequence::Better
             ? ImplicitConversionSequence::Indistinguishable
             : ImplicitConversionSequence::Worse;
       
  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareStandardConversionSequences - Compare two standard
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
ImplicitConversionSequence::CompareKind
Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
                                         const StandardConversionSequence& SCS2)
{
  // Standard conversion sequence S1 is a better conversion sequence
  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):

  //  -- S1 is a proper subsequence of S2 (comparing the conversion
  //     sequences in the canonical form defined by 13.3.3.1.1,
  //     excluding any Lvalue Transformation; the identity conversion
  //     sequence is considered to be a subsequence of any
  //     non-identity conversion sequence) or, if not that,
  if (ImplicitConversionSequence::CompareKind CK
        = compareStandardConversionSubsets(Context, SCS1, SCS2))
    return CK;

  //  -- the rank of S1 is better than the rank of S2 (by the rules
  //     defined below), or, if not that,
  ImplicitConversionRank Rank1 = SCS1.getRank();
  ImplicitConversionRank Rank2 = SCS2.getRank();
  if (Rank1 < Rank2)
    return ImplicitConversionSequence::Better;
  else if (Rank2 < Rank1)
    return ImplicitConversionSequence::Worse;

  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
  // are indistinguishable unless one of the following rules
  // applies:

  //   A conversion that is not a conversion of a pointer, or
  //   pointer to member, to bool is better than another conversion
  //   that is such a conversion.
  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
    return SCS2.isPointerConversionToBool()
             ? ImplicitConversionSequence::Better
             : ImplicitConversionSequence::Worse;

  // C++ [over.ics.rank]p4b2:
  //
  //   If class B is derived directly or indirectly from class A,
  //   conversion of B* to A* is better than conversion of B* to
  //   void*, and conversion of A* to void* is better than conversion
  //   of B* to void*.
  bool SCS1ConvertsToVoid
    = SCS1.isPointerConversionToVoidPointer(Context);
  bool SCS2ConvertsToVoid
    = SCS2.isPointerConversionToVoidPointer(Context);
  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
    // Exactly one of the conversion sequences is a conversion to
    // a void pointer; it's the worse conversion.
    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
                              : ImplicitConversionSequence::Worse;
  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
    // Neither conversion sequence converts to a void pointer; compare
    // their derived-to-base conversions.
    if (ImplicitConversionSequence::CompareKind DerivedCK
          = CompareDerivedToBaseConversions(SCS1, SCS2))
      return DerivedCK;
  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
    // Both conversion sequences are conversions to void
    // pointers. Compare the source types to determine if there's an
    // inheritance relationship in their sources.
    QualType FromType1 = SCS1.getFromType();
    QualType FromType2 = SCS2.getFromType();

    // Adjust the types we're converting from via the array-to-pointer
    // conversion, if we need to.
    if (SCS1.First == ICK_Array_To_Pointer)
      FromType1 = Context.getArrayDecayedType(FromType1);
    if (SCS2.First == ICK_Array_To_Pointer)
      FromType2 = Context.getArrayDecayedType(FromType2);

    QualType FromPointee1
      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
    QualType FromPointee2
      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();

    if (IsDerivedFrom(FromPointee2, FromPointee1))
      return ImplicitConversionSequence::Better;
    else if (IsDerivedFrom(FromPointee1, FromPointee2))
      return ImplicitConversionSequence::Worse;

    // Objective-C++: If one interface is more specific than the
    // other, it is the better one.
    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
    if (FromIface1 && FromIface1) {
      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
        return ImplicitConversionSequence::Better;
      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
        return ImplicitConversionSequence::Worse;
    }
  }

  // Compare based on qualification conversions (C++ 13.3.3.2p3,
  // bullet 3).
  if (ImplicitConversionSequence::CompareKind QualCK
        = CompareQualificationConversions(SCS1, SCS2))
    return QualCK;

  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
    // C++0x [over.ics.rank]p3b4:
    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
    //      implicit object parameter of a non-static member function declared
    //      without a ref-qualifier, and S1 binds an rvalue reference to an
    //      rvalue and S2 binds an lvalue reference.
    // FIXME: We don't know if we're dealing with the implicit object parameter,
    // or if the member function in this case has a ref qualifier.
    // (Of course, we don't have ref qualifiers yet.)
    if (SCS1.RRefBinding != SCS2.RRefBinding)
      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
                              : ImplicitConversionSequence::Worse;

    // C++ [over.ics.rank]p3b4:
    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
    //      which the references refer are the same type except for
    //      top-level cv-qualifiers, and the type to which the reference
    //      initialized by S2 refers is more cv-qualified than the type
    //      to which the reference initialized by S1 refers.
    QualType T1 = SCS1.getToType(2);
    QualType T2 = SCS2.getToType(2);
    T1 = Context.getCanonicalType(T1);
    T2 = Context.getCanonicalType(T2);
    Qualifiers T1Quals, T2Quals;
    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
    if (UnqualT1 == UnqualT2) {
      // If the type is an array type, promote the element qualifiers to the type
      // for comparison.
      if (isa<ArrayType>(T1) && T1Quals)
        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
      if (isa<ArrayType>(T2) && T2Quals)
        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
      if (T2.isMoreQualifiedThan(T1))
        return ImplicitConversionSequence::Better;
      else if (T1.isMoreQualifiedThan(T2))
        return ImplicitConversionSequence::Worse;
    }
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// CompareQualificationConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
ImplicitConversionSequence::CompareKind
Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
                                      const StandardConversionSequence& SCS2) {
  // C++ 13.3.3.2p3:
  //  -- S1 and S2 differ only in their qualification conversion and
  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
  //     cv-qualification signature of type T1 is a proper subset of
  //     the cv-qualification signature of type T2, and S1 is not the
  //     deprecated string literal array-to-pointer conversion (4.2).
  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
    return ImplicitConversionSequence::Indistinguishable;

  // FIXME: the example in the standard doesn't use a qualification
  // conversion (!)
  QualType T1 = SCS1.getToType(2);
  QualType T2 = SCS2.getToType(2);
  T1 = Context.getCanonicalType(T1);
  T2 = Context.getCanonicalType(T2);
  Qualifiers T1Quals, T2Quals;
  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);

  // If the types are the same, we won't learn anything by unwrapped
  // them.
  if (UnqualT1 == UnqualT2)
    return ImplicitConversionSequence::Indistinguishable;

  // If the type is an array type, promote the element qualifiers to the type
  // for comparison.
  if (isa<ArrayType>(T1) && T1Quals)
    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
  if (isa<ArrayType>(T2) && T2Quals)
    T2 = Context.getQualifiedType(UnqualT2, T2Quals);

  ImplicitConversionSequence::CompareKind Result
    = ImplicitConversionSequence::Indistinguishable;
  while (UnwrapSimilarPointerTypes(T1, T2)) {
    // Within each iteration of the loop, we check the qualifiers to
    // determine if this still looks like a qualification
    // conversion. Then, if all is well, we unwrap one more level of
    // pointers or pointers-to-members and do it all again
    // until there are no more pointers or pointers-to-members left
    // to unwrap. This essentially mimics what
    // IsQualificationConversion does, but here we're checking for a
    // strict subset of qualifiers.
    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
      // The qualifiers are the same, so this doesn't tell us anything
      // about how the sequences rank.
      ;
    else if (T2.isMoreQualifiedThan(T1)) {
      // T1 has fewer qualifiers, so it could be the better sequence.
      if (Result == ImplicitConversionSequence::Worse)
        // Neither has qualifiers that are a subset of the other's
        // qualifiers.
        return ImplicitConversionSequence::Indistinguishable;

      Result = ImplicitConversionSequence::Better;
    } else if (T1.isMoreQualifiedThan(T2)) {
      // T2 has fewer qualifiers, so it could be the better sequence.
      if (Result == ImplicitConversionSequence::Better)
        // Neither has qualifiers that are a subset of the other's
        // qualifiers.
        return ImplicitConversionSequence::Indistinguishable;

      Result = ImplicitConversionSequence::Worse;
    } else {
      // Qualifiers are disjoint.
      return ImplicitConversionSequence::Indistinguishable;
    }

    // If the types after this point are equivalent, we're done.
    if (Context.hasSameUnqualifiedType(T1, T2))
      break;
  }

  // Check that the winning standard conversion sequence isn't using
  // the deprecated string literal array to pointer conversion.
  switch (Result) {
  case ImplicitConversionSequence::Better:
    if (SCS1.DeprecatedStringLiteralToCharPtr)
      Result = ImplicitConversionSequence::Indistinguishable;
    break;

  case ImplicitConversionSequence::Indistinguishable:
    break;

  case ImplicitConversionSequence::Worse:
    if (SCS2.DeprecatedStringLiteralToCharPtr)
      Result = ImplicitConversionSequence::Indistinguishable;
    break;
  }

  return Result;
}

/// CompareDerivedToBaseConversions - Compares two standard conversion
/// sequences to determine whether they can be ranked based on their
/// various kinds of derived-to-base conversions (C++
/// [over.ics.rank]p4b3).  As part of these checks, we also look at
/// conversions between Objective-C interface types.
ImplicitConversionSequence::CompareKind
Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
                                      const StandardConversionSequence& SCS2) {
  QualType FromType1 = SCS1.getFromType();
  QualType ToType1 = SCS1.getToType(1);
  QualType FromType2 = SCS2.getFromType();
  QualType ToType2 = SCS2.getToType(1);

  // Adjust the types we're converting from via the array-to-pointer
  // conversion, if we need to.
  if (SCS1.First == ICK_Array_To_Pointer)
    FromType1 = Context.getArrayDecayedType(FromType1);
  if (SCS2.First == ICK_Array_To_Pointer)
    FromType2 = Context.getArrayDecayedType(FromType2);

  // Canonicalize all of the types.
  FromType1 = Context.getCanonicalType(FromType1);
  ToType1 = Context.getCanonicalType(ToType1);
  FromType2 = Context.getCanonicalType(FromType2);
  ToType2 = Context.getCanonicalType(ToType2);

  // C++ [over.ics.rank]p4b3:
  //
  //   If class B is derived directly or indirectly from class A and
  //   class C is derived directly or indirectly from B,
  //
  // For Objective-C, we let A, B, and C also be Objective-C
  // interfaces.

  // Compare based on pointer conversions.
  if (SCS1.Second == ICK_Pointer_Conversion &&
      SCS2.Second == ICK_Pointer_Conversion &&
      /*FIXME: Remove if Objective-C id conversions get their own rank*/
      FromType1->isPointerType() && FromType2->isPointerType() &&
      ToType1->isPointerType() && ToType2->isPointerType()) {
    QualType FromPointee1
      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
    QualType ToPointee1
      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
    QualType FromPointee2
      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
    QualType ToPointee2
      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();

    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();

    //   -- conversion of C* to B* is better than conversion of C* to A*,
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
      if (IsDerivedFrom(ToPointee1, ToPointee2))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(ToPointee2, ToPointee1))
        return ImplicitConversionSequence::Worse;

      if (ToIface1 && ToIface2) {
        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
          return ImplicitConversionSequence::Better;
        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
          return ImplicitConversionSequence::Worse;
      }
    }

    //   -- conversion of B* to A* is better than conversion of C* to A*,
    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
      if (IsDerivedFrom(FromPointee2, FromPointee1))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(FromPointee1, FromPointee2))
        return ImplicitConversionSequence::Worse;

      if (FromIface1 && FromIface2) {
        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
          return ImplicitConversionSequence::Better;
        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
          return ImplicitConversionSequence::Worse;
      }
    }
  }

  // Ranking of member-pointer types.
  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
    const MemberPointerType * FromMemPointer1 = 
                                        FromType1->getAs<MemberPointerType>();
    const MemberPointerType * ToMemPointer1 = 
                                          ToType1->getAs<MemberPointerType>();
    const MemberPointerType * FromMemPointer2 = 
                                          FromType2->getAs<MemberPointerType>();
    const MemberPointerType * ToMemPointer2 = 
                                          ToType2->getAs<MemberPointerType>();
    const Type *FromPointeeType1 = FromMemPointer1->getClass();
    const Type *ToPointeeType1 = ToMemPointer1->getClass();
    const Type *FromPointeeType2 = FromMemPointer2->getClass();
    const Type *ToPointeeType2 = ToMemPointer2->getClass();
    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
    // conversion of A::* to B::* is better than conversion of A::* to C::*,
    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
      if (IsDerivedFrom(ToPointee1, ToPointee2))
        return ImplicitConversionSequence::Worse;
      else if (IsDerivedFrom(ToPointee2, ToPointee1))
        return ImplicitConversionSequence::Better;
    }
    // conversion of B::* to C::* is better than conversion of A::* to C::*
    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
      if (IsDerivedFrom(FromPointee1, FromPointee2))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(FromPointee2, FromPointee1))
        return ImplicitConversionSequence::Worse;
    }
  }
  
  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) && 
      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
      SCS1.Second == ICK_Derived_To_Base) {
    //   -- conversion of C to B is better than conversion of C to A,
    //   -- binding of an expression of type C to a reference of type
    //      B& is better than binding an expression of type C to a
    //      reference of type A&,
    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
      if (IsDerivedFrom(ToType1, ToType2))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(ToType2, ToType1))
        return ImplicitConversionSequence::Worse;
    }

    //   -- conversion of B to A is better than conversion of C to A.
    //   -- binding of an expression of type B to a reference of type
    //      A& is better than binding an expression of type C to a
    //      reference of type A&,
    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
      if (IsDerivedFrom(FromType2, FromType1))
        return ImplicitConversionSequence::Better;
      else if (IsDerivedFrom(FromType1, FromType2))
        return ImplicitConversionSequence::Worse;
    }
  }

  return ImplicitConversionSequence::Indistinguishable;
}

/// TryCopyInitialization - Try to copy-initialize a value of type
/// ToType from the expression From. Return the implicit conversion
/// sequence required to pass this argument, which may be a bad
/// conversion sequence (meaning that the argument cannot be passed to
/// a parameter of this type). If @p SuppressUserConversions, then we
/// do not permit any user-defined conversion sequences. If @p ForceRValue,
/// then we treat @p From as an rvalue, even if it is an lvalue.
ImplicitConversionSequence
Sema::TryCopyInitialization(Expr *From, QualType ToType,
                            bool SuppressUserConversions, bool ForceRValue,
                            bool InOverloadResolution) {
  if (ToType->isReferenceType()) {
    ImplicitConversionSequence ICS;
    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
    CheckReferenceInit(From, ToType,
                       /*FIXME:*/From->getLocStart(),
                       SuppressUserConversions,
                       /*AllowExplicit=*/false,
                       ForceRValue,
                       &ICS);
    return ICS;
  } else {
    return TryImplicitConversion(From, ToType,
                                 SuppressUserConversions,
                                 /*AllowExplicit=*/false,
                                 ForceRValue,
                                 InOverloadResolution);
  }
}

/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
/// the expression @p From. Returns true (and emits a diagnostic) if there was
/// an error, returns false if the initialization succeeded. Elidable should
/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
/// differently in C++0x for this case.
bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
                                     AssignmentAction Action, bool Elidable) {
  if (!getLangOptions().CPlusPlus) {
    // In C, argument passing is the same as performing an assignment.
    QualType FromType = From->getType();

    AssignConvertType ConvTy =
      CheckSingleAssignmentConstraints(ToType, From);
    if (ConvTy != Compatible &&
        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
      ConvTy = Compatible;

    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
                                    FromType, From, Action);
  }

  if (ToType->isReferenceType())
    return CheckReferenceInit(From, ToType,
                              /*FIXME:*/From->getLocStart(),
                              /*SuppressUserConversions=*/false,
                              /*AllowExplicit=*/false,
                              /*ForceRValue=*/false);

  if (!PerformImplicitConversion(From, ToType, Action,
                                 /*AllowExplicit=*/false, Elidable))
    return false;
  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
    return Diag(From->getSourceRange().getBegin(),
                diag::err_typecheck_convert_incompatible)
      << ToType << From->getType() << Action << From->getSourceRange();
  return true;
}

/// TryObjectArgumentInitialization - Try to initialize the object
/// parameter of the given member function (@c Method) from the
/// expression @p From.
ImplicitConversionSequence
Sema::TryObjectArgumentInitialization(QualType OrigFromType,
                                      CXXMethodDecl *Method,
                                      CXXRecordDecl *ActingContext) {
  QualType ClassType = Context.getTypeDeclType(ActingContext);
  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
  //                 const volatile object.
  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);

  // Set up the conversion sequence as a "bad" conversion, to allow us
  // to exit early.
  ImplicitConversionSequence ICS;

  // We need to have an object of class type.
  QualType FromType = OrigFromType;
  if (const PointerType *PT = FromType->getAs<PointerType>())
    FromType = PT->getPointeeType();

  assert(FromType->isRecordType());

  // The implicit object parameter is has the type "reference to cv X",
  // where X is the class of which the function is a member
  // (C++ [over.match.funcs]p4). However, when finding an implicit
  // conversion sequence for the argument, we are not allowed to
  // create temporaries or perform user-defined conversions
  // (C++ [over.match.funcs]p5). We perform a simplified version of
  // reference binding here, that allows class rvalues to bind to
  // non-constant references.

  // First check the qualifiers. We don't care about lvalue-vs-rvalue
  // with the implicit object parameter (C++ [over.match.funcs]p5).
  QualType FromTypeCanon = Context.getCanonicalType(FromType);
  if (ImplicitParamType.getCVRQualifiers() 
                                    != FromTypeCanon.getLocalCVRQualifiers() &&
      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
    ICS.setBad(BadConversionSequence::bad_qualifiers,
               OrigFromType, ImplicitParamType);
    return ICS;
  }

  // Check that we have either the same type or a derived type. It
  // affects the conversion rank.
  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
  ImplicitConversionKind SecondKind;
  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
    SecondKind = ICK_Identity;
  } else if (IsDerivedFrom(FromType, ClassType))
    SecondKind = ICK_Derived_To_Base;
  else {
    ICS.setBad(BadConversionSequence::unrelated_class,
               FromType, ImplicitParamType);
    return ICS;
  }

  // Success. Mark this as a reference binding.
  ICS.setStandard();
  ICS.Standard.setAsIdentityConversion();
  ICS.Standard.Second = SecondKind;
  ICS.Standard.setFromType(FromType);
  ICS.Standard.setAllToTypes(ImplicitParamType);
  ICS.Standard.ReferenceBinding = true;
  ICS.Standard.DirectBinding = true;
  ICS.Standard.RRefBinding = false;
  return ICS;
}

/// PerformObjectArgumentInitialization - Perform initialization of
/// the implicit object parameter for the given Method with the given
/// expression.
bool
Sema::PerformObjectArgumentInitialization(Expr *&From, 
                                          NestedNameSpecifier *Qualifier, 
                                          CXXMethodDecl *Method) {
  QualType FromRecordType, DestType;
  QualType ImplicitParamRecordType  =
    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();

  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
    FromRecordType = PT->getPointeeType();
    DestType = Method->getThisType(Context);
  } else {
    FromRecordType = From->getType();
    DestType = ImplicitParamRecordType;
  }

  // Note that we always use the true parent context when performing
  // the actual argument initialization.
  ImplicitConversionSequence ICS
    = TryObjectArgumentInitialization(From->getType(), Method,
                                      Method->getParent());
  if (ICS.isBad())
    return Diag(From->getSourceRange().getBegin(),
                diag::err_implicit_object_parameter_init)
       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();

  if (ICS.Standard.Second == ICK_Derived_To_Base)
    return PerformObjectMemberConversion(From, Qualifier, Method);

  if (!Context.hasSameType(From->getType(), DestType))
    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
  return false;
}

/// TryContextuallyConvertToBool - Attempt to contextually convert the
/// expression From to bool (C++0x [conv]p3).
ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
  return TryImplicitConversion(From, Context.BoolTy,
                               // FIXME: Are these flags correct?
                               /*SuppressUserConversions=*/false,
                               /*AllowExplicit=*/true,
                               /*ForceRValue=*/false,
                               /*InOverloadResolution=*/false);
}

/// PerformContextuallyConvertToBool - Perform a contextual conversion
/// of the expression From to bool (C++0x [conv]p3).
bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
  if (!ICS.isBad())
    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
  
  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
    return  Diag(From->getSourceRange().getBegin(),
                 diag::err_typecheck_bool_condition)
                  << From->getType() << From->getSourceRange();
  return true;
}

/// AddOverloadCandidate - Adds the given function to the set of
/// candidate functions, using the given function call arguments.  If
/// @p SuppressUserConversions, then don't allow user-defined
/// conversions via constructors or conversion operators.
/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
/// hacky way to implement the overloading rules for elidable copy
/// initialization in C++0x (C++0x 12.8p15).
///
/// \para PartialOverloading true if we are performing "partial" overloading
/// based on an incomplete set of function arguments. This feature is used by
/// code completion.
void
Sema::AddOverloadCandidate(FunctionDecl *Function,
                           AccessSpecifier Access,
                           Expr **Args, unsigned NumArgs,
                           OverloadCandidateSet& CandidateSet,
                           bool SuppressUserConversions,
                           bool ForceRValue,
                           bool PartialOverloading) {
  const FunctionProtoType* Proto
    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
  assert(Proto && "Functions without a prototype cannot be overloaded");
  assert(!Function->getDescribedFunctionTemplate() &&
         "Use AddTemplateOverloadCandidate for function templates");

  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
    if (!isa<CXXConstructorDecl>(Method)) {
      // If we get here, it's because we're calling a member function
      // that is named without a member access expression (e.g.,
      // "this->f") that was either written explicitly or created
      // implicitly. This can happen with a qualified call to a member
      // function, e.g., X::f(). We use an empty type for the implied
      // object argument (C++ [over.call.func]p3), and the acting context
      // is irrelevant.
      AddMethodCandidate(Method, Access, Method->getParent(),
                         QualType(), Args, NumArgs, CandidateSet,
                         SuppressUserConversions, ForceRValue);
      return;
    }
    // We treat a constructor like a non-member function, since its object
    // argument doesn't participate in overload resolution.
  }

  if (!CandidateSet.isNewCandidate(Function))
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);

  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
    // C++ [class.copy]p3:
    //   A member function template is never instantiated to perform the copy
    //   of a class object to an object of its class type.
    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
    if (NumArgs == 1 && 
        Constructor->isCopyConstructorLikeSpecialization() &&
        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
         IsDerivedFrom(Args[0]->getType(), ClassType)))
      return;
  }
  
  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = Function;
  Candidate.Access = Access;
  Candidate.Viable = true;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;

  unsigned NumArgsInProto = Proto->getNumArgs();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 
      !Proto->isVariadic()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_many_arguments;
    return;
  }

  // (C++ 13.3.2p2): A candidate function having more than m parameters
  // is viable only if the (m+1)st parameter has a default argument
  // (8.3.6). For the purposes of overload resolution, the
  // parameter list is truncated on the right, so that there are
  // exactly m parameters.
  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
    // Not enough arguments.
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_few_arguments;
    return;
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  Candidate.Conversions.resize(NumArgs);
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    if (ArgIdx < NumArgsInProto) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getArgType(ArgIdx);
      Candidate.Conversions[ArgIdx]
        = TryCopyInitialization(Args[ArgIdx], ParamType,
                                SuppressUserConversions, ForceRValue,
                                /*InOverloadResolution=*/true);
      if (Candidate.Conversions[ArgIdx].isBad()) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_conversion;
        break;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx].setEllipsis();
    }
  }
}

/// \brief Add all of the function declarations in the given function set to
/// the overload canddiate set.
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
                                 Expr **Args, unsigned NumArgs,
                                 OverloadCandidateSet& CandidateSet,
                                 bool SuppressUserConversions) {
  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
    // FIXME: using declarations
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(),
                           cast<CXXMethodDecl>(FD)->getParent(),
                           Args[0]->getType(), Args + 1, NumArgs - 1, 
                           CandidateSet, SuppressUserConversions);
      else
        AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
                             SuppressUserConversions);
    } else {
      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
        AddMethodTemplateCandidate(FunTmpl, F.getAccess(),
                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
                                   /*FIXME: explicit args */ 0,
                                   Args[0]->getType(), Args + 1, NumArgs - 1,
                                   CandidateSet,
                                   SuppressUserConversions);
      else
        AddTemplateOverloadCandidate(FunTmpl, AS_none,
                                     /*FIXME: explicit args */ 0,
                                     Args, NumArgs, CandidateSet,
                                     SuppressUserConversions);
    }
  }
}

/// AddMethodCandidate - Adds a named decl (which is some kind of
/// method) as a method candidate to the given overload set.
void Sema::AddMethodCandidate(NamedDecl *Decl,
                              AccessSpecifier Access,
                              QualType ObjectType,
                              Expr **Args, unsigned NumArgs,
                              OverloadCandidateSet& CandidateSet,
                              bool SuppressUserConversions, bool ForceRValue) {
  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());

  if (isa<UsingShadowDecl>(Decl))
    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
  
  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
           "Expected a member function template");
    AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0,
                               ObjectType, Args, NumArgs,
                               CandidateSet,
                               SuppressUserConversions,
                               ForceRValue);
  } else {
    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext,
                       ObjectType, Args, NumArgs,
                       CandidateSet, SuppressUserConversions, ForceRValue);
  }
}

/// AddMethodCandidate - Adds the given C++ member function to the set
/// of candidate functions, using the given function call arguments
/// and the object argument (@c Object). For example, in a call
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
/// allow user-defined conversions via constructors or conversion
/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
/// a slightly hacky way to implement the overloading rules for elidable copy
/// initialization in C++0x (C++0x 12.8p15).
void
Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access,
                         CXXRecordDecl *ActingContext, QualType ObjectType,
                         Expr **Args, unsigned NumArgs,
                         OverloadCandidateSet& CandidateSet,
                         bool SuppressUserConversions, bool ForceRValue) {
  const FunctionProtoType* Proto
    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
  assert(Proto && "Methods without a prototype cannot be overloaded");
  assert(!isa<CXXConstructorDecl>(Method) &&
         "Use AddOverloadCandidate for constructors");

  if (!CandidateSet.isNewCandidate(Method))
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);

  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = Method;
  Candidate.Access = Access;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;

  unsigned NumArgsInProto = Proto->getNumArgs();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_many_arguments;
    return;
  }

  // (C++ 13.3.2p2): A candidate function having more than m parameters
  // is viable only if the (m+1)st parameter has a default argument
  // (8.3.6). For the purposes of overload resolution, the
  // parameter list is truncated on the right, so that there are
  // exactly m parameters.
  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
  if (NumArgs < MinRequiredArgs) {
    // Not enough arguments.
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_few_arguments;
    return;
  }

  Candidate.Viable = true;
  Candidate.Conversions.resize(NumArgs + 1);

  if (Method->isStatic() || ObjectType.isNull())
    // The implicit object argument is ignored.
    Candidate.IgnoreObjectArgument = true;
  else {
    // Determine the implicit conversion sequence for the object
    // parameter.
    Candidate.Conversions[0]
      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
    if (Candidate.Conversions[0].isBad()) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_bad_conversion;
      return;
    }
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    if (ArgIdx < NumArgsInProto) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getArgType(ArgIdx);
      Candidate.Conversions[ArgIdx + 1]
        = TryCopyInitialization(Args[ArgIdx], ParamType,
                                SuppressUserConversions, ForceRValue,
                                /*InOverloadResolution=*/true);
      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_conversion;
        break;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx + 1].setEllipsis();
    }
  }
}

/// \brief Add a C++ member function template as a candidate to the candidate
/// set, using template argument deduction to produce an appropriate member
/// function template specialization.
void
Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
                                 AccessSpecifier Access,
                                 CXXRecordDecl *ActingContext,
                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
                                 QualType ObjectType,
                                 Expr **Args, unsigned NumArgs,
                                 OverloadCandidateSet& CandidateSet,
                                 bool SuppressUserConversions,
                                 bool ForceRValue) {
  if (!CandidateSet.isNewCandidate(MethodTmpl))
    return;

  // C++ [over.match.funcs]p7:
  //   In each case where a candidate is a function template, candidate
  //   function template specializations are generated using template argument
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
  //   candidate functions in the usual way.113) A given name can refer to one
  //   or more function templates and also to a set of overloaded non-template
  //   functions. In such a case, the candidate functions generated from each
  //   function template are combined with the set of non-template candidate
  //   functions.
  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
  FunctionDecl *Specialization = 0;
  if (TemplateDeductionResult Result
      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
                                Args, NumArgs, Specialization, Info)) {
        // FIXME: Record what happened with template argument deduction, so
        // that we can give the user a beautiful diagnostic.
        (void)Result;
        return;
      }

  // Add the function template specialization produced by template argument
  // deduction as a candidate.
  assert(Specialization && "Missing member function template specialization?");
  assert(isa<CXXMethodDecl>(Specialization) &&
         "Specialization is not a member function?");
  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access,
                     ActingContext, ObjectType, Args, NumArgs,
                     CandidateSet, SuppressUserConversions, ForceRValue);
}

/// \brief Add a C++ function template specialization as a candidate
/// in the candidate set, using template argument deduction to produce
/// an appropriate function template specialization.
void
Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
                                   AccessSpecifier Access,
                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
                                   Expr **Args, unsigned NumArgs,
                                   OverloadCandidateSet& CandidateSet,
                                   bool SuppressUserConversions,
                                   bool ForceRValue) {
  if (!CandidateSet.isNewCandidate(FunctionTemplate))
    return;

  // C++ [over.match.funcs]p7:
  //   In each case where a candidate is a function template, candidate
  //   function template specializations are generated using template argument
  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
  //   candidate functions in the usual way.113) A given name can refer to one
  //   or more function templates and also to a set of overloaded non-template
  //   functions. In such a case, the candidate functions generated from each
  //   function template are combined with the set of non-template candidate
  //   functions.
  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
  FunctionDecl *Specialization = 0;
  if (TemplateDeductionResult Result
        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
                                  Args, NumArgs, Specialization, Info)) {
    CandidateSet.push_back(OverloadCandidate());
    OverloadCandidate &Candidate = CandidateSet.back();
    Candidate.Function = FunctionTemplate->getTemplatedDecl();
    Candidate.Access = Access;
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_deduction;
    Candidate.IsSurrogate = false;
    Candidate.IgnoreObjectArgument = false;

    // TODO: record more information about failed template arguments
    Candidate.DeductionFailure.Result = Result;
    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
    return;
  }

  // Add the function template specialization produced by template argument
  // deduction as a candidate.
  assert(Specialization && "Missing function template specialization?");
  AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet,
                       SuppressUserConversions, ForceRValue);
}

/// AddConversionCandidate - Add a C++ conversion function as a
/// candidate in the candidate set (C++ [over.match.conv],
/// C++ [over.match.copy]). From is the expression we're converting from,
/// and ToType is the type that we're eventually trying to convert to
/// (which may or may not be the same type as the type that the
/// conversion function produces).
void
Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
                             AccessSpecifier Access,
                             CXXRecordDecl *ActingContext,
                             Expr *From, QualType ToType,
                             OverloadCandidateSet& CandidateSet) {
  assert(!Conversion->getDescribedFunctionTemplate() &&
         "Conversion function templates use AddTemplateConversionCandidate");

  if (!CandidateSet.isNewCandidate(Conversion))
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);

  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = Conversion;
  Candidate.Access = Access;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;
  Candidate.FinalConversion.setAsIdentityConversion();
  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
  Candidate.FinalConversion.setAllToTypes(ToType);

  // Determine the implicit conversion sequence for the implicit
  // object parameter.
  Candidate.Viable = true;
  Candidate.Conversions.resize(1);
  Candidate.Conversions[0]
    = TryObjectArgumentInitialization(From->getType(), Conversion,
                                      ActingContext);
  // Conversion functions to a different type in the base class is visible in 
  // the derived class.  So, a derived to base conversion should not participate
  // in overload resolution. 
  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
    Candidate.Conversions[0].Standard.Second = ICK_Identity;
  if (Candidate.Conversions[0].isBad()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_conversion;
    return;
  }
  
  // We won't go through a user-define type conversion function to convert a 
  // derived to base as such conversions are given Conversion Rank. They only
  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
  QualType FromCanon
    = Context.getCanonicalType(From->getType().getUnqualifiedType());
  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_trivial_conversion;
    return;
  }
  

  // To determine what the conversion from the result of calling the
  // conversion function to the type we're eventually trying to
  // convert to (ToType), we need to synthesize a call to the
  // conversion function and attempt copy initialization from it. This
  // makes sure that we get the right semantics with respect to
  // lvalues/rvalues and the type. Fortunately, we can allocate this
  // call on the stack and we don't need its arguments to be
  // well-formed.
  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
                            From->getLocStart());
  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
                                CastExpr::CK_FunctionToPointerDecay,
                                &ConversionRef, false);

  // Note that it is safe to allocate CallExpr on the stack here because
  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
  // allocator).
  CallExpr Call(Context, &ConversionFn, 0, 0,
                Conversion->getConversionType().getNonReferenceType(),
                From->getLocStart());
  ImplicitConversionSequence ICS =
    TryCopyInitialization(&Call, ToType,
                          /*SuppressUserConversions=*/true,
                          /*ForceRValue=*/false,
                          /*InOverloadResolution=*/false);

  switch (ICS.getKind()) {
  case ImplicitConversionSequence::StandardConversion:
    Candidate.FinalConversion = ICS.Standard;
    break;

  case ImplicitConversionSequence::BadConversion:
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_final_conversion;
    break;

  default:
    assert(false &&
           "Can only end up with a standard conversion sequence or failure");
  }
}

/// \brief Adds a conversion function template specialization
/// candidate to the overload set, using template argument deduction
/// to deduce the template arguments of the conversion function
/// template from the type that we are converting to (C++
/// [temp.deduct.conv]).
void
Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
                                     AccessSpecifier Access,
                                     CXXRecordDecl *ActingDC,
                                     Expr *From, QualType ToType,
                                     OverloadCandidateSet &CandidateSet) {
  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
         "Only conversion function templates permitted here");

  if (!CandidateSet.isNewCandidate(FunctionTemplate))
    return;

  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
  CXXConversionDecl *Specialization = 0;
  if (TemplateDeductionResult Result
        = DeduceTemplateArguments(FunctionTemplate, ToType,
                                  Specialization, Info)) {
    // FIXME: Record what happened with template argument deduction, so
    // that we can give the user a beautiful diagnostic.
    (void)Result;
    return;
  }

  // Add the conversion function template specialization produced by
  // template argument deduction as a candidate.
  assert(Specialization && "Missing function template specialization?");
  AddConversionCandidate(Specialization, Access, ActingDC, From, ToType,
                         CandidateSet);
}

/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
/// converts the given @c Object to a function pointer via the
/// conversion function @c Conversion, and then attempts to call it
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
/// the type of function that we'll eventually be calling.
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
                                 AccessSpecifier Access,
                                 CXXRecordDecl *ActingContext,
                                 const FunctionProtoType *Proto,
                                 QualType ObjectType,
                                 Expr **Args, unsigned NumArgs,
                                 OverloadCandidateSet& CandidateSet) {
  if (!CandidateSet.isNewCandidate(Conversion))
    return;

  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);

  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = 0;
  Candidate.Access = Access;
  Candidate.Surrogate = Conversion;
  Candidate.Viable = true;
  Candidate.IsSurrogate = true;
  Candidate.IgnoreObjectArgument = false;
  Candidate.Conversions.resize(NumArgs + 1);

  // Determine the implicit conversion sequence for the implicit
  // object parameter.
  ImplicitConversionSequence ObjectInit
    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
  if (ObjectInit.isBad()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_bad_conversion;
    Candidate.Conversions[0] = ObjectInit;
    return;
  }

  // The first conversion is actually a user-defined conversion whose
  // first conversion is ObjectInit's standard conversion (which is
  // effectively a reference binding). Record it as such.
  Candidate.Conversions[0].setUserDefined();
  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
  Candidate.Conversions[0].UserDefined.After
    = Candidate.Conversions[0].UserDefined.Before;
  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();

  // Find the
  unsigned NumArgsInProto = Proto->getNumArgs();

  // (C++ 13.3.2p2): A candidate function having fewer than m
  // parameters is viable only if it has an ellipsis in its parameter
  // list (8.3.5).
  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_many_arguments;
    return;
  }

  // Function types don't have any default arguments, so just check if
  // we have enough arguments.
  if (NumArgs < NumArgsInProto) {
    // Not enough arguments.
    Candidate.Viable = false;
    Candidate.FailureKind = ovl_fail_too_few_arguments;
    return;
  }

  // Determine the implicit conversion sequences for each of the
  // arguments.
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    if (ArgIdx < NumArgsInProto) {
      // (C++ 13.3.2p3): for F to be a viable function, there shall
      // exist for each argument an implicit conversion sequence
      // (13.3.3.1) that converts that argument to the corresponding
      // parameter of F.
      QualType ParamType = Proto->getArgType(ArgIdx);
      Candidate.Conversions[ArgIdx + 1]
        = TryCopyInitialization(Args[ArgIdx], ParamType,
                                /*SuppressUserConversions=*/false,
                                /*ForceRValue=*/false,
                                /*InOverloadResolution=*/false);
      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
        Candidate.Viable = false;
        Candidate.FailureKind = ovl_fail_bad_conversion;
        break;
      }
    } else {
      // (C++ 13.3.2p2): For the purposes of overload resolution, any
      // argument for which there is no corresponding parameter is
      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
      Candidate.Conversions[ArgIdx + 1].setEllipsis();
    }
  }
}

// FIXME: This will eventually be removed, once we've migrated all of the
// operator overloading logic over to the scheme used by binary operators, which
// works for template instantiation.
void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
                                 SourceLocation OpLoc,
                                 Expr **Args, unsigned NumArgs,
                                 OverloadCandidateSet& CandidateSet,
                                 SourceRange OpRange) {
  UnresolvedSet<16> Fns;

  QualType T1 = Args[0]->getType();
  QualType T2;
  if (NumArgs > 1)
    T2 = Args[1]->getType();

  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
  if (S)
    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
                                       CandidateSet);
  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
}

/// \brief Add overload candidates for overloaded operators that are
/// member functions.
///
/// Add the overloaded operator candidates that are member functions
/// for the operator Op that was used in an operator expression such
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
/// CandidateSet will store the added overload candidates. (C++
/// [over.match.oper]).
void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
                                       SourceLocation OpLoc,
                                       Expr **Args, unsigned NumArgs,
                                       OverloadCandidateSet& CandidateSet,
                                       SourceRange OpRange) {
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);

  // C++ [over.match.oper]p3:
  //   For a unary operator @ with an operand of a type whose
  //   cv-unqualified version is T1, and for a binary operator @ with
  //   a left operand of a type whose cv-unqualified version is T1 and
  //   a right operand of a type whose cv-unqualified version is T2,
  //   three sets of candidate functions, designated member
  //   candidates, non-member candidates and built-in candidates, are
  //   constructed as follows:
  QualType T1 = Args[0]->getType();
  QualType T2;
  if (NumArgs > 1)
    T2 = Args[1]->getType();

  //     -- If T1 is a class type, the set of member candidates is the
  //        result of the qualified lookup of T1::operator@
  //        (13.3.1.1.1); otherwise, the set of member candidates is
  //        empty.
  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
    // Complete the type if it can be completed. Otherwise, we're done.
    if (RequireCompleteType(OpLoc, T1, PDiag()))
      return;

    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
    LookupQualifiedName(Operators, T1Rec->getDecl());
    Operators.suppressDiagnostics();

    for (LookupResult::iterator Oper = Operators.begin(),
                             OperEnd = Operators.end();
         Oper != OperEnd;
         ++Oper)
      AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(),
                         Args + 1, NumArgs - 1, CandidateSet,
                         /* SuppressUserConversions = */ false);
  }
}

/// AddBuiltinCandidate - Add a candidate for a built-in
/// operator. ResultTy and ParamTys are the result and parameter types
/// of the built-in candidate, respectively. Args and NumArgs are the
/// arguments being passed to the candidate. IsAssignmentOperator
/// should be true when this built-in candidate is an assignment
/// operator. NumContextualBoolArguments is the number of arguments
/// (at the beginning of the argument list) that will be contextually
/// converted to bool.
void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
                               Expr **Args, unsigned NumArgs,
                               OverloadCandidateSet& CandidateSet,
                               bool IsAssignmentOperator,
                               unsigned NumContextualBoolArguments) {
  // Overload resolution is always an unevaluated context.
  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);

  // Add this candidate
  CandidateSet.push_back(OverloadCandidate());
  OverloadCandidate& Candidate = CandidateSet.back();
  Candidate.Function = 0;
  Candidate.Access = AS_none;
  Candidate.IsSurrogate = false;
  Candidate.IgnoreObjectArgument = false;
  Candidate.BuiltinTypes.ResultTy = ResultTy;
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];

  // Determine the implicit conversion sequences for each of the
  // arguments.
  Candidate.Viable = true;
  Candidate.Conversions.resize(NumArgs);
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
    // C++ [over.match.oper]p4:
    //   For the built-in assignment operators, conversions of the
    //   left operand are restricted as follows:
    //     -- no temporaries are introduced to hold the left operand, and
    //     -- no user-defined conversions are applied to the left
    //        operand to achieve a type match with the left-most
    //        parameter of a built-in candidate.
    //
    // We block these conversions by turning off user-defined
    // conversions, since that is the only way that initialization of
    // a reference to a non-class type can occur from something that
    // is not of the same type.
    if (ArgIdx < NumContextualBoolArguments) {
      assert(ParamTys[ArgIdx] == Context.BoolTy &&
             "Contextual conversion to bool requires bool type");
      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
    } else {
      Candidate.Conversions[ArgIdx]
        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
                                ArgIdx == 0 && IsAssignmentOperator,
                                /*ForceRValue=*/false,
                                /*InOverloadResolution=*/false);
    }
    if (Candidate.Conversions[ArgIdx].isBad()) {
      Candidate.Viable = false;
      Candidate.FailureKind = ovl_fail_bad_conversion;
      break;
    }
  }
}

/// BuiltinCandidateTypeSet - A set of types that will be used for the
/// candidate operator functions for built-in operators (C++
/// [over.built]). The types are separated into pointer types and
/// enumeration types.
class BuiltinCandidateTypeSet  {
  /// TypeSet - A set of types.
  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;

  /// PointerTypes - The set of pointer types that will be used in the
  /// built-in candidates.
  TypeSet PointerTypes;

  /// MemberPointerTypes - The set of member pointer types that will be
  /// used in the built-in candidates.
  TypeSet MemberPointerTypes;

  /// EnumerationTypes - The set of enumeration types that will be
  /// used in the built-in candidates.
  TypeSet EnumerationTypes;

  /// Sema - The semantic analysis instance where we are building the
  /// candidate type set.
  Sema &SemaRef;

  /// Context - The AST context in which we will build the type sets.
  ASTContext &Context;

  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
                                               const Qualifiers &VisibleQuals);
  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);

public:
  /// iterator - Iterates through the types that are part of the set.
  typedef TypeSet::iterator iterator;

  BuiltinCandidateTypeSet(Sema &SemaRef)
    : SemaRef(SemaRef), Context(SemaRef.Context) { }

  void AddTypesConvertedFrom(QualType Ty, 
                             SourceLocation Loc,
                             bool AllowUserConversions,
                             bool AllowExplicitConversions,
                             const Qualifiers &VisibleTypeConversionsQuals);

  /// pointer_begin - First pointer type found;
  iterator pointer_begin() { return PointerTypes.begin(); }

  /// pointer_end - Past the last pointer type found;
  iterator pointer_end() { return PointerTypes.end(); }

  /// member_pointer_begin - First member pointer type found;
  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }

  /// member_pointer_end - Past the last member pointer type found;
  iterator member_pointer_end() { return MemberPointerTypes.end(); }

  /// enumeration_begin - First enumeration type found;
  iterator enumeration_begin() { return EnumerationTypes.begin(); }

  /// enumeration_end - Past the last enumeration type found;
  iterator enumeration_end() { return EnumerationTypes.end(); }
};

/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
/// the set of pointer types along with any more-qualified variants of
/// that type. For example, if @p Ty is "int const *", this routine
/// will add "int const *", "int const volatile *", "int const
/// restrict *", and "int const volatile restrict *" to the set of
/// pointer types. Returns true if the add of @p Ty itself succeeded,
/// false otherwise.
///
/// FIXME: what to do about extended qualifiers?
bool
BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
                                             const Qualifiers &VisibleQuals) {

  // Insert this type.
  if (!PointerTypes.insert(Ty))
    return false;

  const PointerType *PointerTy = Ty->getAs<PointerType>();
  assert(PointerTy && "type was not a pointer type!");

  QualType PointeeTy = PointerTy->getPointeeType();
  // Don't add qualified variants of arrays. For one, they're not allowed
  // (the qualifier would sink to the element type), and for another, the
  // only overload situation where it matters is subscript or pointer +- int,
  // and those shouldn't have qualifier variants anyway.
  if (PointeeTy->isArrayType())
    return true;
  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
    BaseCVR = Array->getElementType().getCVRQualifiers();
  bool hasVolatile = VisibleQuals.hasVolatile();
  bool hasRestrict = VisibleQuals.hasRestrict();
  
  // Iterate through all strict supersets of BaseCVR.
  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
    if ((CVR | BaseCVR) != CVR) continue;
    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
    // in the types.
    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
    PointerTypes.insert(Context.getPointerType(QPointeeTy));
  }

  return true;
}

/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
/// to the set of pointer types along with any more-qualified variants of
/// that type. For example, if @p Ty is "int const *", this routine
/// will add "int const *", "int const volatile *", "int const
/// restrict *", and "int const volatile restrict *" to the set of
/// pointer types. Returns true if the add of @p Ty itself succeeded,
/// false otherwise.
///
/// FIXME: what to do about extended qualifiers?
bool
BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
    QualType Ty) {
  // Insert this type.
  if (!MemberPointerTypes.insert(Ty))
    return false;

  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
  assert(PointerTy && "type was not a member pointer type!");

  QualType PointeeTy = PointerTy->getPointeeType();
  // Don't add qualified variants of arrays. For one, they're not allowed
  // (the qualifier would sink to the element type), and for another, the
  // only overload situation where it matters is subscript or pointer +- int,
  // and those shouldn't have qualifier variants anyway.
  if (PointeeTy->isArrayType())
    return true;
  const Type *ClassTy = PointerTy->getClass();

  // Iterate through all strict supersets of the pointee type's CVR
  // qualifiers.
  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
    if ((CVR | BaseCVR) != CVR) continue;
    
    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
  }

  return true;
}

/// AddTypesConvertedFrom - Add each of the types to which the type @p
/// Ty can be implicit converted to the given set of @p Types. We're
/// primarily interested in pointer types and enumeration types. We also
/// take member pointer types, for the conditional operator.
/// AllowUserConversions is true if we should look at the conversion
/// functions of a class type, and AllowExplicitConversions if we
/// should also include the explicit conversion functions of a class
/// type.
void
BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
                                               SourceLocation Loc,
                                               bool AllowUserConversions,
                                               bool AllowExplicitConversions,
                                               const Qualifiers &VisibleQuals) {
  // Only deal with canonical types.
  Ty = Context.getCanonicalType(Ty);

  // Look through reference types; they aren't part of the type of an
  // expression for the purposes of conversions.
  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
    Ty = RefTy->getPointeeType();

  // We don't care about qualifiers on the type.
  Ty = Ty.getLocalUnqualifiedType();

  // If we're dealing with an array type, decay to the pointer.
  if (Ty->isArrayType())
    Ty = SemaRef.Context.getArrayDecayedType(Ty);

  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
    QualType PointeeTy = PointerTy->getPointeeType();

    // Insert our type, and its more-qualified variants, into the set
    // of types.
    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
      return;
  } else if (Ty->isMemberPointerType()) {
    // Member pointers are far easier, since the pointee can't be converted.
    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
      return;
  } else if (Ty->isEnumeralType()) {
    EnumerationTypes.insert(Ty);
  } else if (AllowUserConversions) {
    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
        // No conversion functions in incomplete types.
        return;
      }

      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
      const UnresolvedSetImpl *Conversions
        = ClassDecl->getVisibleConversionFunctions();
      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
             E = Conversions->end(); I != E; ++I) {

        // Skip conversion function templates; they don't tell us anything
        // about which builtin types we can convert to.
        if (isa<FunctionTemplateDecl>(*I))
          continue;

        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
        if (AllowExplicitConversions || !Conv->isExplicit()) {
          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 
                                VisibleQuals);
        }
      }
    }
  }
}

/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
/// the volatile- and non-volatile-qualified assignment operators for the
/// given type to the candidate set.
static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
                                                   QualType T,
                                                   Expr **Args,
                                                   unsigned NumArgs,
                                    OverloadCandidateSet &CandidateSet) {
  QualType ParamTypes[2];

  // T& operator=(T&, T)
  ParamTypes[0] = S.Context.getLValueReferenceType(T);
  ParamTypes[1] = T;
  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
                        /*IsAssignmentOperator=*/true);

  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
    // volatile T& operator=(volatile T&, T)
    ParamTypes[0]
      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
    ParamTypes[1] = T;
    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
                          /*IsAssignmentOperator=*/true);
  }
}

/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
/// if any, found in visible type conversion functions found in ArgExpr's type.
static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
    Qualifiers VRQuals;
    const RecordType *TyRec;
    if (const MemberPointerType *RHSMPType =
        ArgExpr->getType()->getAs<MemberPointerType>())
      TyRec = cast<RecordType>(RHSMPType->getClass());
    else
      TyRec = ArgExpr->getType()->getAs<RecordType>();
    if (!TyRec) {
      // Just to be safe, assume the worst case.
      VRQuals.addVolatile();
      VRQuals.addRestrict();
      return VRQuals;
    }
    
    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
    if (!ClassDecl->hasDefinition())
      return VRQuals;

    const UnresolvedSetImpl *Conversions =
      ClassDecl->getVisibleConversionFunctions();
    
    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
           E = Conversions->end(); I != E; ++I) {
      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
          CanTy = ResTypeRef->getPointeeType();
        // Need to go down the pointer/mempointer chain and add qualifiers
        // as see them.
        bool done = false;
        while (!done) {
          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
            CanTy = ResTypePtr->getPointeeType();
          else if (const MemberPointerType *ResTypeMPtr = 
                CanTy->getAs<MemberPointerType>())
            CanTy = ResTypeMPtr->getPointeeType();
          else
            done = true;
          if (CanTy.isVolatileQualified())
            VRQuals.addVolatile();
          if (CanTy.isRestrictQualified())
            VRQuals.addRestrict();
          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
            return VRQuals;
        }
      }
    }
    return VRQuals;
}
  
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
/// operator overloads to the candidate set (C++ [over.built]), based
/// on the operator @p Op and the arguments given. For example, if the
/// operator is a binary '+', this routine might add "int
/// operator+(int, int)" to cover integer addition.
void
Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
                                   SourceLocation OpLoc,
                                   Expr **Args, unsigned NumArgs,
                                   OverloadCandidateSet& CandidateSet) {
  // The set of "promoted arithmetic types", which are the arithmetic
  // types are that preserved by promotion (C++ [over.built]p2). Note
  // that the first few of these types are the promoted integral
  // types; these types need to be first.
  // FIXME: What about complex?
  const unsigned FirstIntegralType = 0;
  const unsigned LastIntegralType = 13;
  const unsigned FirstPromotedIntegralType = 7,
                 LastPromotedIntegralType = 13;
  const unsigned FirstPromotedArithmeticType = 7,
                 LastPromotedArithmeticType = 16;
  const unsigned NumArithmeticTypes = 16;
  QualType ArithmeticTypes[NumArithmeticTypes] = {
    Context.BoolTy, Context.CharTy, Context.WCharTy,
// FIXME:   Context.Char16Ty, Context.Char32Ty,
    Context.SignedCharTy, Context.ShortTy,
    Context.UnsignedCharTy, Context.UnsignedShortTy,
    Context.IntTy, Context.LongTy, Context.LongLongTy,
    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
  };
  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
         "Invalid first promoted integral type");
  assert(ArithmeticTypes[LastPromotedIntegralType - 1] 
           == Context.UnsignedLongLongTy &&
         "Invalid last promoted integral type");
  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
         "Invalid first promoted arithmetic type");
  assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 
            == Context.LongDoubleTy &&
         "Invalid last promoted arithmetic type");
         
  // Find all of the types that the arguments can convert to, but only
  // if the operator we're looking at has built-in operator candidates
  // that make use of these types.
  Qualifiers VisibleTypeConversionsQuals;
  VisibleTypeConversionsQuals.addConst();
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
  
  BuiltinCandidateTypeSet CandidateTypes(*this);
  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
                                           OpLoc,
                                           true,
                                           (Op == OO_Exclaim ||
                                            Op == OO_AmpAmp ||
                                            Op == OO_PipePipe),
                                           VisibleTypeConversionsQuals);
  }

  bool isComparison = false;
  switch (Op) {
  case OO_None:
  case NUM_OVERLOADED_OPERATORS:
    assert(false && "Expected an overloaded operator");
    break;

  case OO_Star: // '*' is either unary or binary
    if (NumArgs == 1)
      goto UnaryStar;
    else
      goto BinaryStar;
    break;

  case OO_Plus: // '+' is either unary or binary
    if (NumArgs == 1)
      goto UnaryPlus;
    else
      goto BinaryPlus;
    break;

  case OO_Minus: // '-' is either unary or binary
    if (NumArgs == 1)
      goto UnaryMinus;
    else
      goto BinaryMinus;
    break;

  case OO_Amp: // '&' is either unary or binary
    if (NumArgs == 1)
      goto UnaryAmp;
    else
      goto BinaryAmp;

  case OO_PlusPlus:
  case OO_MinusMinus:
    // C++ [over.built]p3:
    //
    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
    //   is either volatile or empty, there exist candidate operator
    //   functions of the form
    //
    //       VQ T&      operator++(VQ T&);
    //       T          operator++(VQ T&, int);
    //
    // C++ [over.built]p4:
    //
    //   For every pair (T, VQ), where T is an arithmetic type other
    //   than bool, and VQ is either volatile or empty, there exist
    //   candidate operator functions of the form
    //
    //       VQ T&      operator--(VQ T&);
    //       T          operator--(VQ T&, int);
    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
         Arith < NumArithmeticTypes; ++Arith) {
      QualType ArithTy = ArithmeticTypes[Arith];
      QualType ParamTypes[2]
        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };

      // Non-volatile version.
      if (NumArgs == 1)
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
      else
        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
      // heuristic to reduce number of builtin candidates in the set.
      // Add volatile version only if there are conversions to a volatile type.
      if (VisibleTypeConversionsQuals.hasVolatile()) {
        // Volatile version
        ParamTypes[0]
          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
        if (NumArgs == 1)
          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
        else
          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
      }
    }

    // C++ [over.built]p5:
    //
    //   For every pair (T, VQ), where T is a cv-qualified or
    //   cv-unqualified object type, and VQ is either volatile or
    //   empty, there exist candidate operator functions of the form
    //
    //       T*VQ&      operator++(T*VQ&);
    //       T*VQ&      operator--(T*VQ&);
    //       T*         operator++(T*VQ&, int);
    //       T*         operator--(T*VQ&, int);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      // Skip pointer types that aren't pointers to object types.
      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
        continue;

      QualType ParamTypes[2] = {
        Context.getLValueReferenceType(*Ptr), Context.IntTy
      };

      // Without volatile
      if (NumArgs == 1)
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
      else
        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);

      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
          VisibleTypeConversionsQuals.hasVolatile()) {
        // With volatile
        ParamTypes[0]
          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
        if (NumArgs == 1)
          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
        else
          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
      }
    }
    break;

  UnaryStar:
    // C++ [over.built]p6:
    //   For every cv-qualified or cv-unqualified object type T, there
    //   exist candidate operator functions of the form
    //
    //       T&         operator*(T*);
    //
    // C++ [over.built]p7:
    //   For every function type T, there exist candidate operator
    //   functions of the form
    //       T&         operator*(T*);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTy = *Ptr;
      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
                          &ParamTy, Args, 1, CandidateSet);
    }
    break;

  UnaryPlus:
    // C++ [over.built]p8:
    //   For every type T, there exist candidate operator functions of
    //   the form
    //
    //       T*         operator+(T*);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTy = *Ptr;
      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
    }

    // Fall through

  UnaryMinus:
    // C++ [over.built]p9:
    //  For every promoted arithmetic type T, there exist candidate
    //  operator functions of the form
    //
    //       T         operator+(T);
    //       T         operator-(T);
    for (unsigned Arith = FirstPromotedArithmeticType;
         Arith < LastPromotedArithmeticType; ++Arith) {
      QualType ArithTy = ArithmeticTypes[Arith];
      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
    }
    break;

  case OO_Tilde:
    // C++ [over.built]p10:
    //   For every promoted integral type T, there exist candidate
    //   operator functions of the form
    //
    //        T         operator~(T);
    for (unsigned Int = FirstPromotedIntegralType;
         Int < LastPromotedIntegralType; ++Int) {
      QualType IntTy = ArithmeticTypes[Int];
      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
    }
    break;

  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
  case OO_Call:
    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
    break;

  case OO_Comma:
  UnaryAmp:
  case OO_Arrow:
    // C++ [over.match.oper]p3:
    //   -- For the operator ',', the unary operator '&', or the
    //      operator '->', the built-in candidates set is empty.
    break;

  case OO_EqualEqual:
  case OO_ExclaimEqual:
    // C++ [over.match.oper]p16:
    //   For every pointer to member type T, there exist candidate operator
    //   functions of the form
    //
    //        bool operator==(T,T);
    //        bool operator!=(T,T);
    for (BuiltinCandidateTypeSet::iterator
           MemPtr = CandidateTypes.member_pointer_begin(),
           MemPtrEnd = CandidateTypes.member_pointer_end();
         MemPtr != MemPtrEnd;
         ++MemPtr) {
      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
    }

    // Fall through

  case OO_Less:
  case OO_Greater:
  case OO_LessEqual:
  case OO_GreaterEqual:
    // C++ [over.built]p15:
    //
    //   For every pointer or enumeration type T, there exist
    //   candidate operator functions of the form
    //
    //        bool       operator<(T, T);
    //        bool       operator>(T, T);
    //        bool       operator<=(T, T);
    //        bool       operator>=(T, T);
    //        bool       operator==(T, T);
    //        bool       operator!=(T, T);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTypes[2] = { *Ptr, *Ptr };
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
    }
    for (BuiltinCandidateTypeSet::iterator Enum
           = CandidateTypes.enumeration_begin();
         Enum != CandidateTypes.enumeration_end(); ++Enum) {
      QualType ParamTypes[2] = { *Enum, *Enum };
      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
    }

    // Fall through.
    isComparison = true;

  BinaryPlus:
  BinaryMinus:
    if (!isComparison) {
      // We didn't fall through, so we must have OO_Plus or OO_Minus.

      // C++ [over.built]p13:
      //
      //   For every cv-qualified or cv-unqualified object type T
      //   there exist candidate operator functions of the form
      //
      //      T*         operator+(T*, ptrdiff_t);
      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
      //      T*         operator-(T*, ptrdiff_t);
      //      T*         operator+(ptrdiff_t, T*);
      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
      //
      // C++ [over.built]p14:
      //
      //   For every T, where T is a pointer to object type, there
      //   exist candidate operator functions of the form
      //
      //      ptrdiff_t  operator-(T, T);
      for (BuiltinCandidateTypeSet::iterator Ptr
             = CandidateTypes.pointer_begin();
           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };

        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);

        if (Op == OO_Plus) {
          // T* operator+(ptrdiff_t, T*);
          ParamTypes[0] = ParamTypes[1];
          ParamTypes[1] = *Ptr;
          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
        } else {
          // ptrdiff_t operator-(T, T);
          ParamTypes[1] = *Ptr;
          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
                              Args, 2, CandidateSet);
        }
      }
    }
    // Fall through

  case OO_Slash:
  BinaryStar:
  Conditional:
    // C++ [over.built]p12:
    //
    //   For every pair of promoted arithmetic types L and R, there
    //   exist candidate operator functions of the form
    //
    //        LR         operator*(L, R);
    //        LR         operator/(L, R);
    //        LR         operator+(L, R);
    //        LR         operator-(L, R);
    //        bool       operator<(L, R);
    //        bool       operator>(L, R);
    //        bool       operator<=(L, R);
    //        bool       operator>=(L, R);
    //        bool       operator==(L, R);
    //        bool       operator!=(L, R);
    //
    //   where LR is the result of the usual arithmetic conversions
    //   between types L and R.
    //
    // C++ [over.built]p24:
    //
    //   For every pair of promoted arithmetic types L and R, there exist
    //   candidate operator functions of the form
    //
    //        LR       operator?(bool, L, R);
    //
    //   where LR is the result of the usual arithmetic conversions
    //   between types L and R.
    // Our candidates ignore the first parameter.
    for (unsigned Left = FirstPromotedArithmeticType;
         Left < LastPromotedArithmeticType; ++Left) {
      for (unsigned Right = FirstPromotedArithmeticType;
           Right < LastPromotedArithmeticType; ++Right) {
        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
        QualType Result
          = isComparison
          ? Context.BoolTy
          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
      }
    }
    break;

  case OO_Percent:
  BinaryAmp:
  case OO_Caret:
  case OO_Pipe:
  case OO_LessLess:
  case OO_GreaterGreater:
    // C++ [over.built]p17:
    //
    //   For every pair of promoted integral types L and R, there
    //   exist candidate operator functions of the form
    //
    //      LR         operator%(L, R);
    //      LR         operator&(L, R);
    //      LR         operator^(L, R);
    //      LR         operator|(L, R);
    //      L          operator<<(L, R);
    //      L          operator>>(L, R);
    //
    //   where LR is the result of the usual arithmetic conversions
    //   between types L and R.
    for (unsigned Left = FirstPromotedIntegralType;
         Left < LastPromotedIntegralType; ++Left) {
      for (unsigned Right = FirstPromotedIntegralType;
           Right < LastPromotedIntegralType; ++Right) {
        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
            ? LandR[0]
            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
      }
    }
    break;

  case OO_Equal:
    // C++ [over.built]p20:
    //
    //   For every pair (T, VQ), where T is an enumeration or
    //   pointer to member type and VQ is either volatile or
    //   empty, there exist candidate operator functions of the form
    //
    //        VQ T&      operator=(VQ T&, T);
    for (BuiltinCandidateTypeSet::iterator
           Enum = CandidateTypes.enumeration_begin(),
           EnumEnd = CandidateTypes.enumeration_end();
         Enum != EnumEnd; ++Enum)
      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
                                             CandidateSet);
    for (BuiltinCandidateTypeSet::iterator
           MemPtr = CandidateTypes.member_pointer_begin(),
         MemPtrEnd = CandidateTypes.member_pointer_end();
         MemPtr != MemPtrEnd; ++MemPtr)
      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
                                             CandidateSet);
      // Fall through.

  case OO_PlusEqual:
  case OO_MinusEqual:
    // C++ [over.built]p19:
    //
    //   For every pair (T, VQ), where T is any type and VQ is either
    //   volatile or empty, there exist candidate operator functions
    //   of the form
    //
    //        T*VQ&      operator=(T*VQ&, T*);
    //
    // C++ [over.built]p21:
    //
    //   For every pair (T, VQ), where T is a cv-qualified or
    //   cv-unqualified object type and VQ is either volatile or
    //   empty, there exist candidate operator functions of the form
    //
    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTypes[2];
      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();

      // non-volatile version
      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
                          /*IsAssigmentOperator=*/Op == OO_Equal);

      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
          VisibleTypeConversionsQuals.hasVolatile()) {
        // volatile version
        ParamTypes[0]
          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
                            /*IsAssigmentOperator=*/Op == OO_Equal);
      }
    }
    // Fall through.

  case OO_StarEqual:
  case OO_SlashEqual:
    // C++ [over.built]p18:
    //
    //   For every triple (L, VQ, R), where L is an arithmetic type,
    //   VQ is either volatile or empty, and R is a promoted
    //   arithmetic type, there exist candidate operator functions of
    //   the form
    //
    //        VQ L&      operator=(VQ L&, R);
    //        VQ L&      operator*=(VQ L&, R);
    //        VQ L&      operator/=(VQ L&, R);
    //        VQ L&      operator+=(VQ L&, R);
    //        VQ L&      operator-=(VQ L&, R);
    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
      for (unsigned Right = FirstPromotedArithmeticType;
           Right < LastPromotedArithmeticType; ++Right) {
        QualType ParamTypes[2];
        ParamTypes[1] = ArithmeticTypes[Right];

        // Add this built-in operator as a candidate (VQ is empty).
        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
                            /*IsAssigmentOperator=*/Op == OO_Equal);

        // Add this built-in operator as a candidate (VQ is 'volatile').
        if (VisibleTypeConversionsQuals.hasVolatile()) {
          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
                              /*IsAssigmentOperator=*/Op == OO_Equal);
        }
      }
    }
    break;

  case OO_PercentEqual:
  case OO_LessLessEqual:
  case OO_GreaterGreaterEqual:
  case OO_AmpEqual:
  case OO_CaretEqual:
  case OO_PipeEqual:
    // C++ [over.built]p22:
    //
    //   For every triple (L, VQ, R), where L is an integral type, VQ
    //   is either volatile or empty, and R is a promoted integral
    //   type, there exist candidate operator functions of the form
    //
    //        VQ L&       operator%=(VQ L&, R);
    //        VQ L&       operator<<=(VQ L&, R);
    //        VQ L&       operator>>=(VQ L&, R);
    //        VQ L&       operator&=(VQ L&, R);
    //        VQ L&       operator^=(VQ L&, R);
    //        VQ L&       operator|=(VQ L&, R);
    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
      for (unsigned Right = FirstPromotedIntegralType;
           Right < LastPromotedIntegralType; ++Right) {
        QualType ParamTypes[2];
        ParamTypes[1] = ArithmeticTypes[Right];

        // Add this built-in operator as a candidate (VQ is empty).
        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
        if (VisibleTypeConversionsQuals.hasVolatile()) {
          // Add this built-in operator as a candidate (VQ is 'volatile').
          ParamTypes[0] = ArithmeticTypes[Left];
          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
        }
      }
    }
    break;

  case OO_Exclaim: {
    // C++ [over.operator]p23:
    //
    //   There also exist candidate operator functions of the form
    //
    //        bool        operator!(bool);
    //        bool        operator&&(bool, bool);     [BELOW]
    //        bool        operator||(bool, bool);     [BELOW]
    QualType ParamTy = Context.BoolTy;
    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
                        /*IsAssignmentOperator=*/false,
                        /*NumContextualBoolArguments=*/1);
    break;
  }

  case OO_AmpAmp:
  case OO_PipePipe: {
    // C++ [over.operator]p23:
    //
    //   There also exist candidate operator functions of the form
    //
    //        bool        operator!(bool);            [ABOVE]
    //        bool        operator&&(bool, bool);
    //        bool        operator||(bool, bool);
    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
                        /*IsAssignmentOperator=*/false,
                        /*NumContextualBoolArguments=*/2);
    break;
  }

  case OO_Subscript:
    // C++ [over.built]p13:
    //
    //   For every cv-qualified or cv-unqualified object type T there
    //   exist candidate operator functions of the form
    //
    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
    //        T&         operator[](T*, ptrdiff_t);
    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
    //        T&         operator[](ptrdiff_t, T*);
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
      QualType ResultTy = Context.getLValueReferenceType(PointeeType);

      // T& operator[](T*, ptrdiff_t)
      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);

      // T& operator[](ptrdiff_t, T*);
      ParamTypes[0] = ParamTypes[1];
      ParamTypes[1] = *Ptr;
      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
    }
    break;

  case OO_ArrowStar:
    // C++ [over.built]p11:
    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 
    //    C1 is the same type as C2 or is a derived class of C2, T is an object 
    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 
    //    there exist candidate operator functions of the form 
    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 
    //    where CV12 is the union of CV1 and CV2.
    {
      for (BuiltinCandidateTypeSet::iterator Ptr = 
             CandidateTypes.pointer_begin();
           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
        QualType C1Ty = (*Ptr);
        QualType C1;
        QualifierCollector Q1;
        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
          if (!isa<RecordType>(C1))
            continue;
          // heuristic to reduce number of builtin candidates in the set.
          // Add volatile/restrict version only if there are conversions to a
          // volatile/restrict type.
          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
            continue;
          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
            continue;
        }
        for (BuiltinCandidateTypeSet::iterator
             MemPtr = CandidateTypes.member_pointer_begin(),
             MemPtrEnd = CandidateTypes.member_pointer_end();
             MemPtr != MemPtrEnd; ++MemPtr) {
          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
          QualType C2 = QualType(mptr->getClass(), 0);
          C2 = C2.getUnqualifiedType();
          if (C1 != C2 && !IsDerivedFrom(C1, C2))
            break;
          QualType ParamTypes[2] = { *Ptr, *MemPtr };
          // build CV12 T&
          QualType T = mptr->getPointeeType();
          if (!VisibleTypeConversionsQuals.hasVolatile() && 
              T.isVolatileQualified())
            continue;
          if (!VisibleTypeConversionsQuals.hasRestrict() && 
              T.isRestrictQualified())
            continue;
          T = Q1.apply(T);
          QualType ResultTy = Context.getLValueReferenceType(T);
          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
        }
      }
    }
    break;

  case OO_Conditional:
    // Note that we don't consider the first argument, since it has been
    // contextually converted to bool long ago. The candidates below are
    // therefore added as binary.
    //
    // C++ [over.built]p24:
    //   For every type T, where T is a pointer or pointer-to-member type,
    //   there exist candidate operator functions of the form
    //
    //        T        operator?(bool, T, T);
    //
    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
      QualType ParamTypes[2] = { *Ptr, *Ptr };
      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
    }
    for (BuiltinCandidateTypeSet::iterator Ptr =
           CandidateTypes.member_pointer_begin(),
         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
      QualType ParamTypes[2] = { *Ptr, *Ptr };
      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
    }
    goto Conditional;
  }
}

/// \brief Add function candidates found via argument-dependent lookup
/// to the set of overloading candidates.
///
/// This routine performs argument-dependent name lookup based on the
/// given function name (which may also be an operator name) and adds
/// all of the overload candidates found by ADL to the overload
/// candidate set (C++ [basic.lookup.argdep]).
void
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
                                           bool Operator,
                                           Expr **Args, unsigned NumArgs,
                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
                                           OverloadCandidateSet& CandidateSet,
                                           bool PartialOverloading) {
  ADLResult Fns;

  // FIXME: This approach for uniquing ADL results (and removing
  // redundant candidates from the set) relies on pointer-equality,
  // which means we need to key off the canonical decl.  However,
  // always going back to the canonical decl might not get us the
  // right set of default arguments.  What default arguments are
  // we supposed to consider on ADL candidates, anyway?

  // FIXME: Pass in the explicit template arguments?
  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);

  // Erase all of the candidates we already knew about.
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
                                   CandEnd = CandidateSet.end();
       Cand != CandEnd; ++Cand)
    if (Cand->Function) {
      Fns.erase(Cand->Function);
      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
        Fns.erase(FunTmpl);
    }

  // For each of the ADL candidates we found, add it to the overload
  // set.
  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
      if (ExplicitTemplateArgs)
        continue;
      
      AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
                           false, false, PartialOverloading);
    } else
      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
                                   AS_none, ExplicitTemplateArgs,
                                   Args, NumArgs, CandidateSet);
  }
}

/// isBetterOverloadCandidate - Determines whether the first overload
/// candidate is a better candidate than the second (C++ 13.3.3p1).
bool
Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
                                const OverloadCandidate& Cand2,
                                SourceLocation Loc) {
  // Define viable functions to be better candidates than non-viable
  // functions.
  if (!Cand2.Viable)
    return Cand1.Viable;
  else if (!Cand1.Viable)
    return false;

  // C++ [over.match.best]p1:
  //
  //   -- if F is a static member function, ICS1(F) is defined such
  //      that ICS1(F) is neither better nor worse than ICS1(G) for
  //      any function G, and, symmetrically, ICS1(G) is neither
  //      better nor worse than ICS1(F).
  unsigned StartArg = 0;
  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
    StartArg = 1;

  // C++ [over.match.best]p1:
  //   A viable function F1 is defined to be a better function than another
  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
  //   conversion sequence than ICSi(F2), and then...
  unsigned NumArgs = Cand1.Conversions.size();
  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
  bool HasBetterConversion = false;
  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
                                               Cand2.Conversions[ArgIdx])) {
    case ImplicitConversionSequence::Better:
      // Cand1 has a better conversion sequence.
      HasBetterConversion = true;
      break;

    case ImplicitConversionSequence::Worse:
      // Cand1 can't be better than Cand2.
      return false;

    case ImplicitConversionSequence::Indistinguishable:
      // Do nothing.
      break;
    }
  }

  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
  //       ICSj(F2), or, if not that,
  if (HasBetterConversion)
    return true;

  //     - F1 is a non-template function and F2 is a function template
  //       specialization, or, if not that,
  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
      Cand2.Function && Cand2.Function->getPrimaryTemplate())
    return true;

  //   -- F1 and F2 are function template specializations, and the function
  //      template for F1 is more specialized than the template for F2
  //      according to the partial ordering rules described in 14.5.5.2, or,
  //      if not that,
  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
      Cand2.Function && Cand2.Function->getPrimaryTemplate())
    if (FunctionTemplateDecl *BetterTemplate
          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
                                       Cand2.Function->getPrimaryTemplate(),
                                       Loc,
                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 
                                                             : TPOC_Call))
      return BetterTemplate == Cand1.Function->getPrimaryTemplate();

  //   -- the context is an initialization by user-defined conversion
  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
  //      from the return type of F1 to the destination type (i.e.,
  //      the type of the entity being initialized) is a better
  //      conversion sequence than the standard conversion sequence
  //      from the return type of F2 to the destination type.
  if (Cand1.Function && Cand2.Function &&
      isa<CXXConversionDecl>(Cand1.Function) &&
      isa<CXXConversionDecl>(Cand2.Function)) {
    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
                                               Cand2.FinalConversion)) {
    case ImplicitConversionSequence::Better:
      // Cand1 has a better conversion sequence.
      return true;

    case ImplicitConversionSequence::Worse:
      // Cand1 can't be better than Cand2.
      return false;

    case ImplicitConversionSequence::Indistinguishable:
      // Do nothing
      break;
    }
  }

  return false;
}

/// \brief Computes the best viable function (C++ 13.3.3)
/// within an overload candidate set.
///
/// \param CandidateSet the set of candidate functions.
///
/// \param Loc the location of the function name (or operator symbol) for
/// which overload resolution occurs.
///
/// \param Best f overload resolution was successful or found a deleted
/// function, Best points to the candidate function found.
///
/// \returns The result of overload resolution.
OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
                                           SourceLocation Loc,
                                        OverloadCandidateSet::iterator& Best) {
  // Find the best viable function.
  Best = CandidateSet.end();
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
       Cand != CandidateSet.end(); ++Cand) {
    if (Cand->Viable) {
      if (Best == CandidateSet.end() ||
          isBetterOverloadCandidate(*Cand, *Best, Loc))
        Best = Cand;
    }
  }

  // If we didn't find any viable functions, abort.
  if (Best == CandidateSet.end())
    return OR_No_Viable_Function;

  // Make sure that this function is better than every other viable
  // function. If not, we have an ambiguity.
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
       Cand != CandidateSet.end(); ++Cand) {
    if (Cand->Viable &&
        Cand != Best &&
        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
      Best = CandidateSet.end();
      return OR_Ambiguous;
    }
  }

  // Best is the best viable function.
  if (Best->Function &&
      (Best->Function->isDeleted() ||
       Best->Function->getAttr<UnavailableAttr>()))
    return OR_Deleted;

  // C++ [basic.def.odr]p2:
  //   An overloaded function is used if it is selected by overload resolution
  //   when referred to from a potentially-evaluated expression. [Note: this
  //   covers calls to named functions (5.2.2), operator overloading
  //   (clause 13), user-defined conversions (12.3.2), allocation function for
  //   placement new (5.3.4), as well as non-default initialization (8.5).
  if (Best->Function)
    MarkDeclarationReferenced(Loc, Best->Function);
  return OR_Success;
}

namespace {

enum OverloadCandidateKind {
  oc_function,
  oc_method,
  oc_constructor,
  oc_function_template,
  oc_method_template,
  oc_constructor_template,
  oc_implicit_default_constructor,
  oc_implicit_copy_constructor,
  oc_implicit_copy_assignment
};

OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
                                                FunctionDecl *Fn,
                                                std::string &Description) {
  bool isTemplate = false;

  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
    isTemplate = true;
    Description = S.getTemplateArgumentBindingsText(
      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
  }

  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
    if (!Ctor->isImplicit())
      return isTemplate ? oc_constructor_template : oc_constructor;

    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
                                     : oc_implicit_default_constructor;
  }

  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
    // This actually gets spelled 'candidate function' for now, but
    // it doesn't hurt to split it out.
    if (!Meth->isImplicit())
      return isTemplate ? oc_method_template : oc_method;

    assert(Meth->isCopyAssignment()
           && "implicit method is not copy assignment operator?");
    return oc_implicit_copy_assignment;
  }

  return isTemplate ? oc_function_template : oc_function;
}

} // end anonymous namespace

// Notes the location of an overload candidate.
void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
  std::string FnDesc;
  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
  Diag(Fn->getLocation(), diag::note_ovl_candidate)
    << (unsigned) K << FnDesc;
}

/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
/// "lead" diagnostic; it will be given two arguments, the source and
/// target types of the conversion.
void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
                                       SourceLocation CaretLoc,
                                       const PartialDiagnostic &PDiag) {
  Diag(CaretLoc, PDiag)
    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
  for (AmbiguousConversionSequence::const_iterator
         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
    NoteOverloadCandidate(*I);
  }
}

namespace {

void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
  assert(Conv.isBad());
  assert(Cand->Function && "for now, candidate must be a function");
  FunctionDecl *Fn = Cand->Function;

  // There's a conversion slot for the object argument if this is a
  // non-constructor method.  Note that 'I' corresponds the
  // conversion-slot index.
  bool isObjectArgument = false;
  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
    if (I == 0)
      isObjectArgument = true;
    else
      I--;
  }

  std::string FnDesc;
  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);

  Expr *FromExpr = Conv.Bad.FromExpr;
  QualType FromTy = Conv.Bad.getFromType();
  QualType ToTy = Conv.Bad.getToType();

  if (FromTy == S.Context.OverloadTy) {
    assert(FromExpr && "overload set argument came from implicit argument?");
    Expr *E = FromExpr->IgnoreParens();
    if (isa<UnaryOperator>(E))
      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
    DeclarationName Name = cast<OverloadExpr>(E)->getName();

    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
      << (unsigned) FnKind << FnDesc
      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
      << ToTy << Name << I+1;
    return;
  }

  // Do some hand-waving analysis to see if the non-viability is due
  // to a qualifier mismatch.
  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
    CToTy = RT->getPointeeType();
  else {
    // TODO: detect and diagnose the full richness of const mismatches.
    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
  }

  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
    // It is dumb that we have to do this here.
    while (isa<ArrayType>(CFromTy))
      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
    while (isa<ArrayType>(CToTy))
      CToTy = CFromTy->getAs<ArrayType>()->getElementType();

    Qualifiers FromQs = CFromTy.getQualifiers();
    Qualifiers ToQs = CToTy.getQualifiers();

    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
        << (unsigned) FnKind << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
        << FromTy
        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
        << (unsigned) isObjectArgument << I+1;
      return;
    }

    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
    assert(CVR && "unexpected qualifiers mismatch");

    if (isObjectArgument) {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
        << (unsigned) FnKind << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
        << FromTy << (CVR - 1);
    } else {
      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
        << (unsigned) FnKind << FnDesc
        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
        << FromTy << (CVR - 1) << I+1;
    }
    return;
  }

  // Diagnose references or pointers to incomplete types differently,
  // since it's far from impossible that the incompleteness triggered
  // the failure.
  QualType TempFromTy = FromTy.getNonReferenceType();
  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
    TempFromTy = PTy->getPointeeType();
  if (TempFromTy->isIncompleteType()) {
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
      << (unsigned) FnKind << FnDesc
      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
    return;
  }

  // TODO: specialize more based on the kind of mismatch
  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
    << (unsigned) FnKind << FnDesc
    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
}

void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
                           unsigned NumFormalArgs) {
  // TODO: treat calls to a missing default constructor as a special case

  FunctionDecl *Fn = Cand->Function;
  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();

  unsigned MinParams = Fn->getMinRequiredArguments();
  
  // at least / at most / exactly
  unsigned mode, modeCount;
  if (NumFormalArgs < MinParams) {
    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
      mode = 0; // "at least"
    else
      mode = 2; // "exactly"
    modeCount = MinParams;
  } else {
    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
    if (MinParams != FnTy->getNumArgs())
      mode = 1; // "at most"
    else
      mode = 2; // "exactly"
    modeCount = FnTy->getNumArgs();
  }

  std::string Description;
  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);

  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
}

/// Diagnose a failed template-argument deduction.
void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
                          Expr **Args, unsigned NumArgs) {
  FunctionDecl *Fn = Cand->Function; // pattern

  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
                                   Cand->DeductionFailure.TemplateParameter);

  switch (Cand->DeductionFailure.Result) {
  case Sema::TDK_Success:
    llvm_unreachable("TDK_success while diagnosing bad deduction");

  case Sema::TDK_Incomplete: {
    NamedDecl *ParamD;
    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
    assert(ParamD && "no parameter found for incomplete deduction result");
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
      << ParamD->getDeclName();
    return;
  }

  // TODO: diagnose these individually, then kill off
  // note_ovl_candidate_bad_deduction, which is uselessly vague.
  case Sema::TDK_InstantiationDepth:
  case Sema::TDK_Inconsistent:
  case Sema::TDK_InconsistentQuals:
  case Sema::TDK_SubstitutionFailure:
  case Sema::TDK_NonDeducedMismatch:
  case Sema::TDK_TooManyArguments:
  case Sema::TDK_TooFewArguments:
  case Sema::TDK_InvalidExplicitArguments:
  case Sema::TDK_FailedOverloadResolution:
    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
    return;
  }
}

/// Generates a 'note' diagnostic for an overload candidate.  We've
/// already generated a primary error at the call site.
///
/// It really does need to be a single diagnostic with its caret
/// pointed at the candidate declaration.  Yes, this creates some
/// major challenges of technical writing.  Yes, this makes pointing
/// out problems with specific arguments quite awkward.  It's still
/// better than generating twenty screens of text for every failed
/// overload.
///
/// It would be great to be able to express per-candidate problems
/// more richly for those diagnostic clients that cared, but we'd
/// still have to be just as careful with the default diagnostics.
void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
                           Expr **Args, unsigned NumArgs) {
  FunctionDecl *Fn = Cand->Function;

  // Note deleted candidates, but only if they're viable.
  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
    std::string FnDesc;
    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);

    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
      << FnKind << FnDesc << Fn->isDeleted();
    return;
  }

  // We don't really have anything else to say about viable candidates.
  if (Cand->Viable) {
    S.NoteOverloadCandidate(Fn);
    return;
  }

  switch (Cand->FailureKind) {
  case ovl_fail_too_many_arguments:
  case ovl_fail_too_few_arguments:
    return DiagnoseArityMismatch(S, Cand, NumArgs);

  case ovl_fail_bad_deduction:
    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);

  case ovl_fail_trivial_conversion:
  case ovl_fail_bad_final_conversion:
    return S.NoteOverloadCandidate(Fn);

  case ovl_fail_bad_conversion: {
    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
      if (Cand->Conversions[I].isBad())
        return DiagnoseBadConversion(S, Cand, I);
    
    // FIXME: this currently happens when we're called from SemaInit
    // when user-conversion overload fails.  Figure out how to handle
    // those conditions and diagnose them well.
    return S.NoteOverloadCandidate(Fn);
  }
  }
}

void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
  // Desugar the type of the surrogate down to a function type,
  // retaining as many typedefs as possible while still showing
  // the function type (and, therefore, its parameter types).
  QualType FnType = Cand->Surrogate->getConversionType();
  bool isLValueReference = false;
  bool isRValueReference = false;
  bool isPointer = false;
  if (const LValueReferenceType *FnTypeRef =
        FnType->getAs<LValueReferenceType>()) {
    FnType = FnTypeRef->getPointeeType();
    isLValueReference = true;
  } else if (const RValueReferenceType *FnTypeRef =
               FnType->getAs<RValueReferenceType>()) {
    FnType = FnTypeRef->getPointeeType();
    isRValueReference = true;
  }
  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
    FnType = FnTypePtr->getPointeeType();
    isPointer = true;
  }
  // Desugar down to a function type.
  FnType = QualType(FnType->getAs<FunctionType>(), 0);
  // Reconstruct the pointer/reference as appropriate.
  if (isPointer) FnType = S.Context.getPointerType(FnType);
  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);

  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
    << FnType;
}

void NoteBuiltinOperatorCandidate(Sema &S,
                                  const char *Opc,
                                  SourceLocation OpLoc,
                                  OverloadCandidate *Cand) {
  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
  std::string TypeStr("operator");
  TypeStr += Opc;
  TypeStr += "(";
  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
  if (Cand->Conversions.size() == 1) {
    TypeStr += ")";
    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
  } else {
    TypeStr += ", ";
    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
    TypeStr += ")";
    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
  }
}

void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
                                  OverloadCandidate *Cand) {
  unsigned NoOperands = Cand->Conversions.size();
  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
    if (ICS.isBad()) break; // all meaningless after first invalid
    if (!ICS.isAmbiguous()) continue;

    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
                              PDiag(diag::note_ambiguous_type_conversion));
  }
}

SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
  if (Cand->Function)
    return Cand->Function->getLocation();
  if (Cand->IsSurrogate)
    return Cand->Surrogate->getLocation();
  return SourceLocation();
}

struct CompareOverloadCandidatesForDisplay {
  Sema &S;
  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}

  bool operator()(const OverloadCandidate *L,
                  const OverloadCandidate *R) {
    // Fast-path this check.
    if (L == R) return false;

    // Order first by viability.
    if (L->Viable) {
      if (!R->Viable) return true;

      // TODO: introduce a tri-valued comparison for overload
      // candidates.  Would be more worthwhile if we had a sort
      // that could exploit it.
      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
    } else if (R->Viable)
      return false;

    assert(L->Viable == R->Viable);

    // Criteria by which we can sort non-viable candidates:
    if (!L->Viable) {
      // 1. Arity mismatches come after other candidates.
      if (L->FailureKind == ovl_fail_too_many_arguments ||
          L->FailureKind == ovl_fail_too_few_arguments)
        return false;
      if (R->FailureKind == ovl_fail_too_many_arguments ||
          R->FailureKind == ovl_fail_too_few_arguments)
        return true;

      // 2. Bad conversions come first and are ordered by the number
      // of bad conversions and quality of good conversions.
      if (L->FailureKind == ovl_fail_bad_conversion) {
        if (R->FailureKind != ovl_fail_bad_conversion)
          return true;

        // If there's any ordering between the defined conversions...
        // FIXME: this might not be transitive.
        assert(L->Conversions.size() == R->Conversions.size());

        int leftBetter = 0;
        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
        for (unsigned E = L->Conversions.size(); I != E; ++I) {
          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
                                                       R->Conversions[I])) {
          case ImplicitConversionSequence::Better:
            leftBetter++;
            break;

          case ImplicitConversionSequence::Worse:
            leftBetter--;
            break;

          case ImplicitConversionSequence::Indistinguishable:
            break;
          }
        }
        if (leftBetter > 0) return true;
        if (leftBetter < 0) return false;

      } else if (R->FailureKind == ovl_fail_bad_conversion)
        return false;

      // TODO: others?
    }

    // Sort everything else by location.
    SourceLocation LLoc = GetLocationForCandidate(L);
    SourceLocation RLoc = GetLocationForCandidate(R);

    // Put candidates without locations (e.g. builtins) at the end.
    if (LLoc.isInvalid()) return false;
    if (RLoc.isInvalid()) return true;

    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
  }
};

/// CompleteNonViableCandidate - Normally, overload resolution only
/// computes up to the first
void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
                                Expr **Args, unsigned NumArgs) {
  assert(!Cand->Viable);

  // Don't do anything on failures other than bad conversion.
  if (Cand->FailureKind != ovl_fail_bad_conversion) return;

  // Skip forward to the first bad conversion.
  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
  unsigned ConvCount = Cand->Conversions.size();
  while (true) {
    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
    ConvIdx++;
    if (Cand->Conversions[ConvIdx - 1].isBad())
      break;
  }

  if (ConvIdx == ConvCount)
    return;

  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
         "remaining conversion is initialized?");

  // FIXME: these should probably be preserved from the overload
  // operation somehow.
  bool SuppressUserConversions = false;
  bool ForceRValue = false;

  const FunctionProtoType* Proto;
  unsigned ArgIdx = ConvIdx;

  if (Cand->IsSurrogate) {
    QualType ConvType
      = Cand->Surrogate->getConversionType().getNonReferenceType();
    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
      ConvType = ConvPtrType->getPointeeType();
    Proto = ConvType->getAs<FunctionProtoType>();
    ArgIdx--;
  } else if (Cand->Function) {
    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
    if (isa<CXXMethodDecl>(Cand->Function) &&
        !isa<CXXConstructorDecl>(Cand->Function))
      ArgIdx--;
  } else {
    // Builtin binary operator with a bad first conversion.
    assert(ConvCount <= 3);
    for (; ConvIdx != ConvCount; ++ConvIdx)
      Cand->Conversions[ConvIdx]
        = S.TryCopyInitialization(Args[ConvIdx],
                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
                                  SuppressUserConversions, ForceRValue,
                                  /*InOverloadResolution*/ true);
    return;
  }

  // Fill in the rest of the conversions.
  unsigned NumArgsInProto = Proto->getNumArgs();
  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
    if (ArgIdx < NumArgsInProto)
      Cand->Conversions[ConvIdx]
        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
                                  SuppressUserConversions, ForceRValue,
                                  /*InOverloadResolution=*/true);
    else
      Cand->Conversions[ConvIdx].setEllipsis();
  }
}

} // end anonymous namespace

/// PrintOverloadCandidates - When overload resolution fails, prints
/// diagnostic messages containing the candidates in the candidate
/// set.
void
Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
                              OverloadCandidateDisplayKind OCD,
                              Expr **Args, unsigned NumArgs,
                              const char *Opc,
                              SourceLocation OpLoc) {
  // Sort the candidates by viability and position.  Sorting directly would
  // be prohibitive, so we make a set of pointers and sort those.
  llvm::SmallVector<OverloadCandidate*, 32> Cands;
  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
                                  LastCand = CandidateSet.end();
       Cand != LastCand; ++Cand) {
    if (Cand->Viable)
      Cands.push_back(Cand);
    else if (OCD == OCD_AllCandidates) {
      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
      Cands.push_back(Cand);
    }
  }

  std::sort(Cands.begin(), Cands.end(),
            CompareOverloadCandidatesForDisplay(*this));
  
  bool ReportedAmbiguousConversions = false;

  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
    OverloadCandidate *Cand = *I;

    if (Cand->Function)
      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
    else if (Cand->IsSurrogate)
      NoteSurrogateCandidate(*this, Cand);

    // This a builtin candidate.  We do not, in general, want to list
    // every possible builtin candidate.
    else if (Cand->Viable) {
      // Generally we only see ambiguities including viable builtin
      // operators if overload resolution got screwed up by an
      // ambiguous user-defined conversion.
      //
      // FIXME: It's quite possible for different conversions to see
      // different ambiguities, though.
      if (!ReportedAmbiguousConversions) {
        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
        ReportedAmbiguousConversions = true;
      }

      // If this is a viable builtin, print it.
      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
    }
  }
}

static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, NamedDecl *D,
                                  AccessSpecifier AS) {
  if (isa<UnresolvedLookupExpr>(E))
    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS);

  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS);
}

/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
/// an overloaded function (C++ [over.over]), where @p From is an
/// expression with overloaded function type and @p ToType is the type
/// we're trying to resolve to. For example:
///
/// @code
/// int f(double);
/// int f(int);
///
/// int (*pfd)(double) = f; // selects f(double)
/// @endcode
///
/// This routine returns the resulting FunctionDecl if it could be
/// resolved, and NULL otherwise. When @p Complain is true, this
/// routine will emit diagnostics if there is an error.
FunctionDecl *
Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
                                         bool Complain) {
  QualType FunctionType = ToType;
  bool IsMember = false;
  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
    FunctionType = ToTypePtr->getPointeeType();
  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
    FunctionType = ToTypeRef->getPointeeType();
  else if (const MemberPointerType *MemTypePtr =
                    ToType->getAs<MemberPointerType>()) {
    FunctionType = MemTypePtr->getPointeeType();
    IsMember = true;
  }

  // We only look at pointers or references to functions.
  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
  if (!FunctionType->isFunctionType())
    return 0;

  // Find the actual overloaded function declaration.
  if (From->getType() != Context.OverloadTy)
    return 0;

  // C++ [over.over]p1:
  //   [...] [Note: any redundant set of parentheses surrounding the
  //   overloaded function name is ignored (5.1). ]
  // C++ [over.over]p1:
  //   [...] The overloaded function name can be preceded by the &
  //   operator.
  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
  if (OvlExpr->hasExplicitTemplateArgs()) {
    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
    ExplicitTemplateArgs = &ETABuffer;
  }

  // Look through all of the overloaded functions, searching for one
  // whose type matches exactly.
  UnresolvedSet<4> Matches;  // contains only FunctionDecls
  bool FoundNonTemplateFunction = false;
  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
         E = OvlExpr->decls_end(); I != E; ++I) {
    // Look through any using declarations to find the underlying function.
    NamedDecl *Fn = (*I)->getUnderlyingDecl();

    // C++ [over.over]p3:
    //   Non-member functions and static member functions match
    //   targets of type "pointer-to-function" or "reference-to-function."
    //   Nonstatic member functions match targets of
    //   type "pointer-to-member-function."
    // Note that according to DR 247, the containing class does not matter.

    if (FunctionTemplateDecl *FunctionTemplate
          = dyn_cast<FunctionTemplateDecl>(Fn)) {
      if (CXXMethodDecl *Method
            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
        // Skip non-static function templates when converting to pointer, and
        // static when converting to member pointer.
        if (Method->isStatic() == IsMember)
          continue;
      } else if (IsMember)
        continue;

      // C++ [over.over]p2:
      //   If the name is a function template, template argument deduction is
      //   done (14.8.2.2), and if the argument deduction succeeds, the
      //   resulting template argument list is used to generate a single
      //   function template specialization, which is added to the set of
      //   overloaded functions considered.
      // FIXME: We don't really want to build the specialization here, do we?
      FunctionDecl *Specialization = 0;
      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
      if (TemplateDeductionResult Result
            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
                                      FunctionType, Specialization, Info)) {
        // FIXME: make a note of the failed deduction for diagnostics.
        (void)Result;
      } else {
        // FIXME: If the match isn't exact, shouldn't we just drop this as
        // a candidate? Find a testcase before changing the code.
        assert(FunctionType
                 == Context.getCanonicalType(Specialization->getType()));
        Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()),
                        I.getAccess());
      }

      continue;
    }

    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
      // Skip non-static functions when converting to pointer, and static
      // when converting to member pointer.
      if (Method->isStatic() == IsMember)
        continue;
      
      // If we have explicit template arguments, skip non-templates.
      if (OvlExpr->hasExplicitTemplateArgs())
        continue;
    } else if (IsMember)
      continue;

    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
      QualType ResultTy;
      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType, 
                               ResultTy)) {
        Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()),
                        I.getAccess());
        FoundNonTemplateFunction = true;
      }
    }
  }

  // If there were 0 or 1 matches, we're done.
  if (Matches.empty())
    return 0;
  else if (Matches.size() == 1) {
    FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin());
    MarkDeclarationReferenced(From->getLocStart(), Result);
    if (Complain)
      CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess());
    return Result;
  }

  // C++ [over.over]p4:
  //   If more than one function is selected, [...]
  if (!FoundNonTemplateFunction) {
    //   [...] and any given function template specialization F1 is
    //   eliminated if the set contains a second function template
    //   specialization whose function template is more specialized
    //   than the function template of F1 according to the partial
    //   ordering rules of 14.5.5.2.

    // The algorithm specified above is quadratic. We instead use a
    // two-pass algorithm (similar to the one used to identify the
    // best viable function in an overload set) that identifies the
    // best function template (if it exists).
    
    UnresolvedSetIterator Result =
        getMostSpecialized(Matches.begin(), Matches.end(),
                           TPOC_Other, From->getLocStart(),
                           PDiag(),
                           PDiag(diag::err_addr_ovl_ambiguous)
                               << Matches[0]->getDeclName(),
                           PDiag(diag::note_ovl_candidate)
                               << (unsigned) oc_function_template);
    assert(Result != Matches.end() && "no most-specialized template");
    MarkDeclarationReferenced(From->getLocStart(), *Result);
    if (Complain)
      CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess());
    return cast<FunctionDecl>(*Result);
  }

  //   [...] any function template specializations in the set are
  //   eliminated if the set also contains a non-template function, [...]
  for (unsigned I = 0, N = Matches.size(); I != N; ) {
    if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0)
      ++I;
    else {
      Matches.erase(I);
      --N;
    }
  }
  
  // [...] After such eliminations, if any, there shall remain exactly one
  // selected function.
  if (Matches.size() == 1) {
    UnresolvedSetIterator Match = Matches.begin();
    MarkDeclarationReferenced(From->getLocStart(), *Match);
    if (Complain)
      CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess());
    return cast<FunctionDecl>(*Match);
  }

  // FIXME: We should probably return the same thing that BestViableFunction
  // returns (even if we issue the diagnostics here).
  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
    << Matches[0]->getDeclName();
  for (UnresolvedSetIterator I = Matches.begin(),
         E = Matches.end(); I != E; ++I)
    NoteOverloadCandidate(cast<FunctionDecl>(*I));
  return 0;
}

/// \brief Given an expression that refers to an overloaded function, try to 
/// resolve that overloaded function expression down to a single function.
///
/// This routine can only resolve template-ids that refer to a single function
/// template, where that template-id refers to a single template whose template
/// arguments are either provided by the template-id or have defaults, 
/// as described in C++0x [temp.arg.explicit]p3.
FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
  // C++ [over.over]p1:
  //   [...] [Note: any redundant set of parentheses surrounding the
  //   overloaded function name is ignored (5.1). ]
  // C++ [over.over]p1:
  //   [...] The overloaded function name can be preceded by the &
  //   operator.

  if (From->getType() != Context.OverloadTy)
    return 0;

  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
  
  // If we didn't actually find any template-ids, we're done.
  if (!OvlExpr->hasExplicitTemplateArgs())
    return 0;

  TemplateArgumentListInfo ExplicitTemplateArgs;
  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
  
  // Look through all of the overloaded functions, searching for one
  // whose type matches exactly.
  FunctionDecl *Matched = 0;
  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
         E = OvlExpr->decls_end(); I != E; ++I) {
    // C++0x [temp.arg.explicit]p3:
    //   [...] In contexts where deduction is done and fails, or in contexts
    //   where deduction is not done, if a template argument list is 
    //   specified and it, along with any default template arguments, 
    //   identifies a single function template specialization, then the 
    //   template-id is an lvalue for the function template specialization.
    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
    
    // C++ [over.over]p2:
    //   If the name is a function template, template argument deduction is
    //   done (14.8.2.2), and if the argument deduction succeeds, the
    //   resulting template argument list is used to generate a single
    //   function template specialization, which is added to the set of
    //   overloaded functions considered.
    FunctionDecl *Specialization = 0;
    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
    if (TemplateDeductionResult Result
          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
                                    Specialization, Info)) {
      // FIXME: make a note of the failed deduction for diagnostics.
      (void)Result;
      continue;
    } 
    
    // Multiple matches; we can't resolve to a single declaration.
    if (Matched)
      return 0;

    Matched = Specialization;
  }

  return Matched;
}
    
/// \brief Add a single candidate to the overload set.
static void AddOverloadedCallCandidate(Sema &S,
                                       NamedDecl *Callee,
                                       AccessSpecifier Access,
                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
                                       Expr **Args, unsigned NumArgs,
                                       OverloadCandidateSet &CandidateSet,
                                       bool PartialOverloading) {
  if (isa<UsingShadowDecl>(Callee))
    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();

  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
    S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet,
                           false, false, PartialOverloading);
    return;
  }

  if (FunctionTemplateDecl *FuncTemplate
      = dyn_cast<FunctionTemplateDecl>(Callee)) {
    S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs,
                                   Args, NumArgs, CandidateSet);
    return;
  }

  assert(false && "unhandled case in overloaded call candidate");

  // do nothing?
}
  
/// \brief Add the overload candidates named by callee and/or found by argument
/// dependent lookup to the given overload set.
void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
                                       Expr **Args, unsigned NumArgs,
                                       OverloadCandidateSet &CandidateSet,
                                       bool PartialOverloading) {

#ifndef NDEBUG
  // Verify that ArgumentDependentLookup is consistent with the rules
  // in C++0x [basic.lookup.argdep]p3:
  //
  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
  //   and let Y be the lookup set produced by argument dependent
  //   lookup (defined as follows). If X contains
  //
  //     -- a declaration of a class member, or
  //
  //     -- a block-scope function declaration that is not a
  //        using-declaration, or
  //
  //     -- a declaration that is neither a function or a function
  //        template
  //
  //   then Y is empty.

  if (ULE->requiresADL()) {
    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
           E = ULE->decls_end(); I != E; ++I) {
      assert(!(*I)->getDeclContext()->isRecord());
      assert(isa<UsingShadowDecl>(*I) ||
             !(*I)->getDeclContext()->isFunctionOrMethod());
      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
    }
  }
#endif

  // It would be nice to avoid this copy.
  TemplateArgumentListInfo TABuffer;
  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
  if (ULE->hasExplicitTemplateArgs()) {
    ULE->copyTemplateArgumentsInto(TABuffer);
    ExplicitTemplateArgs = &TABuffer;
  }

  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
         E = ULE->decls_end(); I != E; ++I)
    AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs,
                               Args, NumArgs, CandidateSet, 
                               PartialOverloading);

  if (ULE->requiresADL())
    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
                                         Args, NumArgs,
                                         ExplicitTemplateArgs,
                                         CandidateSet,
                                         PartialOverloading);  
}

static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
                                      Expr **Args, unsigned NumArgs) {
  Fn->Destroy(SemaRef.Context);
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
    Args[Arg]->Destroy(SemaRef.Context);
  return SemaRef.ExprError();
}

/// Attempts to recover from a call where no functions were found.
///
/// Returns true if new candidates were found.
static Sema::OwningExprResult
BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
                      UnresolvedLookupExpr *ULE,
                      SourceLocation LParenLoc,
                      Expr **Args, unsigned NumArgs,
                      SourceLocation *CommaLocs,
                      SourceLocation RParenLoc) {

  CXXScopeSpec SS;
  if (ULE->getQualifier()) {
    SS.setScopeRep(ULE->getQualifier());
    SS.setRange(ULE->getQualifierRange());
  }

  TemplateArgumentListInfo TABuffer;
  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
  if (ULE->hasExplicitTemplateArgs()) {
    ULE->copyTemplateArgumentsInto(TABuffer);
    ExplicitTemplateArgs = &TABuffer;
  }

  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
                 Sema::LookupOrdinaryName);
  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
    return Destroy(SemaRef, Fn, Args, NumArgs);

  assert(!R.empty() && "lookup results empty despite recovery");

  // Build an implicit member call if appropriate.  Just drop the
  // casts and such from the call, we don't really care.
  Sema::OwningExprResult NewFn = SemaRef.ExprError();
  if ((*R.begin())->isCXXClassMember())
    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
  else if (ExplicitTemplateArgs)
    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
  else
    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);

  if (NewFn.isInvalid())
    return Destroy(SemaRef, Fn, Args, NumArgs);

  Fn->Destroy(SemaRef.Context);

  // This shouldn't cause an infinite loop because we're giving it
  // an expression with non-empty lookup results, which should never
  // end up here.
  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
                               CommaLocs, RParenLoc);
}
  
/// ResolveOverloadedCallFn - Given the call expression that calls Fn
/// (which eventually refers to the declaration Func) and the call
/// arguments Args/NumArgs, attempt to resolve the function call down
/// to a specific function. If overload resolution succeeds, returns
/// the function declaration produced by overload
/// resolution. Otherwise, emits diagnostics, deletes all of the
/// arguments and Fn, and returns NULL.
Sema::OwningExprResult
Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
                              SourceLocation LParenLoc,
                              Expr **Args, unsigned NumArgs,
                              SourceLocation *CommaLocs,
                              SourceLocation RParenLoc) {
#ifndef NDEBUG
  if (ULE->requiresADL()) {
    // To do ADL, we must have found an unqualified name.
    assert(!ULE->getQualifier() && "qualified name with ADL");

    // We don't perform ADL for implicit declarations of builtins.
    // Verify that this was correctly set up.
    FunctionDecl *F;
    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
        F->getBuiltinID() && F->isImplicit())
      assert(0 && "performing ADL for builtin");
      
    // We don't perform ADL in C.
    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
  }
#endif

  OverloadCandidateSet CandidateSet(Fn->getExprLoc());

  // Add the functions denoted by the callee to the set of candidate
  // functions, including those from argument-dependent lookup.
  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);

  // If we found nothing, try to recover.
  // AddRecoveryCallCandidates diagnoses the error itself, so we just
  // bailout out if it fails.
  if (CandidateSet.empty())
    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
                                 CommaLocs, RParenLoc);

  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
  case OR_Success: {
    FunctionDecl *FDecl = Best->Function;
    CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess());
    Fn = FixOverloadedFunctionReference(Fn, FDecl);
    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
  }

  case OR_No_Viable_Function:
    Diag(Fn->getSourceRange().getBegin(),
         diag::err_ovl_no_viable_function_in_call)
      << ULE->getName() << Fn->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
    break;

  case OR_Ambiguous:
    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
      << ULE->getName() << Fn->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
    break;

  case OR_Deleted:
    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
      << Best->Function->isDeleted()
      << ULE->getName()
      << Fn->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
    break;
  }

  // Overload resolution failed. Destroy all of the subexpressions and
  // return NULL.
  Fn->Destroy(Context);
  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
    Args[Arg]->Destroy(Context);
  return ExprError();
}

static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
  return Functions.size() > 1 ||
    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
}

/// \brief Create a unary operation that may resolve to an overloaded
/// operator.
///
/// \param OpLoc The location of the operator itself (e.g., '*').
///
/// \param OpcIn The UnaryOperator::Opcode that describes this
/// operator.
///
/// \param Functions The set of non-member functions that will be
/// considered by overload resolution. The caller needs to build this
/// set based on the context using, e.g.,
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
/// set should not contain any member functions; those will be added
/// by CreateOverloadedUnaryOp().
///
/// \param input The input argument.
Sema::OwningExprResult
Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
                              const UnresolvedSetImpl &Fns,
                              ExprArg input) {
  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
  Expr *Input = (Expr *)input.get();

  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);

  Expr *Args[2] = { Input, 0 };
  unsigned NumArgs = 1;

  // For post-increment and post-decrement, add the implicit '0' as
  // the second argument, so that we know this is a post-increment or
  // post-decrement.
  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
                                           SourceLocation());
    NumArgs = 2;
  }

  if (Input->isTypeDependent()) {
    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
    UnresolvedLookupExpr *Fn
      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
                                     0, SourceRange(), OpName, OpLoc,
                                     /*ADL*/ true, IsOverloaded(Fns));
    Fn->addDecls(Fns.begin(), Fns.end());

    input.release();
    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
                                                   &Args[0], NumArgs,
                                                   Context.DependentTy,
                                                   OpLoc));
  }

  // Build an empty overload set.
  OverloadCandidateSet CandidateSet(OpLoc);

  // Add the candidates from the given function set.
  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);

  // Add operator candidates that are member functions.
  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);

  // Add candidates from ADL.
  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
                                       Args, NumArgs,
                                       /*ExplicitTemplateArgs*/ 0,
                                       CandidateSet);

  // Add builtin operator candidates.
  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
  case OR_Success: {
    // We found a built-in operator or an overloaded operator.
    FunctionDecl *FnDecl = Best->Function;

    if (FnDecl) {
      // We matched an overloaded operator. Build a call to that
      // operator.

      // Convert the arguments.
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
        CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());

        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, Method))
          return ExprError();
      } else {
        // Convert the arguments.
        OwningExprResult InputInit
          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
                                                      FnDecl->getParamDecl(0)),
                                      SourceLocation(), 
                                      move(input));
        if (InputInit.isInvalid())
          return ExprError();
        
        input = move(InputInit);
        Input = (Expr *)input.get();
      }

      // Determine the result type
      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();

      // Build the actual expression node.
      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
                                               SourceLocation());
      UsualUnaryConversions(FnExpr);

      input.release();
      Args[0] = Input;
      ExprOwningPtr<CallExpr> TheCall(this,
        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
                                          Args, NumArgs, ResultTy, OpLoc));
      
      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 
                              FnDecl))
        return ExprError();

      return MaybeBindToTemporary(TheCall.release());
    } else {
      // We matched a built-in operator. Convert the arguments, then
      // break out so that we will build the appropriate built-in
      // operator node.
        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
                                      Best->Conversions[0], AA_Passing))
          return ExprError();

        break;
      }
    }

    case OR_No_Viable_Function:
      // No viable function; fall through to handling this as a
      // built-in operator, which will produce an error message for us.
      break;

    case OR_Ambiguous:
      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
          << UnaryOperator::getOpcodeStr(Opc)
          << Input->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
      return ExprError();

    case OR_Deleted:
      Diag(OpLoc, diag::err_ovl_deleted_oper)
        << Best->Function->isDeleted()
        << UnaryOperator::getOpcodeStr(Opc)
        << Input->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
      return ExprError();
    }

  // Either we found no viable overloaded operator or we matched a
  // built-in operator. In either case, fall through to trying to
  // build a built-in operation.
  input.release();
  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
}

/// \brief Create a binary operation that may resolve to an overloaded
/// operator.
///
/// \param OpLoc The location of the operator itself (e.g., '+').
///
/// \param OpcIn The BinaryOperator::Opcode that describes this
/// operator.
///
/// \param Functions The set of non-member functions that will be
/// considered by overload resolution. The caller needs to build this
/// set based on the context using, e.g.,
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
/// set should not contain any member functions; those will be added
/// by CreateOverloadedBinOp().
///
/// \param LHS Left-hand argument.
/// \param RHS Right-hand argument.
Sema::OwningExprResult
Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
                            unsigned OpcIn,
                            const UnresolvedSetImpl &Fns,
                            Expr *LHS, Expr *RHS) {
  Expr *Args[2] = { LHS, RHS };
  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple

  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);

  // If either side is type-dependent, create an appropriate dependent
  // expression.
  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
    if (Fns.empty()) {
      // If there are no functions to store, just build a dependent 
      // BinaryOperator or CompoundAssignment.
      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
                                                  Context.DependentTy, OpLoc));
      
      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
                                                        Context.DependentTy,
                                                        Context.DependentTy,
                                                        Context.DependentTy,
                                                        OpLoc));
    }

    // FIXME: save results of ADL from here?
    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
    UnresolvedLookupExpr *Fn
      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
                                     0, SourceRange(), OpName, OpLoc,
                                     /*ADL*/ true, IsOverloaded(Fns));

    Fn->addDecls(Fns.begin(), Fns.end());
    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
                                                   Args, 2,
                                                   Context.DependentTy,
                                                   OpLoc));
  }

  // If this is the .* operator, which is not overloadable, just
  // create a built-in binary operator.
  if (Opc == BinaryOperator::PtrMemD)
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);

  // If this is the assignment operator, we only perform overload resolution
  // if the left-hand side is a class or enumeration type. This is actually
  // a hack. The standard requires that we do overload resolution between the
  // various built-in candidates, but as DR507 points out, this can lead to
  // problems. So we do it this way, which pretty much follows what GCC does.
  // Note that we go the traditional code path for compound assignment forms.
  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);

  // Build an empty overload set.
  OverloadCandidateSet CandidateSet(OpLoc);

  // Add the candidates from the given function set.
  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);

  // Add operator candidates that are member functions.
  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);

  // Add candidates from ADL.
  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
                                       Args, 2,
                                       /*ExplicitTemplateArgs*/ 0,
                                       CandidateSet);

  // Add builtin operator candidates.
  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
    case OR_Success: {
      // We found a built-in operator or an overloaded operator.
      FunctionDecl *FnDecl = Best->Function;

      if (FnDecl) {
        // We matched an overloaded operator. Build a call to that
        // operator.

        // Convert the arguments.
        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
          // Best->Access is only meaningful for class members.
          CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());

          OwningExprResult Arg1
            = PerformCopyInitialization(
                                        InitializedEntity::InitializeParameter(
                                                        FnDecl->getParamDecl(0)),
                                        SourceLocation(),
                                        Owned(Args[1]));
          if (Arg1.isInvalid())
            return ExprError();

          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 
                                                  Method))
            return ExprError();

          Args[1] = RHS = Arg1.takeAs<Expr>();
        } else {
          // Convert the arguments.
          OwningExprResult Arg0
            = PerformCopyInitialization(
                                        InitializedEntity::InitializeParameter(
                                                        FnDecl->getParamDecl(0)),
                                        SourceLocation(),
                                        Owned(Args[0]));
          if (Arg0.isInvalid())
            return ExprError();

          OwningExprResult Arg1
            = PerformCopyInitialization(
                                        InitializedEntity::InitializeParameter(
                                                        FnDecl->getParamDecl(1)),
                                        SourceLocation(),
                                        Owned(Args[1]));
          if (Arg1.isInvalid())
            return ExprError();
          Args[0] = LHS = Arg0.takeAs<Expr>();
          Args[1] = RHS = Arg1.takeAs<Expr>();
        }

        // Determine the result type
        QualType ResultTy
          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
        ResultTy = ResultTy.getNonReferenceType();

        // Build the actual expression node.
        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
                                                 OpLoc);
        UsualUnaryConversions(FnExpr);

        ExprOwningPtr<CXXOperatorCallExpr> 
          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
                                                          Args, 2, ResultTy, 
                                                          OpLoc));
        
        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 
                                FnDecl))
          return ExprError();

        return MaybeBindToTemporary(TheCall.release());
      } else {
        // We matched a built-in operator. Convert the arguments, then
        // break out so that we will build the appropriate built-in
        // operator node.
        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
                                      Best->Conversions[0], AA_Passing) ||
            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
                                      Best->Conversions[1], AA_Passing))
          return ExprError();

        break;
      }
    }

    case OR_No_Viable_Function: {
      // C++ [over.match.oper]p9:
      //   If the operator is the operator , [...] and there are no
      //   viable functions, then the operator is assumed to be the
      //   built-in operator and interpreted according to clause 5.
      if (Opc == BinaryOperator::Comma)
        break;

      // For class as left operand for assignment or compound assigment operator
      // do not fall through to handling in built-in, but report that no overloaded
      // assignment operator found
      OwningExprResult Result = ExprError();
      if (Args[0]->getType()->isRecordType() && 
          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
             << BinaryOperator::getOpcodeStr(Opc)
             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
      } else {
        // No viable function; try to create a built-in operation, which will
        // produce an error. Then, show the non-viable candidates.
        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
      }
      assert(Result.isInvalid() && 
             "C++ binary operator overloading is missing candidates!");
      if (Result.isInvalid())
        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
      return move(Result);
    }

    case OR_Ambiguous:
      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
          << BinaryOperator::getOpcodeStr(Opc)
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
      return ExprError();

    case OR_Deleted:
      Diag(OpLoc, diag::err_ovl_deleted_oper)
        << Best->Function->isDeleted()
        << BinaryOperator::getOpcodeStr(Opc)
        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
      return ExprError();
  }

  // We matched a built-in operator; build it.
  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
}

Action::OwningExprResult
Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
                                         SourceLocation RLoc,
                                         ExprArg Base, ExprArg Idx) {
  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
                    static_cast<Expr*>(Idx.get()) };
  DeclarationName OpName =
      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);

  // If either side is type-dependent, create an appropriate dependent
  // expression.
  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {

    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
    UnresolvedLookupExpr *Fn
      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
                                     0, SourceRange(), OpName, LLoc,
                                     /*ADL*/ true, /*Overloaded*/ false);
    // Can't add any actual overloads yet

    Base.release();
    Idx.release();
    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
                                                   Args, 2,
                                                   Context.DependentTy,
                                                   RLoc));
  }

  // Build an empty overload set.
  OverloadCandidateSet CandidateSet(LLoc);

  // Subscript can only be overloaded as a member function.

  // Add operator candidates that are member functions.
  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);

  // Add builtin operator candidates.
  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
    case OR_Success: {
      // We found a built-in operator or an overloaded operator.
      FunctionDecl *FnDecl = Best->Function;

      if (FnDecl) {
        // We matched an overloaded operator. Build a call to that
        // operator.

        CheckMemberOperatorAccess(LLoc, Args[0], FnDecl, Best->getAccess());

        // Convert the arguments.
        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 
                                                Method))
          return ExprError();

        // Convert the arguments.
        OwningExprResult InputInit
          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
                                                      FnDecl->getParamDecl(0)),
                                      SourceLocation(), 
                                      Owned(Args[1]));
        if (InputInit.isInvalid())
          return ExprError();

        Args[1] = InputInit.takeAs<Expr>();

        // Determine the result type
        QualType ResultTy
          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
        ResultTy = ResultTy.getNonReferenceType();

        // Build the actual expression node.
        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
                                                 LLoc);
        UsualUnaryConversions(FnExpr);

        Base.release();
        Idx.release();
        ExprOwningPtr<CXXOperatorCallExpr>
          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
                                                          FnExpr, Args, 2,
                                                          ResultTy, RLoc));

        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
                                FnDecl))
          return ExprError();

        return MaybeBindToTemporary(TheCall.release());
      } else {
        // We matched a built-in operator. Convert the arguments, then
        // break out so that we will build the appropriate built-in
        // operator node.
        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
                                      Best->Conversions[0], AA_Passing) ||
            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
                                      Best->Conversions[1], AA_Passing))
          return ExprError();

        break;
      }
    }

    case OR_No_Viable_Function: {
      if (CandidateSet.empty())
        Diag(LLoc, diag::err_ovl_no_oper)
          << Args[0]->getType() << /*subscript*/ 0
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
      else
        Diag(LLoc, diag::err_ovl_no_viable_subscript)
          << Args[0]->getType()
          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
                              "[]", LLoc);
      return ExprError();
    }

    case OR_Ambiguous:
      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
                              "[]", LLoc);
      return ExprError();

    case OR_Deleted:
      Diag(LLoc, diag::err_ovl_deleted_oper)
        << Best->Function->isDeleted() << "[]"
        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
                              "[]", LLoc);
      return ExprError();
    }

  // We matched a built-in operator; build it.
  Base.release();
  Idx.release();
  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
                                         Owned(Args[1]), RLoc);
}

/// BuildCallToMemberFunction - Build a call to a member
/// function. MemExpr is the expression that refers to the member
/// function (and includes the object parameter), Args/NumArgs are the
/// arguments to the function call (not including the object
/// parameter). The caller needs to validate that the member
/// expression refers to a member function or an overloaded member
/// function.
Sema::OwningExprResult
Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
                                SourceLocation LParenLoc, Expr **Args,
                                unsigned NumArgs, SourceLocation *CommaLocs,
                                SourceLocation RParenLoc) {
  // Dig out the member expression. This holds both the object
  // argument and the member function we're referring to.
  Expr *NakedMemExpr = MemExprE->IgnoreParens();
  
  MemberExpr *MemExpr;
  CXXMethodDecl *Method = 0;
  NestedNameSpecifier *Qualifier = 0;
  if (isa<MemberExpr>(NakedMemExpr)) {
    MemExpr = cast<MemberExpr>(NakedMemExpr);
    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
    Qualifier = MemExpr->getQualifier();
  } else {
    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
    Qualifier = UnresExpr->getQualifier();
    
    QualType ObjectType = UnresExpr->getBaseType();

    // Add overload candidates
    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());

    // FIXME: avoid copy.
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
    if (UnresExpr->hasExplicitTemplateArgs()) {
      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
      TemplateArgs = &TemplateArgsBuffer;
    }

    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
           E = UnresExpr->decls_end(); I != E; ++I) {

      NamedDecl *Func = *I;
      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
      if (isa<UsingShadowDecl>(Func))
        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();

      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
        // If explicit template arguments were provided, we can't call a
        // non-template member function.
        if (TemplateArgs)
          continue;
        
        AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType,
                           Args, NumArgs,
                           CandidateSet, /*SuppressUserConversions=*/false);
      } else {
        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
                                   I.getAccess(), ActingDC, TemplateArgs,
                                   ObjectType, Args, NumArgs,
                                   CandidateSet,
                                   /*SuppressUsedConversions=*/false);
      }
    }

    DeclarationName DeclName = UnresExpr->getMemberName();

    OverloadCandidateSet::iterator Best;
    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
    case OR_Success:
      Method = cast<CXXMethodDecl>(Best->Function);
      CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess());
      break;

    case OR_No_Viable_Function:
      Diag(UnresExpr->getMemberLoc(),
           diag::err_ovl_no_viable_member_function_in_call)
        << DeclName << MemExprE->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
      // FIXME: Leaking incoming expressions!
      return ExprError();

    case OR_Ambiguous:
      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
        << DeclName << MemExprE->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
      // FIXME: Leaking incoming expressions!
      return ExprError();

    case OR_Deleted:
      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
        << Best->Function->isDeleted()
        << DeclName << MemExprE->getSourceRange();
      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
      // FIXME: Leaking incoming expressions!
      return ExprError();
    }

    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);

    // If overload resolution picked a static member, build a
    // non-member call based on that function.
    if (Method->isStatic()) {
      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
                                   Args, NumArgs, RParenLoc);
    }

    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
  }

  assert(Method && "Member call to something that isn't a method?");
  ExprOwningPtr<CXXMemberCallExpr>
    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
                                                  NumArgs,
                                  Method->getResultType().getNonReferenceType(),
                                  RParenLoc));

  // Check for a valid return type.
  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 
                          TheCall.get(), Method))
    return ExprError();
  
  // Convert the object argument (for a non-static member function call).
  Expr *ObjectArg = MemExpr->getBase();
  if (!Method->isStatic() &&
      PerformObjectArgumentInitialization(ObjectArg, Qualifier, Method))
    return ExprError();
  MemExpr->setBase(ObjectArg);

  // Convert the rest of the arguments
  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
                              RParenLoc))
    return ExprError();

  if (CheckFunctionCall(Method, TheCall.get()))
    return ExprError();

  return MaybeBindToTemporary(TheCall.release());
}

/// BuildCallToObjectOfClassType - Build a call to an object of class
/// type (C++ [over.call.object]), which can end up invoking an
/// overloaded function call operator (@c operator()) or performing a
/// user-defined conversion on the object argument.
Sema::ExprResult
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
                                   SourceLocation LParenLoc,
                                   Expr **Args, unsigned NumArgs,
                                   SourceLocation *CommaLocs,
                                   SourceLocation RParenLoc) {
  assert(Object->getType()->isRecordType() && "Requires object type argument");
  const RecordType *Record = Object->getType()->getAs<RecordType>();

  // C++ [over.call.object]p1:
  //  If the primary-expression E in the function call syntax
  //  evaluates to a class object of type "cv T", then the set of
  //  candidate functions includes at least the function call
  //  operators of T. The function call operators of T are obtained by
  //  ordinary lookup of the name operator() in the context of
  //  (E).operator().
  OverloadCandidateSet CandidateSet(LParenLoc);
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);

  if (RequireCompleteType(LParenLoc, Object->getType(), 
                          PartialDiagnostic(diag::err_incomplete_object_call)
                          << Object->getSourceRange()))
    return true;
  
  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
  LookupQualifiedName(R, Record->getDecl());
  R.suppressDiagnostics();

  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
       Oper != OperEnd; ++Oper) {
    AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(),
                       Args, NumArgs, CandidateSet,
                       /*SuppressUserConversions=*/ false);
  }
  
  // C++ [over.call.object]p2:
  //   In addition, for each conversion function declared in T of the
  //   form
  //
  //        operator conversion-type-id () cv-qualifier;
  //
  //   where cv-qualifier is the same cv-qualification as, or a
  //   greater cv-qualification than, cv, and where conversion-type-id
  //   denotes the type "pointer to function of (P1,...,Pn) returning
  //   R", or the type "reference to pointer to function of
  //   (P1,...,Pn) returning R", or the type "reference to function
  //   of (P1,...,Pn) returning R", a surrogate call function [...]
  //   is also considered as a candidate function. Similarly,
  //   surrogate call functions are added to the set of candidate
  //   functions for each conversion function declared in an
  //   accessible base class provided the function is not hidden
  //   within T by another intervening declaration.
  const UnresolvedSetImpl *Conversions
    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
         E = Conversions->end(); I != E; ++I) {
    NamedDecl *D = *I;
    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
    if (isa<UsingShadowDecl>(D))
      D = cast<UsingShadowDecl>(D)->getTargetDecl();
    
    // Skip over templated conversion functions; they aren't
    // surrogates.
    if (isa<FunctionTemplateDecl>(D))
      continue;

    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);

    // Strip the reference type (if any) and then the pointer type (if
    // any) to get down to what might be a function type.
    QualType ConvType = Conv->getConversionType().getNonReferenceType();
    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
      ConvType = ConvPtrType->getPointeeType();

    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
      AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto,
                            Object->getType(), Args, NumArgs,
                            CandidateSet);
  }

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
  case OR_Success:
    // Overload resolution succeeded; we'll build the appropriate call
    // below.
    break;

  case OR_No_Viable_Function:
    if (CandidateSet.empty())
      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
        << Object->getType() << /*call*/ 1
        << Object->getSourceRange();
    else
      Diag(Object->getSourceRange().getBegin(),
           diag::err_ovl_no_viable_object_call)
        << Object->getType() << Object->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
    break;

  case OR_Ambiguous:
    Diag(Object->getSourceRange().getBegin(),
         diag::err_ovl_ambiguous_object_call)
      << Object->getType() << Object->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
    break;

  case OR_Deleted:
    Diag(Object->getSourceRange().getBegin(),
         diag::err_ovl_deleted_object_call)
      << Best->Function->isDeleted()
      << Object->getType() << Object->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
    break;
  }

  if (Best == CandidateSet.end()) {
    // We had an error; delete all of the subexpressions and return
    // the error.
    Object->Destroy(Context);
    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
      Args[ArgIdx]->Destroy(Context);
    return true;
  }

  if (Best->Function == 0) {
    // Since there is no function declaration, this is one of the
    // surrogate candidates. Dig out the conversion function.
    CXXConversionDecl *Conv
      = cast<CXXConversionDecl>(
                         Best->Conversions[0].UserDefined.ConversionFunction);

    CheckMemberOperatorAccess(LParenLoc, Object, Conv, Best->getAccess());

    // We selected one of the surrogate functions that converts the
    // object parameter to a function pointer. Perform the conversion
    // on the object argument, then let ActOnCallExpr finish the job.
    
    // Create an implicit member expr to refer to the conversion operator.
    // and then call it.
    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
      
    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
                         CommaLocs, RParenLoc).release();
  }

  CheckMemberOperatorAccess(LParenLoc, Object,
                            Best->Function, Best->getAccess());

  // We found an overloaded operator(). Build a CXXOperatorCallExpr
  // that calls this method, using Object for the implicit object
  // parameter and passing along the remaining arguments.
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();

  unsigned NumArgsInProto = Proto->getNumArgs();
  unsigned NumArgsToCheck = NumArgs;

  // Build the full argument list for the method call (the
  // implicit object parameter is placed at the beginning of the
  // list).
  Expr **MethodArgs;
  if (NumArgs < NumArgsInProto) {
    NumArgsToCheck = NumArgsInProto;
    MethodArgs = new Expr*[NumArgsInProto + 1];
  } else {
    MethodArgs = new Expr*[NumArgs + 1];
  }
  MethodArgs[0] = Object;
  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
    MethodArgs[ArgIdx + 1] = Args[ArgIdx];

  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
                                          SourceLocation());
  UsualUnaryConversions(NewFn);

  // Once we've built TheCall, all of the expressions are properly
  // owned.
  QualType ResultTy = Method->getResultType().getNonReferenceType();
  ExprOwningPtr<CXXOperatorCallExpr>
    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
                                                    MethodArgs, NumArgs + 1,
                                                    ResultTy, RParenLoc));
  delete [] MethodArgs;

  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 
                          Method))
    return true;
  
  // We may have default arguments. If so, we need to allocate more
  // slots in the call for them.
  if (NumArgs < NumArgsInProto)
    TheCall->setNumArgs(Context, NumArgsInProto + 1);
  else if (NumArgs > NumArgsInProto)
    NumArgsToCheck = NumArgsInProto;

  bool IsError = false;

  // Initialize the implicit object parameter.
  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0, 
                                                 Method);
  TheCall->setArg(0, Object);


  // Check the argument types.
  for (unsigned i = 0; i != NumArgsToCheck; i++) {
    Expr *Arg;
    if (i < NumArgs) {
      Arg = Args[i];

      // Pass the argument.

      OwningExprResult InputInit
        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
                                                    Method->getParamDecl(i)),
                                    SourceLocation(), Owned(Arg));
      
      IsError |= InputInit.isInvalid();
      Arg = InputInit.takeAs<Expr>();
    } else {
      OwningExprResult DefArg
        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
      if (DefArg.isInvalid()) {
        IsError = true;
        break;
      }
      
      Arg = DefArg.takeAs<Expr>();
    }

    TheCall->setArg(i + 1, Arg);
  }

  // If this is a variadic call, handle args passed through "...".
  if (Proto->isVariadic()) {
    // Promote the arguments (C99 6.5.2.2p7).
    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
      Expr *Arg = Args[i];
      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
      TheCall->setArg(i + 1, Arg);
    }
  }

  if (IsError) return true;

  if (CheckFunctionCall(Method, TheCall.get()))
    return true;

  return MaybeBindToTemporary(TheCall.release()).release();
}

/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
///  (if one exists), where @c Base is an expression of class type and
/// @c Member is the name of the member we're trying to find.
Sema::OwningExprResult
Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
  Expr *Base = static_cast<Expr *>(BaseIn.get());
  assert(Base->getType()->isRecordType() && "left-hand side must have class type");

  SourceLocation Loc = Base->getExprLoc();

  // C++ [over.ref]p1:
  //
  //   [...] An expression x->m is interpreted as (x.operator->())->m
  //   for a class object x of type T if T::operator->() exists and if
  //   the operator is selected as the best match function by the
  //   overload resolution mechanism (13.3).
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
  OverloadCandidateSet CandidateSet(Loc);
  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();

  if (RequireCompleteType(Loc, Base->getType(),
                          PDiag(diag::err_typecheck_incomplete_tag)
                            << Base->getSourceRange()))
    return ExprError();

  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
  LookupQualifiedName(R, BaseRecord->getDecl());
  R.suppressDiagnostics();

  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
       Oper != OperEnd; ++Oper) {
    NamedDecl *D = *Oper;
    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
    if (isa<UsingShadowDecl>(D))
      D = cast<UsingShadowDecl>(D)->getTargetDecl();

    AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext,
                       Base->getType(), 0, 0, CandidateSet,
                       /*SuppressUserConversions=*/false);
  }

  // Perform overload resolution.
  OverloadCandidateSet::iterator Best;
  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
  case OR_Success:
    // Overload resolution succeeded; we'll build the call below.
    break;

  case OR_No_Viable_Function:
    if (CandidateSet.empty())
      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
        << Base->getType() << Base->getSourceRange();
    else
      Diag(OpLoc, diag::err_ovl_no_viable_oper)
        << "operator->" << Base->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
    return ExprError();

  case OR_Ambiguous:
    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
      << "->" << Base->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
    return ExprError();

  case OR_Deleted:
    Diag(OpLoc,  diag::err_ovl_deleted_oper)
      << Best->Function->isDeleted()
      << "->" << Base->getSourceRange();
    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
    return ExprError();
  }

  // Convert the object parameter.
  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, Method))
    return ExprError();

  // No concerns about early exits now.
  BaseIn.release();

  // Build the operator call.
  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
                                           SourceLocation());
  UsualUnaryConversions(FnExpr);
  
  QualType ResultTy = Method->getResultType().getNonReferenceType();
  ExprOwningPtr<CXXOperatorCallExpr> 
    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 
                                                    &Base, 1, ResultTy, OpLoc));

  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 
                          Method))
          return ExprError();
  return move(TheCall);
}

/// FixOverloadedFunctionReference - E is an expression that refers to
/// a C++ overloaded function (possibly with some parentheses and
/// perhaps a '&' around it). We have resolved the overloaded function
/// to the function declaration Fn, so patch up the expression E to
/// refer (possibly indirectly) to Fn. Returns the new expr.
Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
    if (SubExpr == PE->getSubExpr())
      return PE->Retain();
    
    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
  } 
  
  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
    assert(Context.hasSameType(ICE->getSubExpr()->getType(), 
                               SubExpr->getType()) &&
           "Implicit cast type cannot be determined from overload");
    if (SubExpr == ICE->getSubExpr())
      return ICE->Retain();
    
    return new (Context) ImplicitCastExpr(ICE->getType(), 
                                          ICE->getCastKind(),
                                          SubExpr,
                                          ICE->isLvalueCast());
  } 
  
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
           "Can only take the address of an overloaded function");
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
      if (Method->isStatic()) {
        // Do nothing: static member functions aren't any different
        // from non-member functions.
      } else {
        // Fix the sub expression, which really has to be an
        // UnresolvedLookupExpr holding an overloaded member function
        // or template.
        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
        if (SubExpr == UnOp->getSubExpr())
          return UnOp->Retain();

        assert(isa<DeclRefExpr>(SubExpr)
               && "fixed to something other than a decl ref");
        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
               && "fixed to a member ref with no nested name qualifier");

        // We have taken the address of a pointer to member
        // function. Perform the computation here so that we get the
        // appropriate pointer to member type.
        QualType ClassType
          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
        QualType MemPtrType
          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());

        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
                                           MemPtrType, UnOp->getOperatorLoc());
      }
    }
    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
    if (SubExpr == UnOp->getSubExpr())
      return UnOp->Retain();
    
    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
                                     Context.getPointerType(SubExpr->getType()),
                                       UnOp->getOperatorLoc());
  } 

  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
    // FIXME: avoid copy.
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
    if (ULE->hasExplicitTemplateArgs()) {
      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
      TemplateArgs = &TemplateArgsBuffer;
    }

    return DeclRefExpr::Create(Context,
                               ULE->getQualifier(),
                               ULE->getQualifierRange(),
                               Fn,
                               ULE->getNameLoc(),
                               Fn->getType(),
                               TemplateArgs);
  }

  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
    // FIXME: avoid copy.
    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
    if (MemExpr->hasExplicitTemplateArgs()) {
      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
      TemplateArgs = &TemplateArgsBuffer;
    }

    Expr *Base;

    // If we're filling in 
    if (MemExpr->isImplicitAccess()) {
      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
        return DeclRefExpr::Create(Context,
                                   MemExpr->getQualifier(),
                                   MemExpr->getQualifierRange(),
                                   Fn,
                                   MemExpr->getMemberLoc(),
                                   Fn->getType(),
                                   TemplateArgs);
      } else {
        SourceLocation Loc = MemExpr->getMemberLoc();
        if (MemExpr->getQualifier())
          Loc = MemExpr->getQualifierRange().getBegin();
        Base = new (Context) CXXThisExpr(Loc,
                                         MemExpr->getBaseType(),
                                         /*isImplicit=*/true);
      }
    } else
      Base = MemExpr->getBase()->Retain();

    return MemberExpr::Create(Context, Base,
                              MemExpr->isArrow(), 
                              MemExpr->getQualifier(), 
                              MemExpr->getQualifierRange(),
                              Fn, 
                              MemExpr->getMemberLoc(),
                              TemplateArgs,
                              Fn->getType());
  }
  
  assert(false && "Invalid reference to overloaded function");
  return E->Retain();
}

Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E, 
                                                            FunctionDecl *Fn) {
  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
}

} // end namespace clang
OpenPOWER on IntegriCloud