summaryrefslogtreecommitdiffstats
path: root/lib/Sema/SemaExpr.cpp
blob: 2249579ba4e1aa99700a8bd43b8aa764b9d9d54e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "SemaInit.h"
#include "Lookup.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Designator.h"
#include "clang/Parse/Scope.h"
#include "clang/Parse/Template.h"
using namespace clang;


/// \brief Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// If IgnoreDeprecated is set to true, this should not want about deprecated
/// decls.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
///
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
  // See if the decl is deprecated.
  if (D->getAttr<DeprecatedAttr>()) {
    EmitDeprecationWarning(D, Loc);
  }

  // See if the decl is unavailable
  if (D->getAttr<UnavailableAttr>()) {
    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
  }
  
  // See if this is a deleted function.
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    if (FD->isDeleted()) {
      Diag(Loc, diag::err_deleted_function_use);
      Diag(D->getLocation(), diag::note_unavailable_here) << true;
      return true;
    }
  }

  return false;
}

/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
/// (and other functions in future), which have been declared with sentinel
/// attribute. It warns if call does not have the sentinel argument.
///
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
                                 Expr **Args, unsigned NumArgs) {
  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
  if (!attr)
    return;
  int sentinelPos = attr->getSentinel();
  int nullPos = attr->getNullPos();

  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
  // base class. Then we won't be needing two versions of the same code.
  unsigned int i = 0;
  bool warnNotEnoughArgs = false;
  int isMethod = 0;
  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    // skip over named parameters.
    ObjCMethodDecl::param_iterator P, E = MD->param_end();
    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
      if (nullPos)
        --nullPos;
      else
        ++i;
    }
    warnNotEnoughArgs = (P != E || i >= NumArgs);
    isMethod = 1;
  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    // skip over named parameters.
    ObjCMethodDecl::param_iterator P, E = FD->param_end();
    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
      if (nullPos)
        --nullPos;
      else
        ++i;
    }
    warnNotEnoughArgs = (P != E || i >= NumArgs);
  } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
    // block or function pointer call.
    QualType Ty = V->getType();
    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
      const FunctionType *FT = Ty->isFunctionPointerType()
      ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
      : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
        unsigned NumArgsInProto = Proto->getNumArgs();
        unsigned k;
        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
          if (nullPos)
            --nullPos;
          else
            ++i;
        }
        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
      }
      if (Ty->isBlockPointerType())
        isMethod = 2;
    } else
      return;
  } else
    return;

  if (warnNotEnoughArgs) {
    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
    return;
  }
  int sentinel = i;
  while (sentinelPos > 0 && i < NumArgs-1) {
    --sentinelPos;
    ++i;
  }
  if (sentinelPos > 0) {
    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
    return;
  }
  while (i < NumArgs-1) {
    ++i;
    ++sentinel;
  }
  Expr *sentinelExpr = Args[sentinel];
  if (sentinelExpr && (!isa<GNUNullExpr>(sentinelExpr) &&
                       (!sentinelExpr->getType()->isPointerType() ||
                        !sentinelExpr->isNullPointerConstant(Context,
                                            Expr::NPC_ValueDependentIsNull)))) {
    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
  }
  return;
}

SourceRange Sema::getExprRange(ExprTy *E) const {
  Expr *Ex = (Expr *)E;
  return Ex? Ex->getSourceRange() : SourceRange();
}

//===----------------------------------------------------------------------===//
//  Standard Promotions and Conversions
//===----------------------------------------------------------------------===//

/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
  QualType Ty = E->getType();
  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");

  if (Ty->isFunctionType())
    ImpCastExprToType(E, Context.getPointerType(Ty),
                      CastExpr::CK_FunctionToPointerDecay);
  else if (Ty->isArrayType()) {
    // In C90 mode, arrays only promote to pointers if the array expression is
    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    // type 'array of type' is converted to an expression that has type 'pointer
    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    // that has type 'array of type' ...".  The relevant change is "an lvalue"
    // (C90) to "an expression" (C99).
    //
    // C++ 4.2p1:
    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    // T" can be converted to an rvalue of type "pointer to T".
    //
    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
        E->isLvalue(Context) == Expr::LV_Valid)
      ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
                        CastExpr::CK_ArrayToPointerDecay);
  }
}

void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
  DefaultFunctionArrayConversion(E);
  
  QualType Ty = E->getType();
  assert(!Ty.isNull() && "DefaultFunctionArrayLvalueConversion - missing type");
  if (!Ty->isDependentType() && Ty.hasQualifiers() &&
      (!getLangOptions().CPlusPlus || !Ty->isRecordType()) &&
      E->isLvalue(Context) == Expr::LV_Valid) {
    // C++ [conv.lval]p1:
    //   [...] If T is a non-class type, the type of the rvalue is the
    //   cv-unqualified version of T. Otherwise, the type of the
    //   rvalue is T
    //
    // C99 6.3.2.1p2:
    //   If the lvalue has qualified type, the value has the unqualified 
    //   version of the type of the lvalue; otherwise, the value has the 
    //   type of the lvalue.
    ImpCastExprToType(E, Ty.getUnqualifiedType(), CastExpr::CK_NoOp);
  }
}


/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
  QualType Ty = Expr->getType();
  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");

  // C99 6.3.1.1p2:
  //
  //   The following may be used in an expression wherever an int or
  //   unsigned int may be used:
  //     - an object or expression with an integer type whose integer
  //       conversion rank is less than or equal to the rank of int
  //       and unsigned int.
  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
  //
  //   If an int can represent all values of the original type, the
  //   value is converted to an int; otherwise, it is converted to an
  //   unsigned int. These are called the integer promotions. All
  //   other types are unchanged by the integer promotions.
  QualType PTy = Context.isPromotableBitField(Expr);
  if (!PTy.isNull()) {
    ImpCastExprToType(Expr, PTy, CastExpr::CK_IntegralCast);
    return Expr;
  }
  if (Ty->isPromotableIntegerType()) {
    QualType PT = Context.getPromotedIntegerType(Ty);
    ImpCastExprToType(Expr, PT, CastExpr::CK_IntegralCast);
    return Expr;
  }

  DefaultFunctionArrayLvalueConversion(Expr);
  return Expr;
}

/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to
/// double. All other argument types are converted by UsualUnaryConversions().
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
  QualType Ty = Expr->getType();
  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");

  // If this is a 'float' (CVR qualified or typedef) promote to double.
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
    if (BT->getKind() == BuiltinType::Float)
      return ImpCastExprToType(Expr, Context.DoubleTy,
                               CastExpr::CK_FloatingCast);

  UsualUnaryConversions(Expr);
}

/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will warn if the resulting type is not a POD type, and rejects ObjC
/// interfaces passed by value.  This returns true if the argument type is
/// completely illegal.
bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
  DefaultArgumentPromotion(Expr);

  if (Expr->getType()->isObjCInterfaceType() &&
      DiagRuntimeBehavior(Expr->getLocStart(),
        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
          << Expr->getType() << CT))
    return true;

  if (!Expr->getType()->isPODType() &&
      DiagRuntimeBehavior(Expr->getLocStart(), 
                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
                            << Expr->getType() << CT))
    return true;

  return false;
}


/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with
/// GCC.
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
                                          bool isCompAssign) {
  if (!isCompAssign)
    UsualUnaryConversions(lhsExpr);

  UsualUnaryConversions(rhsExpr);

  // For conversion purposes, we ignore any qualifiers.
  // For example, "const float" and "float" are equivalent.
  QualType lhs =
    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
  QualType rhs =
    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();

  // If both types are identical, no conversion is needed.
  if (lhs == rhs)
    return lhs;

  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
  // The caller can deal with this (e.g. pointer + int).
  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
    return lhs;

  // Perform bitfield promotions.
  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
  if (!LHSBitfieldPromoteTy.isNull())
    lhs = LHSBitfieldPromoteTy;
  QualType RHSBitfieldPromoteTy = Context.isPromotableBitField(rhsExpr);
  if (!RHSBitfieldPromoteTy.isNull())
    rhs = RHSBitfieldPromoteTy;

  QualType destType = Context.UsualArithmeticConversionsType(lhs, rhs);
  if (!isCompAssign)
    ImpCastExprToType(lhsExpr, destType, CastExpr::CK_Unknown);
  ImpCastExprToType(rhsExpr, destType, CastExpr::CK_Unknown);
  return destType;
}

//===----------------------------------------------------------------------===//
//  Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//


/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens.  However, the common case is that StringToks points to one
/// string.
///
Action::OwningExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
  assert(NumStringToks && "Must have at least one string!");

  StringLiteralParser Literal(StringToks, NumStringToks, PP);
  if (Literal.hadError)
    return ExprError();

  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
  for (unsigned i = 0; i != NumStringToks; ++i)
    StringTokLocs.push_back(StringToks[i].getLocation());

  QualType StrTy = Context.CharTy;
  if (Literal.AnyWide) StrTy = Context.getWCharType();
  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;

  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
  if (getLangOptions().CPlusPlus)
    StrTy.addConst();

  // Get an array type for the string, according to C99 6.4.5.  This includes
  // the nul terminator character as well as the string length for pascal
  // strings.
  StrTy = Context.getConstantArrayType(StrTy,
                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
                                       ArrayType::Normal, 0);

  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
  return Owned(StringLiteral::Create(Context, Literal.GetString(),
                                     Literal.GetStringLength(),
                                     Literal.AnyWide, StrTy,
                                     &StringTokLocs[0],
                                     StringTokLocs.size()));
}

/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
/// variables defined outside the block) or false if this is not needed (e.g.
/// for values inside the block or for globals).
///
/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
/// up-to-date.
///
static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
                                              ValueDecl *VD) {
  // If the value is defined inside the block, we couldn't snapshot it even if
  // we wanted to.
  if (CurBlock->TheDecl == VD->getDeclContext())
    return false;

  // If this is an enum constant or function, it is constant, don't snapshot.
  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
    return false;

  // If this is a reference to an extern, static, or global variable, no need to
  // snapshot it.
  // FIXME: What about 'const' variables in C++?
  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
    if (!Var->hasLocalStorage())
      return false;

  // Blocks that have these can't be constant.
  CurBlock->hasBlockDeclRefExprs = true;

  // If we have nested blocks, the decl may be declared in an outer block (in
  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
  // be defined outside all of the current blocks (in which case the blocks do
  // all get the bit).  Walk the nesting chain.
  for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
    BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
    
    if (!NextBlock)
      continue;
    
    // If we found the defining block for the variable, don't mark the block as
    // having a reference outside it.
    if (NextBlock->TheDecl == VD->getDeclContext())
      break;

    // Otherwise, the DeclRef from the inner block causes the outer one to need
    // a snapshot as well.
    NextBlock->hasBlockDeclRefExprs = true;
  }

  return true;
}



/// BuildDeclRefExpr - Build a DeclRefExpr.
Sema::OwningExprResult
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, SourceLocation Loc,
                       const CXXScopeSpec *SS) {
  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
    Diag(Loc,
         diag::err_auto_variable_cannot_appear_in_own_initializer)
      << D->getDeclName();
    return ExprError();
  }

  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
            << D->getIdentifier() << FD->getDeclName();
          Diag(D->getLocation(), diag::note_local_variable_declared_here)
            << D->getIdentifier();
          return ExprError();
        }
      }
    }
  }

  MarkDeclarationReferenced(Loc, D);

  return Owned(DeclRefExpr::Create(Context, 
                              SS? (NestedNameSpecifier *)SS->getScopeRep() : 0, 
                                   SS? SS->getRange() : SourceRange(), 
                                   D, Loc, Ty));
}

/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
/// variable corresponding to the anonymous union or struct whose type
/// is Record.
static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
                                             RecordDecl *Record) {
  assert(Record->isAnonymousStructOrUnion() &&
         "Record must be an anonymous struct or union!");

  // FIXME: Once Decls are directly linked together, this will be an O(1)
  // operation rather than a slow walk through DeclContext's vector (which
  // itself will be eliminated). DeclGroups might make this even better.
  DeclContext *Ctx = Record->getDeclContext();
  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
                               DEnd = Ctx->decls_end();
       D != DEnd; ++D) {
    if (*D == Record) {
      // The object for the anonymous struct/union directly
      // follows its type in the list of declarations.
      ++D;
      assert(D != DEnd && "Missing object for anonymous record");
      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
      return *D;
    }
  }

  assert(false && "Missing object for anonymous record");
  return 0;
}

/// \brief Given a field that represents a member of an anonymous
/// struct/union, build the path from that field's context to the
/// actual member.
///
/// Construct the sequence of field member references we'll have to
/// perform to get to the field in the anonymous union/struct. The
/// list of members is built from the field outward, so traverse it
/// backwards to go from an object in the current context to the field
/// we found.
///
/// \returns The variable from which the field access should begin,
/// for an anonymous struct/union that is not a member of another
/// class. Otherwise, returns NULL.
VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
  assert(Field->getDeclContext()->isRecord() &&
         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
         && "Field must be stored inside an anonymous struct or union");

  Path.push_back(Field);
  VarDecl *BaseObject = 0;
  DeclContext *Ctx = Field->getDeclContext();
  do {
    RecordDecl *Record = cast<RecordDecl>(Ctx);
    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
      Path.push_back(AnonField);
    else {
      BaseObject = cast<VarDecl>(AnonObject);
      break;
    }
    Ctx = Ctx->getParent();
  } while (Ctx->isRecord() &&
           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());

  return BaseObject;
}

Sema::OwningExprResult
Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
                                               FieldDecl *Field,
                                               Expr *BaseObjectExpr,
                                               SourceLocation OpLoc) {
  llvm::SmallVector<FieldDecl *, 4> AnonFields;
  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
                                                            AnonFields);

  // Build the expression that refers to the base object, from
  // which we will build a sequence of member references to each
  // of the anonymous union objects and, eventually, the field we
  // found via name lookup.
  bool BaseObjectIsPointer = false;
  Qualifiers BaseQuals;
  if (BaseObject) {
    // BaseObject is an anonymous struct/union variable (and is,
    // therefore, not part of another non-anonymous record).
    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
    MarkDeclarationReferenced(Loc, BaseObject);
    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
                                               SourceLocation());
    BaseQuals
      = Context.getCanonicalType(BaseObject->getType()).getQualifiers();
  } else if (BaseObjectExpr) {
    // The caller provided the base object expression. Determine
    // whether its a pointer and whether it adds any qualifiers to the
    // anonymous struct/union fields we're looking into.
    QualType ObjectType = BaseObjectExpr->getType();
    if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
      BaseObjectIsPointer = true;
      ObjectType = ObjectPtr->getPointeeType();
    }
    BaseQuals
      = Context.getCanonicalType(ObjectType).getQualifiers();
  } else {
    // We've found a member of an anonymous struct/union that is
    // inside a non-anonymous struct/union, so in a well-formed
    // program our base object expression is "this".
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
      if (!MD->isStatic()) {
        QualType AnonFieldType
          = Context.getTagDeclType(
                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
        QualType ThisType = Context.getTagDeclType(MD->getParent());
        if ((Context.getCanonicalType(AnonFieldType)
               == Context.getCanonicalType(ThisType)) ||
            IsDerivedFrom(ThisType, AnonFieldType)) {
          // Our base object expression is "this".
          BaseObjectExpr = new (Context) CXXThisExpr(Loc,
                                                     MD->getThisType(Context),
                                                     /*isImplicit=*/true);
          BaseObjectIsPointer = true;
        }
      } else {
        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
          << Field->getDeclName());
      }
      BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
    }

    if (!BaseObjectExpr)
      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
        << Field->getDeclName());
  }

  // Build the implicit member references to the field of the
  // anonymous struct/union.
  Expr *Result = BaseObjectExpr;
  Qualifiers ResultQuals = BaseQuals;
  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
       FI != FIEnd; ++FI) {
    QualType MemberType = (*FI)->getType();
    Qualifiers MemberTypeQuals =
      Context.getCanonicalType(MemberType).getQualifiers();

    // CVR attributes from the base are picked up by members,
    // except that 'mutable' members don't pick up 'const'.
    if ((*FI)->isMutable())
      ResultQuals.removeConst();

    // GC attributes are never picked up by members.
    ResultQuals.removeObjCGCAttr();

    // TR 18037 does not allow fields to be declared with address spaces.
    assert(!MemberTypeQuals.hasAddressSpace());

    Qualifiers NewQuals = ResultQuals + MemberTypeQuals;
    if (NewQuals != MemberTypeQuals)
      MemberType = Context.getQualifiedType(MemberType, NewQuals);

    MarkDeclarationReferenced(Loc, *FI);
    PerformObjectMemberConversion(Result, /*FIXME:Qualifier=*/0, *FI);
    // FIXME: Might this end up being a qualified name?
    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
                                      OpLoc, MemberType);
    BaseObjectIsPointer = false;
    ResultQuals = NewQuals;
  }

  return Owned(Result);
}

/// Decomposes the given name into a DeclarationName, its location, and
/// possibly a list of template arguments.
///
/// If this produces template arguments, it is permitted to call
/// DecomposeTemplateName.
///
/// This actually loses a lot of source location information for
/// non-standard name kinds; we should consider preserving that in
/// some way.
static void DecomposeUnqualifiedId(Sema &SemaRef,
                                   const UnqualifiedId &Id,
                                   TemplateArgumentListInfo &Buffer,
                                   DeclarationName &Name,
                                   SourceLocation &NameLoc,
                             const TemplateArgumentListInfo *&TemplateArgs) {
  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);

    ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
                                       Id.TemplateId->getTemplateArgs(),
                                       Id.TemplateId->NumArgs);
    SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
    TemplateArgsPtr.release();

    TemplateName TName =
      Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();

    Name = SemaRef.Context.getNameForTemplate(TName);
    NameLoc = Id.TemplateId->TemplateNameLoc;
    TemplateArgs = &Buffer;
  } else {
    Name = SemaRef.GetNameFromUnqualifiedId(Id);
    NameLoc = Id.StartLocation;
    TemplateArgs = 0;
  }
}

/// Decompose the given template name into a list of lookup results.
///
/// The unqualified ID must name a non-dependent template, which can
/// be more easily tested by checking whether DecomposeUnqualifiedId
/// found template arguments.
static void DecomposeTemplateName(LookupResult &R, const UnqualifiedId &Id) {
  assert(Id.getKind() == UnqualifiedId::IK_TemplateId);
  TemplateName TName =
    Sema::TemplateTy::make(Id.TemplateId->Template).getAsVal<TemplateName>();

  if (TemplateDecl *TD = TName.getAsTemplateDecl())
    R.addDecl(TD);
  else if (OverloadedTemplateStorage *OT = TName.getAsOverloadedTemplate())
    for (OverloadedTemplateStorage::iterator I = OT->begin(), E = OT->end();
           I != E; ++I)
      R.addDecl(*I);

  R.resolveKind();
}

/// Determines whether the given record is "fully-formed" at the given
/// location, i.e. whether a qualified lookup into it is assured of
/// getting consistent results already.
static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
  if (!Record->hasDefinition())
    return false;

  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
         E = Record->bases_end(); I != E; ++I) {
    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
    if (!BaseRT) return false;

    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
    if (!BaseRecord->hasDefinition() ||
        !IsFullyFormedScope(SemaRef, BaseRecord))
      return false;
  }

  return true;
}

/// Determines whether we can lookup this id-expression now or whether
/// we have to wait until template instantiation is complete.
static bool IsDependentIdExpression(Sema &SemaRef, const CXXScopeSpec &SS) {
  DeclContext *DC = SemaRef.computeDeclContext(SS, false);

  // If the qualifier scope isn't computable, it's definitely dependent.
  if (!DC) return true;

  // If the qualifier scope doesn't name a record, we can always look into it.
  if (!isa<CXXRecordDecl>(DC)) return false;

  // We can't look into record types unless they're fully-formed.
  if (!IsFullyFormedScope(SemaRef, cast<CXXRecordDecl>(DC))) return true;

  return false;
}

/// Determines if the given class is provably not derived from all of
/// the prospective base classes.
static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
                                     CXXRecordDecl *Record,
                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
  if (Bases.count(Record->getCanonicalDecl()))
    return false;

  RecordDecl *RD = Record->getDefinition();
  if (!RD) return false;
  Record = cast<CXXRecordDecl>(RD);

  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
         E = Record->bases_end(); I != E; ++I) {
    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
    if (!BaseRT) return false;

    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
      return false;
  }

  return true;
}
                                  
/// Determines if this is an instance member of a class.
static bool IsInstanceMember(NamedDecl *D) {
  assert(D->isCXXClassMember() &&
         "checking whether non-member is instance member");

  if (isa<FieldDecl>(D)) return true;
  
  if (isa<CXXMethodDecl>(D))
    return !cast<CXXMethodDecl>(D)->isStatic();

  if (isa<FunctionTemplateDecl>(D)) {
    D = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
    return !cast<CXXMethodDecl>(D)->isStatic();
  }

  return false;
}

enum IMAKind {
  /// The reference is definitely not an instance member access.
  IMA_Static,

  /// The reference may be an implicit instance member access.
  IMA_Mixed,

  /// The reference may be to an instance member, but it is invalid if
  /// so, because the context is not an instance method.
  IMA_Mixed_StaticContext,

  /// The reference may be to an instance member, but it is invalid if
  /// so, because the context is from an unrelated class.
  IMA_Mixed_Unrelated,

  /// The reference is definitely an implicit instance member access.
  IMA_Instance,

  /// The reference may be to an unresolved using declaration.
  IMA_Unresolved,

  /// The reference may be to an unresolved using declaration and the
  /// context is not an instance method.
  IMA_Unresolved_StaticContext,

  /// The reference is to a member of an anonymous structure in a
  /// non-class context.
  IMA_AnonymousMember,

  /// All possible referrents are instance members and the current
  /// context is not an instance method.
  IMA_Error_StaticContext,

  /// All possible referrents are instance members of an unrelated
  /// class.
  IMA_Error_Unrelated
};

/// The given lookup names class member(s) and is not being used for
/// an address-of-member expression.  Classify the type of access
/// according to whether it's possible that this reference names an
/// instance member.  This is best-effort; it is okay to
/// conservatively answer "yes", in which case some errors will simply
/// not be caught until template-instantiation.
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
                                            const LookupResult &R) {
  assert(!R.empty() && (*R.begin())->isCXXClassMember());

  bool isStaticContext =
    (!isa<CXXMethodDecl>(SemaRef.CurContext) ||
     cast<CXXMethodDecl>(SemaRef.CurContext)->isStatic());

  if (R.isUnresolvableResult())
    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;

  // Collect all the declaring classes of instance members we find.
  bool hasNonInstance = false;
  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    NamedDecl *D = (*I)->getUnderlyingDecl();
    if (IsInstanceMember(D)) {
      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());

      // If this is a member of an anonymous record, move out to the
      // innermost non-anonymous struct or union.  If there isn't one,
      // that's a special case.
      while (R->isAnonymousStructOrUnion()) {
        R = dyn_cast<CXXRecordDecl>(R->getParent());
        if (!R) return IMA_AnonymousMember;
      }
      Classes.insert(R->getCanonicalDecl());
    }
    else
      hasNonInstance = true;
  }

  // If we didn't find any instance members, it can't be an implicit
  // member reference.
  if (Classes.empty())
    return IMA_Static;

  // If the current context is not an instance method, it can't be
  // an implicit member reference.
  if (isStaticContext)
    return (hasNonInstance ? IMA_Mixed_StaticContext : IMA_Error_StaticContext);

  // If we can prove that the current context is unrelated to all the
  // declaring classes, it can't be an implicit member reference (in
  // which case it's an error if any of those members are selected).
  if (IsProvablyNotDerivedFrom(SemaRef,
                        cast<CXXMethodDecl>(SemaRef.CurContext)->getParent(),
                               Classes))
    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);

  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
}

/// Diagnose a reference to a field with no object available.
static void DiagnoseInstanceReference(Sema &SemaRef,
                                      const CXXScopeSpec &SS,
                                      const LookupResult &R) {
  SourceLocation Loc = R.getNameLoc();
  SourceRange Range(Loc);
  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());

  if (R.getAsSingle<FieldDecl>()) {
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
      if (MD->isStatic()) {
        // "invalid use of member 'x' in static member function"
        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
          << Range << R.getLookupName();
        return;
      }
    }

    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
      << R.getLookupName() << Range;
    return;
  }

  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
}

/// Diagnose an empty lookup.
///
/// \return false if new lookup candidates were found
bool Sema::DiagnoseEmptyLookup(Scope *S, const CXXScopeSpec &SS,
                               LookupResult &R) {
  DeclarationName Name = R.getLookupName();

  unsigned diagnostic = diag::err_undeclared_var_use;
  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
    diagnostic = diag::err_undeclared_use;
    diagnostic_suggest = diag::err_undeclared_use_suggest;
  }

  // If the original lookup was an unqualified lookup, fake an
  // unqualified lookup.  This is useful when (for example) the
  // original lookup would not have found something because it was a
  // dependent name.
  for (DeclContext *DC = SS.isEmpty()? CurContext : 0;
       DC; DC = DC->getParent()) {
    if (isa<CXXRecordDecl>(DC)) {
      LookupQualifiedName(R, DC);

      if (!R.empty()) {
        // Don't give errors about ambiguities in this lookup.
        R.suppressDiagnostics();

        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
        bool isInstance = CurMethod &&
                          CurMethod->isInstance() &&
                          DC == CurMethod->getParent();

        // Give a code modification hint to insert 'this->'.
        // TODO: fixit for inserting 'Base<T>::' in the other cases.
        // Actually quite difficult!
        if (isInstance)
          Diag(R.getNameLoc(), diagnostic) << Name
            << CodeModificationHint::CreateInsertion(R.getNameLoc(),
                                                     "this->");
        else
          Diag(R.getNameLoc(), diagnostic) << Name;

        // Do we really want to note all of these?
        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
          Diag((*I)->getLocation(), diag::note_dependent_var_use);

        // Tell the callee to try to recover.
        return false;
      }
    }
  }

  // We didn't find anything, so try to correct for a typo.
  if (S && CorrectTypo(R, S, &SS)) {
    if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
      if (SS.isEmpty())
        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
                                              R.getLookupName().getAsString());
      else 
        Diag(R.getNameLoc(), diag::err_no_member_suggest)
          << Name << computeDeclContext(SS, false) << R.getLookupName()
          << SS.getRange()
          << CodeModificationHint::CreateReplacement(R.getNameLoc(),
                                              R.getLookupName().getAsString());
      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
        Diag(ND->getLocation(), diag::note_previous_decl)
          << ND->getDeclName();
      
      // Tell the callee to try to recover.
      return false;
    }

    if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
      // FIXME: If we ended up with a typo for a type name or
      // Objective-C class name, we're in trouble because the parser
      // is in the wrong place to recover. Suggest the typo
      // correction, but don't make it a fix-it since we're not going
      // to recover well anyway.
      if (SS.isEmpty())
        Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
      else 
        Diag(R.getNameLoc(), diag::err_no_member_suggest)
          << Name << computeDeclContext(SS, false) << R.getLookupName()
          << SS.getRange();

      // Don't try to recover; it won't work.
      return true;
    }

    R.clear();
  }

  // Emit a special diagnostic for failed member lookups.
  // FIXME: computing the declaration context might fail here (?)
  if (!SS.isEmpty()) {
    Diag(R.getNameLoc(), diag::err_no_member)
      << Name << computeDeclContext(SS, false)
      << SS.getRange();
    return true;
  }

  // Give up, we can't recover.
  Diag(R.getNameLoc(), diagnostic) << Name;
  return true;
}

Sema::OwningExprResult Sema::ActOnIdExpression(Scope *S,
                                               const CXXScopeSpec &SS,
                                               UnqualifiedId &Id,
                                               bool HasTrailingLParen,
                                               bool isAddressOfOperand) {
  assert(!(isAddressOfOperand && HasTrailingLParen) &&
         "cannot be direct & operand and have a trailing lparen");

  if (SS.isInvalid())
    return ExprError();

  TemplateArgumentListInfo TemplateArgsBuffer;

  // Decompose the UnqualifiedId into the following data.
  DeclarationName Name;
  SourceLocation NameLoc;
  const TemplateArgumentListInfo *TemplateArgs;
  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
                         Name, NameLoc, TemplateArgs);

  IdentifierInfo *II = Name.getAsIdentifierInfo();

  // C++ [temp.dep.expr]p3:
  //   An id-expression is type-dependent if it contains:
  //     -- an identifier that was declared with a dependent type,
  //        (note: handled after lookup)
  //     -- a template-id that is dependent,
  //        (note: handled in BuildTemplateIdExpr)
  //     -- a conversion-function-id that specifies a dependent type,
  //     -- a nested-name-specifier that contains a class-name that
  //        names a dependent type.
  // Determine whether this is a member of an unknown specialization;
  // we need to handle these differently.
  if ((Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
       Name.getCXXNameType()->isDependentType()) ||
      (SS.isSet() && IsDependentIdExpression(*this, SS))) {
    return ActOnDependentIdExpression(SS, Name, NameLoc,
                                      isAddressOfOperand,
                                      TemplateArgs);
  }

  // Perform the required lookup.
  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
  if (TemplateArgs) {
    // Just re-use the lookup done by isTemplateName.
    DecomposeTemplateName(R, Id);
  } else {
    bool IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);

    // If this reference is in an Objective-C method, then we need to do
    // some special Objective-C lookup, too.
    if (IvarLookupFollowUp) {
      OwningExprResult E(LookupInObjCMethod(R, S, II, true));
      if (E.isInvalid())
        return ExprError();

      Expr *Ex = E.takeAs<Expr>();
      if (Ex) return Owned(Ex);
    }
  }

  if (R.isAmbiguous())
    return ExprError();

  // Determine whether this name might be a candidate for
  // argument-dependent lookup.
  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);

  if (R.empty() && !ADL) {
    // Otherwise, this could be an implicitly declared function reference (legal
    // in C90, extension in C99, forbidden in C++).
    if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
      if (D) R.addDecl(D);
    }

    // If this name wasn't predeclared and if this is not a function
    // call, diagnose the problem.
    if (R.empty()) {
      if (DiagnoseEmptyLookup(S, SS, R))
        return ExprError();

      assert(!R.empty() &&
             "DiagnoseEmptyLookup returned false but added no results");

      // If we found an Objective-C instance variable, let
      // LookupInObjCMethod build the appropriate expression to
      // reference the ivar. 
      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
        R.clear();
        OwningExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
        assert(E.isInvalid() || E.get());
        return move(E);
      }
    }
  }

  // This is guaranteed from this point on.
  assert(!R.empty() || ADL);

  if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
    // Warn about constructs like:
    //   if (void *X = foo()) { ... } else { X }.
    // In the else block, the pointer is always false.

    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
      Scope *CheckS = S;
      while (CheckS && CheckS->getControlParent()) {
        if (CheckS->isWithinElse() &&
            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
          ExprError(Diag(NameLoc, diag::warn_value_always_zero)
            << Var->getDeclName()
            << (Var->getType()->isPointerType()? 2 :
                Var->getType()->isBooleanType()? 1 : 0));
          break;
        }

        // Move to the parent of this scope.
        CheckS = CheckS->getParent();
      }
    }
  } else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
      // C99 DR 316 says that, if a function type comes from a
      // function definition (without a prototype), that type is only
      // used for checking compatibility. Therefore, when referencing
      // the function, we pretend that we don't have the full function
      // type.
      if (DiagnoseUseOfDecl(Func, NameLoc))
        return ExprError();

      QualType T = Func->getType();
      QualType NoProtoType = T;
      if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
      return BuildDeclRefExpr(Func, NoProtoType, NameLoc, &SS);
    }
  }

  // Check whether this might be a C++ implicit instance member access.
  // C++ [expr.prim.general]p6:
  //   Within the definition of a non-static member function, an
  //   identifier that names a non-static member is transformed to a
  //   class member access expression.
  // But note that &SomeClass::foo is grammatically distinct, even
  // though we don't parse it that way.
  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
    bool isAbstractMemberPointer = (isAddressOfOperand && !SS.isEmpty());
    if (!isAbstractMemberPointer)
      return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
  }

  if (TemplateArgs)
    return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);

  return BuildDeclarationNameExpr(SS, R, ADL);
}

/// Builds an expression which might be an implicit member expression.
Sema::OwningExprResult
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
                                      LookupResult &R,
                                const TemplateArgumentListInfo *TemplateArgs) {
  switch (ClassifyImplicitMemberAccess(*this, R)) {
  case IMA_Instance:
    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);

  case IMA_AnonymousMember:
    assert(R.isSingleResult());
    return BuildAnonymousStructUnionMemberReference(R.getNameLoc(),
                                                    R.getAsSingle<FieldDecl>());

  case IMA_Mixed:
  case IMA_Mixed_Unrelated:
  case IMA_Unresolved:
    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);

  case IMA_Static:
  case IMA_Mixed_StaticContext:
  case IMA_Unresolved_StaticContext:
    if (TemplateArgs)
      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
    return BuildDeclarationNameExpr(SS, R, false);

  case IMA_Error_StaticContext:
  case IMA_Error_Unrelated:
    DiagnoseInstanceReference(*this, SS, R);
    return ExprError();
  }

  llvm_unreachable("unexpected instance member access kind");
  return ExprError();
}

/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
/// declaration name, generally during template instantiation.
/// There's a large number of things which don't need to be done along
/// this path.
Sema::OwningExprResult
Sema::BuildQualifiedDeclarationNameExpr(const CXXScopeSpec &SS,
                                        DeclarationName Name,
                                        SourceLocation NameLoc) {
  DeclContext *DC;
  if (!(DC = computeDeclContext(SS, false)) ||
      DC->isDependentContext() ||
      RequireCompleteDeclContext(SS))
    return BuildDependentDeclRefExpr(SS, Name, NameLoc, 0);

  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
  LookupQualifiedName(R, DC);

  if (R.isAmbiguous())
    return ExprError();

  if (R.empty()) {
    Diag(NameLoc, diag::err_no_member) << Name << DC << SS.getRange();
    return ExprError();
  }

  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
}

/// LookupInObjCMethod - The parser has read a name in, and Sema has
/// detected that we're currently inside an ObjC method.  Perform some
/// additional lookup.
///
/// Ideally, most of this would be done by lookup, but there's
/// actually quite a lot of extra work involved.
///
/// Returns a null sentinel to indicate trivial success.
Sema::OwningExprResult
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
                         IdentifierInfo *II,
                         bool AllowBuiltinCreation) {
  SourceLocation Loc = Lookup.getNameLoc();

  // There are two cases to handle here.  1) scoped lookup could have failed,
  // in which case we should look for an ivar.  2) scoped lookup could have
  // found a decl, but that decl is outside the current instance method (i.e.
  // a global variable).  In these two cases, we do a lookup for an ivar with
  // this name, if the lookup sucedes, we replace it our current decl.

  // If we're in a class method, we don't normally want to look for
  // ivars.  But if we don't find anything else, and there's an
  // ivar, that's an error.
  bool IsClassMethod = getCurMethodDecl()->isClassMethod();

  bool LookForIvars;
  if (Lookup.empty())
    LookForIvars = true;
  else if (IsClassMethod)
    LookForIvars = false;
  else
    LookForIvars = (Lookup.isSingleResult() &&
                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
  ObjCInterfaceDecl *IFace = 0;
  if (LookForIvars) {
    IFace = getCurMethodDecl()->getClassInterface();
    ObjCInterfaceDecl *ClassDeclared;
    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
      // Diagnose using an ivar in a class method.
      if (IsClassMethod)
        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
                         << IV->getDeclName());

      // If we're referencing an invalid decl, just return this as a silent
      // error node.  The error diagnostic was already emitted on the decl.
      if (IV->isInvalidDecl())
        return ExprError();

      // Check if referencing a field with __attribute__((deprecated)).
      if (DiagnoseUseOfDecl(IV, Loc))
        return ExprError();

      // Diagnose the use of an ivar outside of the declaring class.
      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
          ClassDeclared != IFace)
        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();

      // FIXME: This should use a new expr for a direct reference, don't
      // turn this into Self->ivar, just return a BareIVarExpr or something.
      IdentifierInfo &II = Context.Idents.get("self");
      UnqualifiedId SelfName;
      SelfName.setIdentifier(&II, SourceLocation());          
      CXXScopeSpec SelfScopeSpec;
      OwningExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
                                                    SelfName, false, false);
      MarkDeclarationReferenced(Loc, IV);
      return Owned(new (Context)
                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
                                   SelfExpr.takeAs<Expr>(), true, true));
    }
  } else if (getCurMethodDecl()->isInstanceMethod()) {
    // We should warn if a local variable hides an ivar.
    ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
    ObjCInterfaceDecl *ClassDeclared;
    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
      if (IV->getAccessControl() != ObjCIvarDecl::Private ||
          IFace == ClassDeclared)
        Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
    }
  }

  // Needed to implement property "super.method" notation.
  if (Lookup.empty() && II->isStr("super")) {
    QualType T;
    
    if (getCurMethodDecl()->isInstanceMethod())
      T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
                                    getCurMethodDecl()->getClassInterface()));
    else
      T = Context.getObjCClassType();
    return Owned(new (Context) ObjCSuperExpr(Loc, T));
  }
  if (Lookup.empty() && II && AllowBuiltinCreation) {
    // FIXME. Consolidate this with similar code in LookupName.
    if (unsigned BuiltinID = II->getBuiltinID()) {
      if (!(getLangOptions().CPlusPlus &&
            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
                                           S, Lookup.isForRedeclaration(),
                                           Lookup.getNameLoc());
        if (D) Lookup.addDecl(D);
      }
    }
  }
  if (LangOpts.ObjCNonFragileABI2 && LookForIvars && Lookup.empty()) {
    ObjCIvarDecl *Ivar = SynthesizeNewPropertyIvar(IFace, II);
    if (Ivar)
      return LookupInObjCMethod(Lookup, S, II, AllowBuiltinCreation);
  }
  // Sentinel value saying that we didn't do anything special.
  return Owned((Expr*) 0);
}

/// \brief Cast member's object to its own class if necessary.
bool
Sema::PerformObjectMemberConversion(Expr *&From,
                                    NestedNameSpecifier *Qualifier,
                                    NamedDecl *Member) {
  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
  if (!RD)
    return false;
  
  QualType DestRecordType;
  QualType DestType;
  QualType FromRecordType;
  QualType FromType = From->getType();
  bool PointerConversions = false;
  if (isa<FieldDecl>(Member)) {
    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
    
    if (FromType->getAs<PointerType>()) {
      DestType = Context.getPointerType(DestRecordType);
      FromRecordType = FromType->getPointeeType();
      PointerConversions = true;
    } else {
      DestType = DestRecordType;
      FromRecordType = FromType;
    }
  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
    if (Method->isStatic())
      return false;
    
    DestType = Method->getThisType(Context);
    DestRecordType = DestType->getPointeeType();
    
    if (FromType->getAs<PointerType>()) {
      FromRecordType = FromType->getPointeeType();
      PointerConversions = true;
    } else {
      FromRecordType = FromType;
      DestType = DestRecordType;
    }
  } else {
    // No conversion necessary.
    return false;
  }
  
  if (DestType->isDependentType() || FromType->isDependentType())
    return false;
  
  // If the unqualified types are the same, no conversion is necessary.
  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
    return false;
  
  // C++ [class.member.lookup]p8:
  //   [...] Ambiguities can often be resolved by qualifying a name with its 
  //   class name.
  //
  // If the member was a qualified name and the qualified referred to a
  // specific base subobject type, we'll cast to that intermediate type
  // first and then to the object in which the member is declared. That allows
  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
  //
  //   class Base { public: int x; };
  //   class Derived1 : public Base { };
  //   class Derived2 : public Base { };
  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
  //
  //   void VeryDerived::f() {
  //     x = 17; // error: ambiguous base subobjects
  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
  //   }
  QualType IntermediateRecordType;
  QualType IntermediateType;
  if (Qualifier) {
    if (const RecordType *IntermediateRecord
                           = Qualifier->getAsType()->getAs<RecordType>()) {
      IntermediateRecordType = QualType(IntermediateRecord, 0);
      IntermediateType = IntermediateRecordType;
      if (PointerConversions)
        IntermediateType = Context.getPointerType(IntermediateType);
    }
  }
  
  if (!IntermediateType.isNull() &&
      IsDerivedFrom(FromRecordType, IntermediateRecordType) &&
      IsDerivedFrom(IntermediateRecordType, DestRecordType)) {
    if (CheckDerivedToBaseConversion(FromRecordType, IntermediateRecordType,
                                     From->getSourceRange().getBegin(),
                                     From->getSourceRange()) ||
        CheckDerivedToBaseConversion(IntermediateRecordType, DestRecordType,
                                     From->getSourceRange().getBegin(),
                                     From->getSourceRange()))
      return true;

    ImpCastExprToType(From, IntermediateType, CastExpr::CK_DerivedToBase,
                      /*isLvalue=*/!PointerConversions);        
    ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
                      /*isLvalue=*/!PointerConversions);
    return false;
  }
  
  if (CheckDerivedToBaseConversion(FromRecordType,
                                   DestRecordType,
                                   From->getSourceRange().getBegin(),
                                   From->getSourceRange()))
    return true;
  
  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
                    /*isLvalue=*/true);
  return false;
}

/// \brief Build a MemberExpr AST node.
static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
                                   const CXXScopeSpec &SS, ValueDecl *Member,
                                   SourceLocation Loc, QualType Ty,
                          const TemplateArgumentListInfo *TemplateArgs = 0) {
  NestedNameSpecifier *Qualifier = 0;
  SourceRange QualifierRange;
  if (SS.isSet()) {
    Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
    QualifierRange = SS.getRange();
  }

  return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
                            Member, Loc, TemplateArgs, Ty);
}

/// Builds an implicit member access expression.  The current context
/// is known to be an instance method, and the given unqualified lookup
/// set is known to contain only instance members, at least one of which
/// is from an appropriate type.
Sema::OwningExprResult
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
                              LookupResult &R,
                              const TemplateArgumentListInfo *TemplateArgs,
                              bool IsKnownInstance) {
  assert(!R.empty() && !R.isAmbiguous());

  SourceLocation Loc = R.getNameLoc();

  // We may have found a field within an anonymous union or struct
  // (C++ [class.union]).
  // FIXME: This needs to happen post-isImplicitMemberReference?
  // FIXME: template-ids inside anonymous structs?
  if (FieldDecl *FD = R.getAsSingle<FieldDecl>())
    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
      return BuildAnonymousStructUnionMemberReference(Loc, FD);

  // If this is known to be an instance access, go ahead and build a
  // 'this' expression now.
  QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
  Expr *This = 0; // null signifies implicit access
  if (IsKnownInstance) {
    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
  }

  return BuildMemberReferenceExpr(ExprArg(*this, This), ThisType,
                                  /*OpLoc*/ SourceLocation(),
                                  /*IsArrow*/ true,
                                  SS,
                                  /*FirstQualifierInScope*/ 0,
                                  R, TemplateArgs);
}

bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
                                      const LookupResult &R,
                                      bool HasTrailingLParen) {
  // Only when used directly as the postfix-expression of a call.
  if (!HasTrailingLParen)
    return false;

  // Never if a scope specifier was provided.
  if (SS.isSet())
    return false;

  // Only in C++ or ObjC++.
  if (!getLangOptions().CPlusPlus)
    return false;

  // Turn off ADL when we find certain kinds of declarations during
  // normal lookup:
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    NamedDecl *D = *I;

    // C++0x [basic.lookup.argdep]p3:
    //     -- a declaration of a class member
    // Since using decls preserve this property, we check this on the
    // original decl.
    if (D->isCXXClassMember())
      return false;

    // C++0x [basic.lookup.argdep]p3:
    //     -- a block-scope function declaration that is not a
    //        using-declaration
    // NOTE: we also trigger this for function templates (in fact, we
    // don't check the decl type at all, since all other decl types
    // turn off ADL anyway).
    if (isa<UsingShadowDecl>(D))
      D = cast<UsingShadowDecl>(D)->getTargetDecl();
    else if (D->getDeclContext()->isFunctionOrMethod())
      return false;

    // C++0x [basic.lookup.argdep]p3:
    //     -- a declaration that is neither a function or a function
    //        template
    // And also for builtin functions.
    if (isa<FunctionDecl>(D)) {
      FunctionDecl *FDecl = cast<FunctionDecl>(D);

      // But also builtin functions.
      if (FDecl->getBuiltinID() && FDecl->isImplicit())
        return false;
    } else if (!isa<FunctionTemplateDecl>(D))
      return false;
  }

  return true;
}


/// Diagnoses obvious problems with the use of the given declaration
/// as an expression.  This is only actually called for lookups that
/// were not overloaded, and it doesn't promise that the declaration
/// will in fact be used.
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
  if (isa<TypedefDecl>(D)) {
    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
    return true;
  }

  if (isa<ObjCInterfaceDecl>(D)) {
    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
    return true;
  }

  if (isa<NamespaceDecl>(D)) {
    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
    return true;
  }

  return false;
}

Sema::OwningExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
                               LookupResult &R,
                               bool NeedsADL) {
  // If this is a single, fully-resolved result and we don't need ADL,
  // just build an ordinary singleton decl ref.
  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
    return BuildDeclarationNameExpr(SS, R.getNameLoc(), R.getFoundDecl());

  // We only need to check the declaration if there's exactly one
  // result, because in the overloaded case the results can only be
  // functions and function templates.
  if (R.isSingleResult() &&
      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
    return ExprError();

  // Otherwise, just build an unresolved lookup expression.  Suppress
  // any lookup-related diagnostics; we'll hash these out later, when
  // we've picked a target.
  R.suppressDiagnostics();

  bool Dependent
    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), 0);
  UnresolvedLookupExpr *ULE
    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
                                   (NestedNameSpecifier*) SS.getScopeRep(),
                                   SS.getRange(),
                                   R.getLookupName(), R.getNameLoc(),
                                   NeedsADL, R.isOverloadedResult());
  ULE->addDecls(R.begin(), R.end());

  return Owned(ULE);
}
                               

/// \brief Complete semantic analysis for a reference to the given declaration.
Sema::OwningExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
                               SourceLocation Loc, NamedDecl *D) {
  assert(D && "Cannot refer to a NULL declaration");
  assert(!isa<FunctionTemplateDecl>(D) &&
         "Cannot refer unambiguously to a function template");

  if (CheckDeclInExpr(*this, Loc, D))
    return ExprError();

  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
    // Specifically diagnose references to class templates that are missing
    // a template argument list.
    Diag(Loc, diag::err_template_decl_ref)
      << Template << SS.getRange();
    Diag(Template->getLocation(), diag::note_template_decl_here);
    return ExprError();
  }

  // Make sure that we're referring to a value.
  ValueDecl *VD = dyn_cast<ValueDecl>(D);
  if (!VD) {
    Diag(Loc, diag::err_ref_non_value) 
      << D << SS.getRange();
    Diag(D->getLocation(), diag::note_declared_at);
    return ExprError();
  }

  // Check whether this declaration can be used. Note that we suppress
  // this check when we're going to perform argument-dependent lookup
  // on this function name, because this might not be the function
  // that overload resolution actually selects.
  if (DiagnoseUseOfDecl(VD, Loc))
    return ExprError();

  // Only create DeclRefExpr's for valid Decl's.
  if (VD->isInvalidDecl())
    return ExprError();

  // If the identifier reference is inside a block, and it refers to a value
  // that is outside the block, create a BlockDeclRefExpr instead of a
  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
  // the block is formed.
  //
  // We do not do this for things like enum constants, global variables, etc,
  // as they do not get snapshotted.
  //
  if (getCurBlock() && 
      ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
    if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
      Diag(Loc, diag::err_ref_vm_type);
      Diag(D->getLocation(), diag::note_declared_at);
      return ExprError();
    }

    if (VD->getType()->isArrayType() && !VD->hasAttr<BlocksAttr>()) {
      Diag(Loc, diag::err_ref_array_type);
      Diag(D->getLocation(), diag::note_declared_at);
      return ExprError();
    }

    MarkDeclarationReferenced(Loc, VD);
    QualType ExprTy = VD->getType().getNonReferenceType();
    // The BlocksAttr indicates the variable is bound by-reference.
    if (VD->getAttr<BlocksAttr>())
      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
    // This is to record that a 'const' was actually synthesize and added.
    bool constAdded = !ExprTy.isConstQualified();
    // Variable will be bound by-copy, make it const within the closure.

    ExprTy.addConst();
    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
                                                constAdded));
  }
  // If this reference is not in a block or if the referenced variable is
  // within the block, create a normal DeclRefExpr.

  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, &SS);
}

Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
                                                 tok::TokenKind Kind) {
  PredefinedExpr::IdentType IT;

  switch (Kind) {
  default: assert(0 && "Unknown simple primary expr!");
  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
  }

  // Pre-defined identifiers are of type char[x], where x is the length of the
  // string.

  Decl *currentDecl = getCurFunctionOrMethodDecl();
  if (!currentDecl) {
    Diag(Loc, diag::ext_predef_outside_function);
    currentDecl = Context.getTranslationUnitDecl();
  }

  QualType ResTy;
  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
    ResTy = Context.DependentTy;
  } else {
    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();

    llvm::APInt LengthI(32, Length + 1);
    ResTy = Context.CharTy.withConst();
    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
  }
  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
}

Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
  llvm::SmallString<16> CharBuffer;
  llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer);

  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
                            PP);
  if (Literal.hadError())
    return ExprError();

  QualType Ty;
  if (!getLangOptions().CPlusPlus)
    Ty = Context.IntTy;   // 'x' and L'x' -> int in C.
  else if (Literal.isWide())
    Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
  else if (Literal.isMultiChar())
    Ty = Context.IntTy;   // 'wxyz' -> int in C++.
  else
    Ty = Context.CharTy;  // 'x' -> char in C++

  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
                                              Literal.isWide(),
                                              Ty, Tok.getLocation()));
}

Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
  // Fast path for a single digit (which is quite common).  A single digit
  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
  if (Tok.getLength() == 1) {
    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
    unsigned IntSize = Context.Target.getIntWidth();
    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
                    Context.IntTy, Tok.getLocation()));
  }

  llvm::SmallString<512> IntegerBuffer;
  // Add padding so that NumericLiteralParser can overread by one character.
  IntegerBuffer.resize(Tok.getLength()+1);
  const char *ThisTokBegin = &IntegerBuffer[0];

  // Get the spelling of the token, which eliminates trigraphs, etc.
  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);

  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
                               Tok.getLocation(), PP);
  if (Literal.hadError)
    return ExprError();

  Expr *Res;

  if (Literal.isFloatingLiteral()) {
    QualType Ty;
    if (Literal.isFloat)
      Ty = Context.FloatTy;
    else if (!Literal.isLong)
      Ty = Context.DoubleTy;
    else
      Ty = Context.LongDoubleTy;

    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);

    using llvm::APFloat;
    APFloat Val(Format);

    APFloat::opStatus result = Literal.GetFloatValue(Val);

    // Overflow is always an error, but underflow is only an error if
    // we underflowed to zero (APFloat reports denormals as underflow).
    if ((result & APFloat::opOverflow) ||
        ((result & APFloat::opUnderflow) && Val.isZero())) {
      unsigned diagnostic;
      llvm::SmallVector<char, 20> buffer;
      if (result & APFloat::opOverflow) {
        diagnostic = diag::warn_float_overflow;
        APFloat::getLargest(Format).toString(buffer);
      } else {
        diagnostic = diag::warn_float_underflow;
        APFloat::getSmallest(Format).toString(buffer);
      }

      Diag(Tok.getLocation(), diagnostic)
        << Ty
        << llvm::StringRef(buffer.data(), buffer.size());
    }

    bool isExact = (result == APFloat::opOK);
    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());

  } else if (!Literal.isIntegerLiteral()) {
    return ExprError();
  } else {
    QualType Ty;

    // long long is a C99 feature.
    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
        Literal.isLongLong)
      Diag(Tok.getLocation(), diag::ext_longlong);

    // Get the value in the widest-possible width.
    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);

    if (Literal.GetIntegerValue(ResultVal)) {
      // If this value didn't fit into uintmax_t, warn and force to ull.
      Diag(Tok.getLocation(), diag::warn_integer_too_large);
      Ty = Context.UnsignedLongLongTy;
      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
             "long long is not intmax_t?");
    } else {
      // If this value fits into a ULL, try to figure out what else it fits into
      // according to the rules of C99 6.4.4.1p5.

      // Octal, Hexadecimal, and integers with a U suffix are allowed to
      // be an unsigned int.
      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;

      // Check from smallest to largest, picking the smallest type we can.
      unsigned Width = 0;
      if (!Literal.isLong && !Literal.isLongLong) {
        // Are int/unsigned possibilities?
        unsigned IntSize = Context.Target.getIntWidth();

        // Does it fit in a unsigned int?
        if (ResultVal.isIntN(IntSize)) {
          // Does it fit in a signed int?
          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
            Ty = Context.IntTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedIntTy;
          Width = IntSize;
        }
      }

      // Are long/unsigned long possibilities?
      if (Ty.isNull() && !Literal.isLongLong) {
        unsigned LongSize = Context.Target.getLongWidth();

        // Does it fit in a unsigned long?
        if (ResultVal.isIntN(LongSize)) {
          // Does it fit in a signed long?
          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
            Ty = Context.LongTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedLongTy;
          Width = LongSize;
        }
      }

      // Finally, check long long if needed.
      if (Ty.isNull()) {
        unsigned LongLongSize = Context.Target.getLongLongWidth();

        // Does it fit in a unsigned long long?
        if (ResultVal.isIntN(LongLongSize)) {
          // Does it fit in a signed long long?
          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
            Ty = Context.LongLongTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedLongLongTy;
          Width = LongLongSize;
        }
      }

      // If we still couldn't decide a type, we probably have something that
      // does not fit in a signed long long, but has no U suffix.
      if (Ty.isNull()) {
        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
        Ty = Context.UnsignedLongLongTy;
        Width = Context.Target.getLongLongWidth();
      }

      if (ResultVal.getBitWidth() != Width)
        ResultVal.trunc(Width);
    }
    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
  }

  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
  if (Literal.isImaginary)
    Res = new (Context) ImaginaryLiteral(Res,
                                        Context.getComplexType(Res->getType()));

  return Owned(Res);
}

Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
                                              SourceLocation R, ExprArg Val) {
  Expr *E = Val.takeAs<Expr>();
  assert((E != 0) && "ActOnParenExpr() missing expr");
  return Owned(new (Context) ParenExpr(L, R, E));
}

/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
                                     SourceLocation OpLoc,
                                     const SourceRange &ExprRange,
                                     bool isSizeof) {
  if (exprType->isDependentType())
    return false;

  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
  //   the result is the size of the referenced type."
  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
  //   result shall be the alignment of the referenced type."
  if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
    exprType = Ref->getPointeeType();

  // C99 6.5.3.4p1:
  if (exprType->isFunctionType()) {
    // alignof(function) is allowed as an extension.
    if (isSizeof)
      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
    return false;
  }

  // Allow sizeof(void)/alignof(void) as an extension.
  if (exprType->isVoidType()) {
    Diag(OpLoc, diag::ext_sizeof_void_type)
      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
    return false;
  }

  if (RequireCompleteType(OpLoc, exprType,
                          PDiag(diag::err_sizeof_alignof_incomplete_type)
                          << int(!isSizeof) << ExprRange))
    return true;

  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
      << exprType << isSizeof << ExprRange;
    return true;
  }

  return false;
}

bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
                            const SourceRange &ExprRange) {
  E = E->IgnoreParens();

  // alignof decl is always ok.
  if (isa<DeclRefExpr>(E))
    return false;

  // Cannot know anything else if the expression is dependent.
  if (E->isTypeDependent())
    return false;

  if (E->getBitField()) {
    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
    return true;
  }

  // Alignment of a field access is always okay, so long as it isn't a
  // bit-field.
  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
    if (isa<FieldDecl>(ME->getMemberDecl()))
      return false;

  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
}

/// \brief Build a sizeof or alignof expression given a type operand.
Action::OwningExprResult
Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
                              SourceLocation OpLoc,
                              bool isSizeOf, SourceRange R) {
  if (!TInfo)
    return ExprError();

  QualType T = TInfo->getType();

  if (!T->isDependentType() &&
      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
    return ExprError();

  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
                                               Context.getSizeType(), OpLoc,
                                               R.getEnd()));
}

/// \brief Build a sizeof or alignof expression given an expression
/// operand.
Action::OwningExprResult
Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
                              bool isSizeOf, SourceRange R) {
  // Verify that the operand is valid.
  bool isInvalid = false;
  if (E->isTypeDependent()) {
    // Delay type-checking for type-dependent expressions.
  } else if (!isSizeOf) {
    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
    isInvalid = true;
  } else {
    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
  }

  if (isInvalid)
    return ExprError();

  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
                                               Context.getSizeType(), OpLoc,
                                               R.getEnd()));
}

/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
/// the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
Action::OwningExprResult
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
                             void *TyOrEx, const SourceRange &ArgRange) {
  // If error parsing type, ignore.
  if (TyOrEx == 0) return ExprError();

  if (isType) {
    TypeSourceInfo *TInfo;
    (void) GetTypeFromParser(TyOrEx, &TInfo);
    return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
  }

  Expr *ArgEx = (Expr *)TyOrEx;
  Action::OwningExprResult Result
    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());

  if (Result.isInvalid())
    DeleteExpr(ArgEx);

  return move(Result);
}

QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
  if (V->isTypeDependent())
    return Context.DependentTy;

  // These operators return the element type of a complex type.
  if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
    return CT->getElementType();

  // Otherwise they pass through real integer and floating point types here.
  if (V->getType()->isArithmeticType())
    return V->getType();

  // Reject anything else.
  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
    << (isReal ? "__real" : "__imag");
  return QualType();
}



Action::OwningExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
                          tok::TokenKind Kind, ExprArg Input) {
  UnaryOperator::Opcode Opc;
  switch (Kind) {
  default: assert(0 && "Unknown unary op!");
  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
  }

  return BuildUnaryOp(S, OpLoc, Opc, move(Input));
}

Action::OwningExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
                              ExprArg Idx, SourceLocation RLoc) {
  // Since this might be a postfix expression, get rid of ParenListExprs.
  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));

  Expr *LHSExp = static_cast<Expr*>(Base.get()),
       *RHSExp = static_cast<Expr*>(Idx.get());

  if (getLangOptions().CPlusPlus &&
      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
    Base.release();
    Idx.release();
    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
                                                  Context.DependentTy, RLoc));
  }

  if (getLangOptions().CPlusPlus &&
      (LHSExp->getType()->isRecordType() ||
       LHSExp->getType()->isEnumeralType() ||
       RHSExp->getType()->isRecordType() ||
       RHSExp->getType()->isEnumeralType())) {
    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, move(Base),move(Idx));
  }

  return CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
}


Action::OwningExprResult
Sema::CreateBuiltinArraySubscriptExpr(ExprArg Base, SourceLocation LLoc,
                                     ExprArg Idx, SourceLocation RLoc) {
  Expr *LHSExp = static_cast<Expr*>(Base.get());
  Expr *RHSExp = static_cast<Expr*>(Idx.get());

  // Perform default conversions.
  if (!LHSExp->getType()->getAs<VectorType>())
      DefaultFunctionArrayLvalueConversion(LHSExp);
  DefaultFunctionArrayLvalueConversion(RHSExp);

  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();

  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
  // in the subscript position. As a result, we need to derive the array base
  // and index from the expression types.
  Expr *BaseExpr, *IndexExpr;
  QualType ResultType;
  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    ResultType = Context.DependentTy;
  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    ResultType = PTy->getPointeeType();
  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
     // Handle the uncommon case of "123[Ptr]".
    BaseExpr = RHSExp;
    IndexExpr = LHSExp;
    ResultType = PTy->getPointeeType();
  } else if (const ObjCObjectPointerType *PTy =
               LHSTy->getAs<ObjCObjectPointerType>()) {
    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    ResultType = PTy->getPointeeType();
  } else if (const ObjCObjectPointerType *PTy =
               RHSTy->getAs<ObjCObjectPointerType>()) {
     // Handle the uncommon case of "123[Ptr]".
    BaseExpr = RHSExp;
    IndexExpr = LHSExp;
    ResultType = PTy->getPointeeType();
  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
    BaseExpr = LHSExp;    // vectors: V[123]
    IndexExpr = RHSExp;

    // FIXME: need to deal with const...
    ResultType = VTy->getElementType();
  } else if (LHSTy->isArrayType()) {
    // If we see an array that wasn't promoted by
    // DefaultFunctionArrayLvalueConversion, it must be an array that
    // wasn't promoted because of the C90 rule that doesn't
    // allow promoting non-lvalue arrays.  Warn, then
    // force the promotion here.
    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
        LHSExp->getSourceRange();
    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
                      CastExpr::CK_ArrayToPointerDecay);
    LHSTy = LHSExp->getType();

    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
  } else if (RHSTy->isArrayType()) {
    // Same as previous, except for 123[f().a] case
    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
        RHSExp->getSourceRange();
    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
                      CastExpr::CK_ArrayToPointerDecay);
    RHSTy = RHSExp->getType();

    BaseExpr = RHSExp;
    IndexExpr = LHSExp;
    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
  } else {
    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
  }
  // C99 6.5.2.1p1
  if (!(IndexExpr->getType()->isIntegerType() &&
        IndexExpr->getType()->isScalarType()) && !IndexExpr->isTypeDependent())
    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
                     << IndexExpr->getSourceRange());

  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
         && !IndexExpr->isTypeDependent())
    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();

  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
  // type. Note that Functions are not objects, and that (in C99 parlance)
  // incomplete types are not object types.
  if (ResultType->isFunctionType()) {
    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
      << ResultType << BaseExpr->getSourceRange();
    return ExprError();
  }

  if (!ResultType->isDependentType() &&
      RequireCompleteType(LLoc, ResultType,
                          PDiag(diag::err_subscript_incomplete_type)
                            << BaseExpr->getSourceRange()))
    return ExprError();

  // Diagnose bad cases where we step over interface counts.
  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
    Diag(LLoc, diag::err_subscript_nonfragile_interface)
      << ResultType << BaseExpr->getSourceRange();
    return ExprError();
  }

  Base.release();
  Idx.release();
  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
                                                ResultType, RLoc));
}

QualType Sema::
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
                        const IdentifierInfo *CompName,
                        SourceLocation CompLoc) {
  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
  // see FIXME there.
  //
  // FIXME: This logic can be greatly simplified by splitting it along
  // halving/not halving and reworking the component checking.
  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();

  // The vector accessor can't exceed the number of elements.
  const char *compStr = CompName->getNameStart();

  // This flag determines whether or not the component is one of the four
  // special names that indicate a subset of exactly half the elements are
  // to be selected.
  bool HalvingSwizzle = false;

  // This flag determines whether or not CompName has an 's' char prefix,
  // indicating that it is a string of hex values to be used as vector indices.
  bool HexSwizzle = *compStr == 's' || *compStr == 'S';

  // Check that we've found one of the special components, or that the component
  // names must come from the same set.
  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
    HalvingSwizzle = true;
  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
    do
      compStr++;
    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
    do
      compStr++;
    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
  }

  if (!HalvingSwizzle && *compStr) {
    // We didn't get to the end of the string. This means the component names
    // didn't come from the same set *or* we encountered an illegal name.
    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
    return QualType();
  }

  // Ensure no component accessor exceeds the width of the vector type it
  // operates on.
  if (!HalvingSwizzle) {
    compStr = CompName->getNameStart();

    if (HexSwizzle)
      compStr++;

    while (*compStr) {
      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
          << baseType << SourceRange(CompLoc);
        return QualType();
      }
    }
  }

  // The component accessor looks fine - now we need to compute the actual type.
  // The vector type is implied by the component accessor. For example,
  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
                                     : CompName->getLength();
  if (HexSwizzle)
    CompSize--;

  if (CompSize == 1)
    return vecType->getElementType();

  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
  // Now look up the TypeDefDecl from the vector type. Without this,
  // diagostics look bad. We want extended vector types to appear built-in.
  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
      return Context.getTypedefType(ExtVectorDecls[i]);
  }
  return VT; // should never get here (a typedef type should always be found).
}

static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
                                                IdentifierInfo *Member,
                                                const Selector &Sel,
                                                ASTContext &Context) {

  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
    return PD;
  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
    return OMD;

  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
       E = PDecl->protocol_end(); I != E; ++I) {
    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
                                                     Context))
      return D;
  }
  return 0;
}

static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
                                IdentifierInfo *Member,
                                const Selector &Sel,
                                ASTContext &Context) {
  // Check protocols on qualified interfaces.
  Decl *GDecl = 0;
  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
       E = QIdTy->qual_end(); I != E; ++I) {
    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
      GDecl = PD;
      break;
    }
    // Also must look for a getter name which uses property syntax.
    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
      GDecl = OMD;
      break;
    }
  }
  if (!GDecl) {
    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
         E = QIdTy->qual_end(); I != E; ++I) {
      // Search in the protocol-qualifier list of current protocol.
      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
      if (GDecl)
        return GDecl;
    }
  }
  return GDecl;
}

Sema::OwningExprResult
Sema::ActOnDependentMemberExpr(ExprArg Base, QualType BaseType,
                               bool IsArrow, SourceLocation OpLoc,
                               const CXXScopeSpec &SS,
                               NamedDecl *FirstQualifierInScope,
                               DeclarationName Name, SourceLocation NameLoc,
                               const TemplateArgumentListInfo *TemplateArgs) {
  Expr *BaseExpr = Base.takeAs<Expr>();

  // Even in dependent contexts, try to diagnose base expressions with
  // obviously wrong types, e.g.:
  //
  // T* t;
  // t.f;
  //
  // In Obj-C++, however, the above expression is valid, since it could be
  // accessing the 'f' property if T is an Obj-C interface. The extra check
  // allows this, while still reporting an error if T is a struct pointer.
  if (!IsArrow) {
    const PointerType *PT = BaseType->getAs<PointerType>();
    if (PT && (!getLangOptions().ObjC1 ||
               PT->getPointeeType()->isRecordType())) {
      assert(BaseExpr && "cannot happen with implicit member accesses");
      Diag(NameLoc, diag::err_typecheck_member_reference_struct_union)
        << BaseType << BaseExpr->getSourceRange();
      return ExprError();
    }
  }

  assert(BaseType->isDependentType() || Name.isDependentName());

  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
  // must have pointer type, and the accessed type is the pointee.
  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
                                                   IsArrow, OpLoc,
                 static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
                                                   SS.getRange(),
                                                   FirstQualifierInScope,
                                                   Name, NameLoc,
                                                   TemplateArgs));
}

/// We know that the given qualified member reference points only to
/// declarations which do not belong to the static type of the base
/// expression.  Diagnose the problem.
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
                                             Expr *BaseExpr,
                                             QualType BaseType,
                                             const CXXScopeSpec &SS,
                                             const LookupResult &R) {
  // If this is an implicit member access, use a different set of
  // diagnostics.
  if (!BaseExpr)
    return DiagnoseInstanceReference(SemaRef, SS, R);

  // FIXME: this is an exceedingly lame diagnostic for some of the more
  // complicated cases here.
  DeclContext *DC = R.getRepresentativeDecl()->getDeclContext();
  SemaRef.Diag(R.getNameLoc(), diag::err_not_direct_base_or_virtual)
    << SS.getRange() << DC << BaseType;
}

// Check whether the declarations we found through a nested-name
// specifier in a member expression are actually members of the base
// type.  The restriction here is:
//
//   C++ [expr.ref]p2:
//     ... In these cases, the id-expression shall name a
//     member of the class or of one of its base classes.
//
// So it's perfectly legitimate for the nested-name specifier to name
// an unrelated class, and for us to find an overload set including
// decls from classes which are not superclasses, as long as the decl
// we actually pick through overload resolution is from a superclass.
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
                                         QualType BaseType,
                                         const CXXScopeSpec &SS,
                                         const LookupResult &R) {
  const RecordType *BaseRT = BaseType->getAs<RecordType>();
  if (!BaseRT) {
    // We can't check this yet because the base type is still
    // dependent.
    assert(BaseType->isDependentType());
    return false;
  }
  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());

  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    // If this is an implicit member reference and we find a
    // non-instance member, it's not an error.
    if (!BaseExpr && !IsInstanceMember((*I)->getUnderlyingDecl()))
      return false;

    // Note that we use the DC of the decl, not the underlying decl.
    CXXRecordDecl *RecordD = cast<CXXRecordDecl>((*I)->getDeclContext());
    while (RecordD->isAnonymousStructOrUnion())
      RecordD = cast<CXXRecordDecl>(RecordD->getParent());

    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
    MemberRecord.insert(RecordD->getCanonicalDecl());

    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
      return false;
  }

  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
  return true;
}

static bool
LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
                         SourceRange BaseRange, const RecordType *RTy,
                         SourceLocation OpLoc, const CXXScopeSpec &SS) {
  RecordDecl *RDecl = RTy->getDecl();
  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
                                  PDiag(diag::err_typecheck_incomplete_tag)
                                    << BaseRange))
    return true;

  DeclContext *DC = RDecl;
  if (SS.isSet()) {
    // If the member name was a qualified-id, look into the
    // nested-name-specifier.
    DC = SemaRef.computeDeclContext(SS, false);

    if (SemaRef.RequireCompleteDeclContext(SS)) {
      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
        << SS.getRange() << DC;
      return true;
    }

    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
      
    if (!isa<TypeDecl>(DC)) {
      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
        << DC << SS.getRange();
      return true;
    }
  }

  // The record definition is complete, now look up the member.
  SemaRef.LookupQualifiedName(R, DC);

  if (!R.empty())
    return false;

  // We didn't find anything with the given name, so try to correct
  // for typos.
  DeclarationName Name = R.getLookupName();
  if (SemaRef.CorrectTypo(R, 0, &SS, DC) && 
      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
      << Name << DC << R.getLookupName() << SS.getRange()
      << CodeModificationHint::CreateReplacement(R.getNameLoc(),
                                         R.getLookupName().getAsString());
    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
        << ND->getDeclName();
    return false;
  } else {
    R.clear();
  }

  return false;
}

Sema::OwningExprResult
Sema::BuildMemberReferenceExpr(ExprArg BaseArg, QualType BaseType,
                               SourceLocation OpLoc, bool IsArrow,
                               const CXXScopeSpec &SS,
                               NamedDecl *FirstQualifierInScope,
                               DeclarationName Name, SourceLocation NameLoc,
                               const TemplateArgumentListInfo *TemplateArgs) {
  Expr *Base = BaseArg.takeAs<Expr>();

  if (BaseType->isDependentType() ||
      (SS.isSet() && isDependentScopeSpecifier(SS)))
    return ActOnDependentMemberExpr(ExprArg(*this, Base), BaseType,
                                    IsArrow, OpLoc,
                                    SS, FirstQualifierInScope,
                                    Name, NameLoc,
                                    TemplateArgs);

  LookupResult R(*this, Name, NameLoc, LookupMemberName);

  // Implicit member accesses.
  if (!Base) {
    QualType RecordTy = BaseType;
    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
    if (LookupMemberExprInRecord(*this, R, SourceRange(),
                                 RecordTy->getAs<RecordType>(),
                                 OpLoc, SS))
      return ExprError();

  // Explicit member accesses.
  } else {
    OwningExprResult Result =
      LookupMemberExpr(R, Base, IsArrow, OpLoc,
                       SS, /*ObjCImpDecl*/ DeclPtrTy());

    if (Result.isInvalid()) {
      Owned(Base);
      return ExprError();
    }

    if (Result.get())
      return move(Result);
  }

  return BuildMemberReferenceExpr(ExprArg(*this, Base), BaseType,
                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
                                  R, TemplateArgs);
}

Sema::OwningExprResult
Sema::BuildMemberReferenceExpr(ExprArg Base, QualType BaseExprType,
                               SourceLocation OpLoc, bool IsArrow,
                               const CXXScopeSpec &SS,
                               NamedDecl *FirstQualifierInScope,
                               LookupResult &R,
                         const TemplateArgumentListInfo *TemplateArgs) {
  Expr *BaseExpr = Base.takeAs<Expr>();
  QualType BaseType = BaseExprType;
  if (IsArrow) {
    assert(BaseType->isPointerType());
    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
  }

  NestedNameSpecifier *Qualifier =
    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
  DeclarationName MemberName = R.getLookupName();
  SourceLocation MemberLoc = R.getNameLoc();

  if (R.isAmbiguous())
    return ExprError();

  if (R.empty()) {
    // Rederive where we looked up.
    DeclContext *DC = (SS.isSet()
                       ? computeDeclContext(SS, false)
                       : BaseType->getAs<RecordType>()->getDecl());

    Diag(R.getNameLoc(), diag::err_no_member)
      << MemberName << DC
      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
    return ExprError();
  }

  // Diagnose lookups that find only declarations from a non-base
  // type.  This is possible for either qualified lookups (which may
  // have been qualified with an unrelated type) or implicit member
  // expressions (which were found with unqualified lookup and thus
  // may have come from an enclosing scope).  Note that it's okay for
  // lookup to find declarations from a non-base type as long as those
  // aren't the ones picked by overload resolution.
  if ((SS.isSet() || !BaseExpr ||
       (isa<CXXThisExpr>(BaseExpr) &&
        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
    return ExprError();

  // Construct an unresolved result if we in fact got an unresolved
  // result.
  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
    bool Dependent =
      BaseExprType->isDependentType() ||
      R.isUnresolvableResult() ||
      OverloadExpr::ComputeDependence(R.begin(), R.end(), TemplateArgs);

    // Suppress any lookup-related diagnostics; we'll do these when we
    // pick a member.
    R.suppressDiagnostics();

    UnresolvedMemberExpr *MemExpr
      = UnresolvedMemberExpr::Create(Context, Dependent,
                                     R.isUnresolvableResult(),
                                     BaseExpr, BaseExprType,
                                     IsArrow, OpLoc,
                                     Qualifier, SS.getRange(),
                                     MemberName, MemberLoc,
                                     TemplateArgs);
    MemExpr->addDecls(R.begin(), R.end());

    return Owned(MemExpr);
  }

  assert(R.isSingleResult());  
  NamedDecl *MemberDecl = R.getFoundDecl();

  // FIXME: diagnose the presence of template arguments now.

  // If the decl being referenced had an error, return an error for this
  // sub-expr without emitting another error, in order to avoid cascading
  // error cases.
  if (MemberDecl->isInvalidDecl())
    return ExprError();

  // Handle the implicit-member-access case.
  if (!BaseExpr) {
    // If this is not an instance member, convert to a non-member access.
    if (!IsInstanceMember(MemberDecl))
      return BuildDeclarationNameExpr(SS, R.getNameLoc(), MemberDecl);

    SourceLocation Loc = R.getNameLoc();
    if (SS.getRange().isValid())
      Loc = SS.getRange().getBegin();
    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
  }

  bool ShouldCheckUse = true;
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    // Don't diagnose the use of a virtual member function unless it's
    // explicitly qualified.
    if (MD->isVirtual() && !SS.isSet())
      ShouldCheckUse = false;
  }

  // Check the use of this member.
  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
    Owned(BaseExpr);
    return ExprError();
  }

  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
    // We may have found a field within an anonymous union or struct
    // (C++ [class.union]).
    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion() &&
        !BaseType->getAs<RecordType>()->getDecl()->isAnonymousStructOrUnion())
      return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
                                                      BaseExpr, OpLoc);

    // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
    QualType MemberType = FD->getType();
    if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>())
      MemberType = Ref->getPointeeType();
    else {
      Qualifiers BaseQuals = BaseType.getQualifiers();
      BaseQuals.removeObjCGCAttr();
      if (FD->isMutable()) BaseQuals.removeConst();

      Qualifiers MemberQuals
        = Context.getCanonicalType(MemberType).getQualifiers();

      Qualifiers Combined = BaseQuals + MemberQuals;
      if (Combined != MemberQuals)
        MemberType = Context.getQualifiedType(MemberType, Combined);
    }

    MarkDeclarationReferenced(MemberLoc, FD);
    if (PerformObjectMemberConversion(BaseExpr, Qualifier, FD))
      return ExprError();
    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
                                 FD, MemberLoc, MemberType));
  }

  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
    MarkDeclarationReferenced(MemberLoc, Var);
    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
                                 Var, MemberLoc,
                                 Var->getType().getNonReferenceType()));
  }

  if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
    MarkDeclarationReferenced(MemberLoc, MemberDecl);
    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
                                 MemberFn, MemberLoc,
                                 MemberFn->getType()));
  }

  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
    MarkDeclarationReferenced(MemberLoc, MemberDecl);
    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
                                 Enum, MemberLoc, Enum->getType()));
  }

  Owned(BaseExpr);

  if (isa<TypeDecl>(MemberDecl))
    return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
                     << MemberName << int(IsArrow));

  // We found a declaration kind that we didn't expect. This is a
  // generic error message that tells the user that she can't refer
  // to this member with '.' or '->'.
  return ExprError(Diag(MemberLoc,
                        diag::err_typecheck_member_reference_unknown)
      << MemberName << int(IsArrow));
}

/// Look up the given member of the given non-type-dependent
/// expression.  This can return in one of two ways:
///  * If it returns a sentinel null-but-valid result, the caller will
///    assume that lookup was performed and the results written into
///    the provided structure.  It will take over from there.
///  * Otherwise, the returned expression will be produced in place of
///    an ordinary member expression.
///
/// The ObjCImpDecl bit is a gross hack that will need to be properly
/// fixed for ObjC++.
Sema::OwningExprResult
Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
                       bool &IsArrow, SourceLocation OpLoc,
                       const CXXScopeSpec &SS,
                       DeclPtrTy ObjCImpDecl) {
  assert(BaseExpr && "no base expression");

  // Perform default conversions.
  DefaultFunctionArrayConversion(BaseExpr);

  QualType BaseType = BaseExpr->getType();
  assert(!BaseType->isDependentType());

  DeclarationName MemberName = R.getLookupName();
  SourceLocation MemberLoc = R.getNameLoc();

  // If the user is trying to apply -> or . to a function pointer
  // type, it's probably because they forgot parentheses to call that
  // function. Suggest the addition of those parentheses, build the
  // call, and continue on.
  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
    if (const FunctionProtoType *Fun
          = Ptr->getPointeeType()->getAs<FunctionProtoType>()) {
      QualType ResultTy = Fun->getResultType();
      if (Fun->getNumArgs() == 0 &&
          ((!IsArrow && ResultTy->isRecordType()) ||
           (IsArrow && ResultTy->isPointerType() &&
            ResultTy->getAs<PointerType>()->getPointeeType()
                                                          ->isRecordType()))) {
        SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
        Diag(Loc, diag::err_member_reference_needs_call)
          << QualType(Fun, 0)
          << CodeModificationHint::CreateInsertion(Loc, "()");
        
        OwningExprResult NewBase
          = ActOnCallExpr(0, ExprArg(*this, BaseExpr), Loc, 
                          MultiExprArg(*this, 0, 0), 0, Loc);
        if (NewBase.isInvalid())
          return ExprError();
        
        BaseExpr = NewBase.takeAs<Expr>();
        DefaultFunctionArrayConversion(BaseExpr);
        BaseType = BaseExpr->getType();
      }
    }
  }

  // If this is an Objective-C pseudo-builtin and a definition is provided then
  // use that.
  if (BaseType->isObjCIdType()) {
    if (IsArrow) {
      // Handle the following exceptional case PObj->isa.
      if (const ObjCObjectPointerType *OPT =
          BaseType->getAs<ObjCObjectPointerType>()) {
        if (OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCId) &&
            MemberName.getAsIdentifierInfo()->isStr("isa"))
          return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
                                                 Context.getObjCClassType()));
      }
    }
    // We have an 'id' type. Rather than fall through, we check if this
    // is a reference to 'isa'.
    if (BaseType != Context.ObjCIdRedefinitionType) {
      BaseType = Context.ObjCIdRedefinitionType;
      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
    }
  }

  // If this is an Objective-C pseudo-builtin and a definition is provided then
  // use that.
  if (Context.isObjCSelType(BaseType)) {
    // We have an 'SEL' type. Rather than fall through, we check if this
    // is a reference to 'sel_id'.
    if (BaseType != Context.ObjCSelRedefinitionType) {
      BaseType = Context.ObjCSelRedefinitionType;
      ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
    }
  }

  assert(!BaseType.isNull() && "no type for member expression");

  // Handle properties on ObjC 'Class' types.
  if (!IsArrow && BaseType->isObjCClassType()) {
    // Also must look for a getter name which uses property syntax.
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
      ObjCInterfaceDecl *IFace = MD->getClassInterface();
      ObjCMethodDecl *Getter;
      // FIXME: need to also look locally in the implementation.
      if ((Getter = IFace->lookupClassMethod(Sel))) {
        // Check the use of this method.
        if (DiagnoseUseOfDecl(Getter, MemberLoc))
          return ExprError();
      }
      // If we found a getter then this may be a valid dot-reference, we
      // will look for the matching setter, in case it is needed.
      Selector SetterSel =
      SelectorTable::constructSetterName(PP.getIdentifierTable(),
                                         PP.getSelectorTable(), Member);
      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
      if (!Setter) {
        // If this reference is in an @implementation, also check for 'private'
        // methods.
        Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
      }
      // Look through local category implementations associated with the class.
      if (!Setter)
        Setter = IFace->getCategoryClassMethod(SetterSel);
      
      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
        return ExprError();
      
      if (Getter || Setter) {
        QualType PType;
        
        if (Getter)
          PType = Getter->getResultType();
        else
          // Get the expression type from Setter's incoming parameter.
          PType = (*(Setter->param_end() -1))->getType();
        // FIXME: we must check that the setter has property type.
        return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, 
                                                  PType,
                                                  Setter, MemberLoc, BaseExpr));
      }
      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
                       << MemberName << BaseType);
    }
  }
  
  if (BaseType->isObjCClassType() &&
      BaseType != Context.ObjCClassRedefinitionType) {
    BaseType = Context.ObjCClassRedefinitionType;
    ImpCastExprToType(BaseExpr, BaseType, CastExpr::CK_BitCast);
  }

  if (IsArrow) {
    if (const PointerType *PT = BaseType->getAs<PointerType>())
      BaseType = PT->getPointeeType();
    else if (BaseType->isObjCObjectPointerType())
      ;
    else if (BaseType->isRecordType()) {
      // Recover from arrow accesses to records, e.g.:
      //   struct MyRecord foo;
      //   foo->bar
      // This is actually well-formed in C++ if MyRecord has an
      // overloaded operator->, but that should have been dealt with
      // by now.
      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
        << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
        << CodeModificationHint::CreateReplacement(OpLoc, ".");
      IsArrow = false;
    } else {
      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
        << BaseType << BaseExpr->getSourceRange();
      return ExprError();
    }
  } else {
    // Recover from dot accesses to pointers, e.g.:
    //   type *foo;
    //   foo.bar
    // This is actually well-formed in two cases:
    //   - 'type' is an Objective C type
    //   - 'bar' is a pseudo-destructor name which happens to refer to
    //     the appropriate pointer type
    if (MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
      const PointerType *PT = BaseType->getAs<PointerType>();
      if (PT && PT->getPointeeType()->isRecordType()) {
        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
          << BaseType << int(IsArrow) << BaseExpr->getSourceRange()
          << CodeModificationHint::CreateReplacement(OpLoc, "->");
        BaseType = PT->getPointeeType();
        IsArrow = true;
      }
    }
  }
  
  // Handle field access to simple records.  This also handles access
  // to fields of the ObjC 'id' struct.
  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
    if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
                                 RTy, OpLoc, SS))
      return ExprError();
    return Owned((Expr*) 0);
  }

  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
  // (*Obj).ivar.
  if ((IsArrow && BaseType->isObjCObjectPointerType()) ||
      (!IsArrow && BaseType->isObjCInterfaceType())) {
    const ObjCObjectPointerType *OPT = BaseType->getAs<ObjCObjectPointerType>();
    const ObjCInterfaceType *IFaceT =
      OPT ? OPT->getInterfaceType() : BaseType->getAs<ObjCInterfaceType>();
    if (IFaceT) {
      IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
      ObjCInterfaceDecl *ClassDeclared;
      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);

      if (!IV) {
        // Attempt to correct for typos in ivar names.
        LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
                         LookupMemberName);
        if (CorrectTypo(Res, 0, 0, IDecl) &&
            (IV = Res.getAsSingle<ObjCIvarDecl>())) {
          Diag(R.getNameLoc(), 
               diag::err_typecheck_member_reference_ivar_suggest)
            << IDecl->getDeclName() << MemberName << IV->getDeclName()
            << CodeModificationHint::CreateReplacement(R.getNameLoc(),
                                                       IV->getNameAsString());
          Diag(IV->getLocation(), diag::note_previous_decl)
            << IV->getDeclName();          
        }
      }

      if (IV) {
        // If the decl being referenced had an error, return an error for this
        // sub-expr without emitting another error, in order to avoid cascading
        // error cases.
        if (IV->isInvalidDecl())
          return ExprError();

        // Check whether we can reference this field.
        if (DiagnoseUseOfDecl(IV, MemberLoc))
          return ExprError();
        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
            IV->getAccessControl() != ObjCIvarDecl::Package) {
          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
          if (ObjCMethodDecl *MD = getCurMethodDecl())
            ClassOfMethodDecl =  MD->getClassInterface();
          else if (ObjCImpDecl && getCurFunctionDecl()) {
            // Case of a c-function declared inside an objc implementation.
            // FIXME: For a c-style function nested inside an objc implementation
            // class, there is no implementation context available, so we pass
            // down the context as argument to this routine. Ideally, this context
            // need be passed down in the AST node and somehow calculated from the
            // AST for a function decl.
            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
            if (ObjCImplementationDecl *IMPD =
                dyn_cast<ObjCImplementationDecl>(ImplDecl))
              ClassOfMethodDecl = IMPD->getClassInterface();
            else if (ObjCCategoryImplDecl* CatImplClass =
                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
              ClassOfMethodDecl = CatImplClass->getClassInterface();
          }

          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
            if (ClassDeclared != IDecl ||
                ClassOfMethodDecl != ClassDeclared)
              Diag(MemberLoc, diag::error_private_ivar_access)
                << IV->getDeclName();
          } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
            // @protected
            Diag(MemberLoc, diag::error_protected_ivar_access)
              << IV->getDeclName();
        }

        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
                                                   MemberLoc, BaseExpr,
                                                   IsArrow));
      }
      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
                         << IDecl->getDeclName() << MemberName
                         << BaseExpr->getSourceRange());
    }
  }
  // Handle properties on 'id' and qualified "id".
  if (!IsArrow && (BaseType->isObjCIdType() ||
                   BaseType->isObjCQualifiedIdType())) {
    const ObjCObjectPointerType *QIdTy = BaseType->getAs<ObjCObjectPointerType>();
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    // Check protocols on qualified interfaces.
    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
        // Check the use of this declaration
        if (DiagnoseUseOfDecl(PD, MemberLoc))
          return ExprError();

        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
                                                       MemberLoc, BaseExpr));
      }
      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
        // Check the use of this method.
        if (DiagnoseUseOfDecl(OMD, MemberLoc))
          return ExprError();

        return Owned(new (Context) ObjCMessageExpr(Context, BaseExpr, Sel,
                                                   OMD->getResultType(),
                                                   OMD, OpLoc, MemberLoc,
                                                   NULL, 0));
      }
    }

    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
                       << MemberName << BaseType);
  }
  // Handle Objective-C property access, which is "Obj.property" where Obj is a
  // pointer to a (potentially qualified) interface type.
  const ObjCObjectPointerType *OPT;
  if (!IsArrow && (OPT = BaseType->getAsObjCInterfacePointerType())) {
    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();

    // Search for a declared property first.
    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
      // Check whether we can reference this property.
      if (DiagnoseUseOfDecl(PD, MemberLoc))
        return ExprError();
      QualType ResTy = PD->getType();
      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
        ResTy = Getter->getResultType();
      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
                                                     MemberLoc, BaseExpr));
    }
    // Check protocols on qualified interfaces.
    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
         E = OPT->qual_end(); I != E; ++I)
      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
        // Check whether we can reference this property.
        if (DiagnoseUseOfDecl(PD, MemberLoc))
          return ExprError();

        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
                                                       MemberLoc, BaseExpr));
      }
    // If that failed, look for an "implicit" property by seeing if the nullary
    // selector is implemented.

    // FIXME: The logic for looking up nullary and unary selectors should be
    // shared with the code in ActOnInstanceMessage.

    Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);

    // If this reference is in an @implementation, check for 'private' methods.
    if (!Getter)
      Getter = IFace->lookupPrivateInstanceMethod(Sel);

    // Look through local category implementations associated with the class.
    if (!Getter)
      Getter = IFace->getCategoryInstanceMethod(Sel);
    if (Getter) {
      // Check if we can reference this property.
      if (DiagnoseUseOfDecl(Getter, MemberLoc))
        return ExprError();
    }
    // If we found a getter then this may be a valid dot-reference, we
    // will look for the matching setter, in case it is needed.
    Selector SetterSel =
      SelectorTable::constructSetterName(PP.getIdentifierTable(),
                                         PP.getSelectorTable(), Member);
    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
    if (!Setter) {
      // If this reference is in an @implementation, also check for 'private'
      // methods.
      Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
    }
    // Look through local category implementations associated with the class.
    if (!Setter)
      Setter = IFace->getCategoryInstanceMethod(SetterSel);

    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
      return ExprError();

    if (Getter) {
      QualType PType;
      PType = Getter->getResultType();
      return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
                                      Setter, MemberLoc, BaseExpr));
    }

    // Attempt to correct for typos in property names.
    LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
                     LookupOrdinaryName);
    if (CorrectTypo(Res, 0, 0, IFace, false, OPT) && 
        Res.getAsSingle<ObjCPropertyDecl>()) {
      Diag(R.getNameLoc(), diag::err_property_not_found_suggest)
        << MemberName << BaseType << Res.getLookupName()
        << CodeModificationHint::CreateReplacement(R.getNameLoc(),
                                           Res.getLookupName().getAsString());
      ObjCPropertyDecl *Property = Res.getAsSingle<ObjCPropertyDecl>();
      Diag(Property->getLocation(), diag::note_previous_decl)
        << Property->getDeclName();          

      return LookupMemberExpr(Res, BaseExpr, IsArrow, OpLoc, SS,
                              ObjCImpDecl);
    }
    Diag(MemberLoc, diag::err_property_not_found)
      << MemberName << BaseType;
    if (Setter && !Getter)
      Diag(Setter->getLocation(), diag::note_getter_unavailable)
        << MemberName << BaseExpr->getSourceRange();
    return ExprError();
  }

  // Handle the following exceptional case (*Obj).isa.
  if (!IsArrow &&
      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
      MemberName.getAsIdentifierInfo()->isStr("isa"))
    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
                                           Context.getObjCClassType()));

  // Handle 'field access' to vectors, such as 'V.xx'.
  if (BaseType->isExtVectorType()) {
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
    if (ret.isNull())
      return ExprError();
    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, *Member,
                                                    MemberLoc));
  }
  
  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
    << BaseType << BaseExpr->getSourceRange();

  return ExprError();
}

/// The main callback when the parser finds something like
///   expression . [nested-name-specifier] identifier
///   expression -> [nested-name-specifier] identifier
/// where 'identifier' encompasses a fairly broad spectrum of
/// possibilities, including destructor and operator references.
///
/// \param OpKind either tok::arrow or tok::period
/// \param HasTrailingLParen whether the next token is '(', which
///   is used to diagnose mis-uses of special members that can
///   only be called
/// \param ObjCImpDecl the current ObjC @implementation decl;
///   this is an ugly hack around the fact that ObjC @implementations
///   aren't properly put in the context chain
Sema::OwningExprResult Sema::ActOnMemberAccessExpr(Scope *S, ExprArg BaseArg,
                                                   SourceLocation OpLoc,
                                                   tok::TokenKind OpKind,
                                                   const CXXScopeSpec &SS,
                                                   UnqualifiedId &Id,
                                                   DeclPtrTy ObjCImpDecl,
                                                   bool HasTrailingLParen) {
  if (SS.isSet() && SS.isInvalid())
    return ExprError();

  TemplateArgumentListInfo TemplateArgsBuffer;

  // Decompose the name into its component parts.
  DeclarationName Name;
  SourceLocation NameLoc;
  const TemplateArgumentListInfo *TemplateArgs;
  DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
                         Name, NameLoc, TemplateArgs);

  bool IsArrow = (OpKind == tok::arrow);

  NamedDecl *FirstQualifierInScope
    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));

  // This is a postfix expression, so get rid of ParenListExprs.
  BaseArg = MaybeConvertParenListExprToParenExpr(S, move(BaseArg));

  Expr *Base = BaseArg.takeAs<Expr>();
  OwningExprResult Result(*this);
  if (Base->getType()->isDependentType() || Name.isDependentName()) {
    Result = ActOnDependentMemberExpr(ExprArg(*this, Base), Base->getType(),
                                      IsArrow, OpLoc,
                                      SS, FirstQualifierInScope,
                                      Name, NameLoc,
                                      TemplateArgs);
  } else {
    LookupResult R(*this, Name, NameLoc, LookupMemberName);
    if (TemplateArgs) {
      // Re-use the lookup done for the template name.
      DecomposeTemplateName(R, Id);
    } else {
      Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
                                SS, ObjCImpDecl);

      if (Result.isInvalid()) {
        Owned(Base);
        return ExprError();
      }

      if (Result.get()) {
        // The only way a reference to a destructor can be used is to
        // immediately call it, which falls into this case.  If the
        // next token is not a '(', produce a diagnostic and build the
        // call now.
        if (!HasTrailingLParen &&
            Id.getKind() == UnqualifiedId::IK_DestructorName)
          return DiagnoseDtorReference(NameLoc, move(Result));

        return move(Result);
      }
    }

    Result = BuildMemberReferenceExpr(ExprArg(*this, Base), Base->getType(),
                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
                                      R, TemplateArgs);
  }

  return move(Result);
}

Sema::OwningExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
                                                    FunctionDecl *FD,
                                                    ParmVarDecl *Param) {
  if (Param->hasUnparsedDefaultArg()) {
    Diag (CallLoc,
          diag::err_use_of_default_argument_to_function_declared_later) <<
      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
    Diag(UnparsedDefaultArgLocs[Param],
          diag::note_default_argument_declared_here);
  } else {
    if (Param->hasUninstantiatedDefaultArg()) {
      Expr *UninstExpr = Param->getUninstantiatedDefaultArg();

      // Instantiate the expression.
      MultiLevelTemplateArgumentList ArgList
        = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);

      InstantiatingTemplate Inst(*this, CallLoc, Param,
                                 ArgList.getInnermost().getFlatArgumentList(),
                                 ArgList.getInnermost().flat_size());

      OwningExprResult Result = SubstExpr(UninstExpr, ArgList);
      if (Result.isInvalid())
        return ExprError();

      // Check the expression as an initializer for the parameter.
      InitializedEntity Entity
        = InitializedEntity::InitializeParameter(Param);
      InitializationKind Kind
        = InitializationKind::CreateCopy(Param->getLocation(),
               /*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
      Expr *ResultE = Result.takeAs<Expr>();

      InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
      Result = InitSeq.Perform(*this, Entity, Kind, 
                               MultiExprArg(*this, (void**)&ResultE, 1));
      if (Result.isInvalid())
        return ExprError();
      
      // Build the default argument expression.
      return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
                                             Result.takeAs<Expr>()));
    }

    // If the default expression creates temporaries, we need to
    // push them to the current stack of expression temporaries so they'll
    // be properly destroyed.
    // FIXME: We should really be rebuilding the default argument with new
    // bound temporaries; see the comment in PR5810.
    for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i)
      ExprTemporaries.push_back(Param->getDefaultArgTemporary(i));
  }

  // We already type-checked the argument, so we know it works.
  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
}

/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
                              FunctionDecl *FDecl,
                              const FunctionProtoType *Proto,
                              Expr **Args, unsigned NumArgs,
                              SourceLocation RParenLoc) {
  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
  // assignment, to the types of the corresponding parameter, ...
  unsigned NumArgsInProto = Proto->getNumArgs();
  bool Invalid = false;
   
  // If too few arguments are available (and we don't have default
  // arguments for the remaining parameters), don't make the call.
  if (NumArgs < NumArgsInProto) {
    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
    Call->setNumArgs(Context, NumArgsInProto);
  }

  // If too many are passed and not variadic, error on the extras and drop
  // them.
  if (NumArgs > NumArgsInProto) {
    if (!Proto->isVariadic()) {
      Diag(Args[NumArgsInProto]->getLocStart(),
           diag::err_typecheck_call_too_many_args)
        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
        << SourceRange(Args[NumArgsInProto]->getLocStart(),
                       Args[NumArgs-1]->getLocEnd());
      // This deletes the extra arguments.
      Call->setNumArgs(Context, NumArgsInProto);
      return true;
    }
  }
  llvm::SmallVector<Expr *, 8> AllArgs;
  VariadicCallType CallType = 
    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
  if (Fn->getType()->isBlockPointerType())
    CallType = VariadicBlock; // Block
  else if (isa<MemberExpr>(Fn))
    CallType = VariadicMethod;
  Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
  if (Invalid)
    return true;
  unsigned TotalNumArgs = AllArgs.size();
  for (unsigned i = 0; i < TotalNumArgs; ++i)
    Call->setArg(i, AllArgs[i]);
  
  return false;
}

bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
                                  FunctionDecl *FDecl,
                                  const FunctionProtoType *Proto,
                                  unsigned FirstProtoArg,
                                  Expr **Args, unsigned NumArgs,
                                  llvm::SmallVector<Expr *, 8> &AllArgs,
                                  VariadicCallType CallType) {
  unsigned NumArgsInProto = Proto->getNumArgs();
  unsigned NumArgsToCheck = NumArgs;
  bool Invalid = false;
  if (NumArgs != NumArgsInProto)
    // Use default arguments for missing arguments
    NumArgsToCheck = NumArgsInProto;
  unsigned ArgIx = 0;
  // Continue to check argument types (even if we have too few/many args).
  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
    QualType ProtoArgType = Proto->getArgType(i);
    
    Expr *Arg;
    if (ArgIx < NumArgs) {
      Arg = Args[ArgIx++];
      
      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
                              ProtoArgType,
                              PDiag(diag::err_call_incomplete_argument)
                              << Arg->getSourceRange()))
        return true;
      
      // Pass the argument
      ParmVarDecl *Param = 0;
      if (FDecl && i < FDecl->getNumParams())
        Param = FDecl->getParamDecl(i);

      
      InitializedEntity Entity =
        Param? InitializedEntity::InitializeParameter(Param)
             : InitializedEntity::InitializeParameter(ProtoArgType);
      OwningExprResult ArgE = PerformCopyInitialization(Entity,
                                                        SourceLocation(),
                                                        Owned(Arg));
      if (ArgE.isInvalid())
        return true;

      Arg = ArgE.takeAs<Expr>();
    } else {
      ParmVarDecl *Param = FDecl->getParamDecl(i);
      
      OwningExprResult ArgExpr =
        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
      if (ArgExpr.isInvalid())
        return true;
      
      Arg = ArgExpr.takeAs<Expr>();
    }
    AllArgs.push_back(Arg);
  }
  
  // If this is a variadic call, handle args passed through "...".
  if (CallType != VariadicDoesNotApply) {
    // Promote the arguments (C99 6.5.2.2p7).
    for (unsigned i = ArgIx; i < NumArgs; i++) {
      Expr *Arg = Args[i];
      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
      AllArgs.push_back(Arg);
    }
  }
  return Invalid;
}

/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
Action::OwningExprResult
Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
                    MultiExprArg args,
                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
  unsigned NumArgs = args.size();

  // Since this might be a postfix expression, get rid of ParenListExprs.
  fn = MaybeConvertParenListExprToParenExpr(S, move(fn));

  Expr *Fn = fn.takeAs<Expr>();
  Expr **Args = reinterpret_cast<Expr**>(args.release());
  assert(Fn && "no function call expression");

  if (getLangOptions().CPlusPlus) {
    // If this is a pseudo-destructor expression, build the call immediately.
    if (isa<CXXPseudoDestructorExpr>(Fn)) {
      if (NumArgs > 0) {
        // Pseudo-destructor calls should not have any arguments.
        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
          << CodeModificationHint::CreateRemoval(
                                    SourceRange(Args[0]->getLocStart(),
                                                Args[NumArgs-1]->getLocEnd()));

        for (unsigned I = 0; I != NumArgs; ++I)
          Args[I]->Destroy(Context);

        NumArgs = 0;
      }

      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
                                          RParenLoc));
    }

    // Determine whether this is a dependent call inside a C++ template,
    // in which case we won't do any semantic analysis now.
    // FIXME: Will need to cache the results of name lookup (including ADL) in
    // Fn.
    bool Dependent = false;
    if (Fn->isTypeDependent())
      Dependent = true;
    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
      Dependent = true;

    if (Dependent)
      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
                                          Context.DependentTy, RParenLoc));

    // Determine whether this is a call to an object (C++ [over.call.object]).
    if (Fn->getType()->isRecordType())
      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
                                                CommaLocs, RParenLoc));

    Expr *NakedFn = Fn->IgnoreParens();

    // Determine whether this is a call to an unresolved member function.
    if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
      // If lookup was unresolved but not dependent (i.e. didn't find
      // an unresolved using declaration), it has to be an overloaded
      // function set, which means it must contain either multiple
      // declarations (all methods or method templates) or a single
      // method template.
      assert((MemE->getNumDecls() > 1) ||
             isa<FunctionTemplateDecl>(*MemE->decls_begin()));
      (void)MemE;

      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
                                       CommaLocs, RParenLoc);
    }

    // Determine whether this is a call to a member function.
    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
      NamedDecl *MemDecl = MemExpr->getMemberDecl();
      if (isa<CXXMethodDecl>(MemDecl))
        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
                                         CommaLocs, RParenLoc);
    }
    
    // Determine whether this is a call to a pointer-to-member function.
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
      if (BO->getOpcode() == BinaryOperator::PtrMemD ||
          BO->getOpcode() == BinaryOperator::PtrMemI) {
        if (const FunctionProtoType *FPT = 
              dyn_cast<FunctionProtoType>(BO->getType())) {
          QualType ResultTy = FPT->getResultType().getNonReferenceType();
      
          ExprOwningPtr<CXXMemberCallExpr> 
            TheCall(this, new (Context) CXXMemberCallExpr(Context, BO, Args, 
                                                          NumArgs, ResultTy,
                                                          RParenLoc));
        
          if (CheckCallReturnType(FPT->getResultType(), 
                                  BO->getRHS()->getSourceRange().getBegin(), 
                                  TheCall.get(), 0))
            return ExprError();

          if (ConvertArgumentsForCall(&*TheCall, BO, 0, FPT, Args, NumArgs, 
                                      RParenLoc))
            return ExprError();

          return Owned(MaybeBindToTemporary(TheCall.release()).release());
        }
        return ExprError(Diag(Fn->getLocStart(), 
                              diag::err_typecheck_call_not_function)
                              << Fn->getType() << Fn->getSourceRange());
      }
    }
  }

  // If we're directly calling a function, get the appropriate declaration.
  // Also, in C++, keep track of whether we should perform argument-dependent
  // lookup and whether there were any explicitly-specified template arguments.

  Expr *NakedFn = Fn->IgnoreParens();
  if (isa<UnresolvedLookupExpr>(NakedFn)) {
    UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
    return BuildOverloadedCallExpr(Fn, ULE, LParenLoc, Args, NumArgs,
                                   CommaLocs, RParenLoc);
  }

  NamedDecl *NDecl = 0;
  if (isa<DeclRefExpr>(NakedFn))
    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();

  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
}

/// BuildResolvedCallExpr - Build a call to a resolved expression,
/// i.e. an expression not of \p OverloadTy.  The expression should
/// unary-convert to an expression of function-pointer or
/// block-pointer type.
///
/// \param NDecl the declaration being called, if available
Sema::OwningExprResult
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
                            SourceLocation LParenLoc,
                            Expr **Args, unsigned NumArgs,
                            SourceLocation RParenLoc) {
  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);

  // Promote the function operand.
  UsualUnaryConversions(Fn);

  // Make the call expr early, before semantic checks.  This guarantees cleanup
  // of arguments and function on error.
  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
                                                               Args, NumArgs,
                                                               Context.BoolTy,
                                                               RParenLoc));

  const FunctionType *FuncT;
  if (!Fn->getType()->isBlockPointerType()) {
    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
    // have type pointer to function".
    const PointerType *PT = Fn->getType()->getAs<PointerType>();
    if (PT == 0)
      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
        << Fn->getType() << Fn->getSourceRange());
    FuncT = PT->getPointeeType()->getAs<FunctionType>();
  } else { // This is a block call.
    FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
                getAs<FunctionType>();
  }
  if (FuncT == 0)
    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
      << Fn->getType() << Fn->getSourceRange());

  // Check for a valid return type
  if (CheckCallReturnType(FuncT->getResultType(), 
                          Fn->getSourceRange().getBegin(), TheCall.get(),
                          FDecl))
    return ExprError();

  // We know the result type of the call, set it.
  TheCall->setType(FuncT->getResultType().getNonReferenceType());

  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
                                RParenLoc))
      return ExprError();
  } else {
    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");

    if (FDecl) {
      // Check if we have too few/too many template arguments, based
      // on our knowledge of the function definition.
      const FunctionDecl *Def = 0;
      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
        const FunctionProtoType *Proto =
            Def->getType()->getAs<FunctionProtoType>();
        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
        }
      }
    }

    // Promote the arguments (C99 6.5.2.2p6).
    for (unsigned i = 0; i != NumArgs; i++) {
      Expr *Arg = Args[i];
      DefaultArgumentPromotion(Arg);
      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
                              Arg->getType(),
                              PDiag(diag::err_call_incomplete_argument)
                                << Arg->getSourceRange()))
        return ExprError();
      TheCall->setArg(i, Arg);
    }
  }

  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
    if (!Method->isStatic())
      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
        << Fn->getSourceRange());

  // Check for sentinels
  if (NDecl)
    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);

  // Do special checking on direct calls to functions.
  if (FDecl) {
    if (CheckFunctionCall(FDecl, TheCall.get()))
      return ExprError();

    if (unsigned BuiltinID = FDecl->getBuiltinID())
      return CheckBuiltinFunctionCall(BuiltinID, TheCall.take());
  } else if (NDecl) {
    if (CheckBlockCall(NDecl, TheCall.get()))
      return ExprError();
  }

  return MaybeBindToTemporary(TheCall.take());
}

Action::OwningExprResult
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
                           SourceLocation RParenLoc, ExprArg InitExpr) {
  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
  // FIXME: put back this assert when initializers are worked out.
  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");

  TypeSourceInfo *TInfo;
  QualType literalType = GetTypeFromParser(Ty, &TInfo);
  if (!TInfo)
    TInfo = Context.getTrivialTypeSourceInfo(literalType);

  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, move(InitExpr));
}

Action::OwningExprResult
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
                               SourceLocation RParenLoc, ExprArg InitExpr) {
  QualType literalType = TInfo->getType();
  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());

  if (literalType->isArrayType()) {
    if (literalType->isVariableArrayType())
      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
  } else if (!literalType->isDependentType() &&
             RequireCompleteType(LParenLoc, literalType,
                      PDiag(diag::err_typecheck_decl_incomplete_type)
                        << SourceRange(LParenLoc,
                                       literalExpr->getSourceRange().getEnd())))
    return ExprError();

  InitializedEntity Entity
    = InitializedEntity::InitializeTemporary(literalType);
  InitializationKind Kind
    = InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc), 
                                     /*IsCStyleCast=*/true);
  InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
                                   MultiExprArg(*this, (void**)&literalExpr, 1),
                                            &literalType);
  if (Result.isInvalid())
    return ExprError();
  InitExpr.release();
  literalExpr = static_cast<Expr*>(Result.get());

  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
  if (isFileScope) { // 6.5.2.5p3
    if (CheckForConstantInitializer(literalExpr, literalType))
      return ExprError();
  }

  Result.release();
  
  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
                                                 literalExpr, isFileScope));
}

Action::OwningExprResult
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
                    SourceLocation RBraceLoc) {
  unsigned NumInit = initlist.size();
  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());

  // Semantic analysis for initializers is done by ActOnDeclarator() and
  // CheckInitializer() - it requires knowledge of the object being intialized.

  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
                                               RBraceLoc);
  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
  return Owned(E);
}

static CastExpr::CastKind getScalarCastKind(ASTContext &Context,
                                            QualType SrcTy, QualType DestTy) {
  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
    return CastExpr::CK_NoOp;

  if (SrcTy->hasPointerRepresentation()) {
    if (DestTy->hasPointerRepresentation())
      return DestTy->isObjCObjectPointerType() ? 
                CastExpr::CK_AnyPointerToObjCPointerCast : 
                CastExpr::CK_BitCast;
    if (DestTy->isIntegerType())
      return CastExpr::CK_PointerToIntegral;
  }
  
  if (SrcTy->isIntegerType()) {
    if (DestTy->isIntegerType())
      return CastExpr::CK_IntegralCast;
    if (DestTy->hasPointerRepresentation())
      return CastExpr::CK_IntegralToPointer;
    if (DestTy->isRealFloatingType())
      return CastExpr::CK_IntegralToFloating;
  }
  
  if (SrcTy->isRealFloatingType()) {
    if (DestTy->isRealFloatingType())
      return CastExpr::CK_FloatingCast;
    if (DestTy->isIntegerType())
      return CastExpr::CK_FloatingToIntegral;
  }
  
  // FIXME: Assert here.
  // assert(false && "Unhandled cast combination!");
  return CastExpr::CK_Unknown;
}

/// CheckCastTypes - Check type constraints for casting between types.
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
                          CastExpr::CastKind& Kind,
                          CXXMethodDecl *& ConversionDecl,
                          bool FunctionalStyle) {
  if (getLangOptions().CPlusPlus)
    return CXXCheckCStyleCast(TyR, castType, castExpr, Kind, FunctionalStyle,
                              ConversionDecl);

  DefaultFunctionArrayLvalueConversion(castExpr);

  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
  // type needs to be scalar.
  if (castType->isVoidType()) {
    // Cast to void allows any expr type.
    Kind = CastExpr::CK_ToVoid;
    return false;
  }
  
  if (!castType->isScalarType() && !castType->isVectorType()) {
    if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
        (castType->isStructureType() || castType->isUnionType())) {
      // GCC struct/union extension: allow cast to self.
      // FIXME: Check that the cast destination type is complete.
      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
        << castType << castExpr->getSourceRange();
      Kind = CastExpr::CK_NoOp;
      return false;
    }
    
    if (castType->isUnionType()) {
      // GCC cast to union extension
      RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
      RecordDecl::field_iterator Field, FieldEnd;
      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
           Field != FieldEnd; ++Field) {
        if (Context.hasSameUnqualifiedType(Field->getType(), 
                                           castExpr->getType())) {
          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
            << castExpr->getSourceRange();
          break;
        }
      }
      if (Field == FieldEnd)
        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
          << castExpr->getType() << castExpr->getSourceRange();
      Kind = CastExpr::CK_ToUnion;
      return false;
    }
    
    // Reject any other conversions to non-scalar types.
    return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
      << castType << castExpr->getSourceRange();
  }
  
  if (!castExpr->getType()->isScalarType() && 
      !castExpr->getType()->isVectorType()) {
    return Diag(castExpr->getLocStart(),
                diag::err_typecheck_expect_scalar_operand)
      << castExpr->getType() << castExpr->getSourceRange();
  }
  
  if (castType->isExtVectorType()) 
    return CheckExtVectorCast(TyR, castType, castExpr, Kind);
  
  if (castType->isVectorType())
    return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
  if (castExpr->getType()->isVectorType())
    return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);

  if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr))
    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
  
  if (isa<ObjCSelectorExpr>(castExpr))
    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
  
  if (!castType->isArithmeticType()) {
    QualType castExprType = castExpr->getType();
    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
      return Diag(castExpr->getLocStart(),
                  diag::err_cast_pointer_from_non_pointer_int)
        << castExprType << castExpr->getSourceRange();
  } else if (!castExpr->getType()->isArithmeticType()) {
    if (!castType->isIntegralType() && castType->isArithmeticType())
      return Diag(castExpr->getLocStart(),
                  diag::err_cast_pointer_to_non_pointer_int)
        << castType << castExpr->getSourceRange();
  }

  Kind = getScalarCastKind(Context, castExpr->getType(), castType);
  return false;
}

bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
                           CastExpr::CastKind &Kind) {
  assert(VectorTy->isVectorType() && "Not a vector type!");

  if (Ty->isVectorType() || Ty->isIntegerType()) {
    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
      return Diag(R.getBegin(),
                  Ty->isVectorType() ?
                  diag::err_invalid_conversion_between_vectors :
                  diag::err_invalid_conversion_between_vector_and_integer)
        << VectorTy << Ty << R;
  } else
    return Diag(R.getBegin(),
                diag::err_invalid_conversion_between_vector_and_scalar)
      << VectorTy << Ty << R;

  Kind = CastExpr::CK_BitCast;
  return false;
}

bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr, 
                              CastExpr::CastKind &Kind) {
  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
  
  QualType SrcTy = CastExpr->getType();
  
  // If SrcTy is a VectorType, the total size must match to explicitly cast to
  // an ExtVectorType.
  if (SrcTy->isVectorType()) {
    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
        << DestTy << SrcTy << R;
    Kind = CastExpr::CK_BitCast;
    return false;
  }

  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
  // conversion will take place first from scalar to elt type, and then
  // splat from elt type to vector.
  if (SrcTy->isPointerType())
    return Diag(R.getBegin(),
                diag::err_invalid_conversion_between_vector_and_scalar)
      << DestTy << SrcTy << R;

  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
  ImpCastExprToType(CastExpr, DestElemTy,
                    getScalarCastKind(Context, SrcTy, DestElemTy));
  
  Kind = CastExpr::CK_VectorSplat;
  return false;
}

Action::OwningExprResult
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, TypeTy *Ty,
                    SourceLocation RParenLoc, ExprArg Op) {
  assert((Ty != 0) && (Op.get() != 0) &&
         "ActOnCastExpr(): missing type or expr");

  TypeSourceInfo *castTInfo;
  QualType castType = GetTypeFromParser(Ty, &castTInfo);
  if (!castTInfo)
    castTInfo = Context.getTrivialTypeSourceInfo(castType);

  // If the Expr being casted is a ParenListExpr, handle it specially.
  Expr *castExpr = (Expr *)Op.get();
  if (isa<ParenListExpr>(castExpr))
    return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, move(Op),
                                    castTInfo);

  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, move(Op));
}

Action::OwningExprResult
Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
                          SourceLocation RParenLoc, ExprArg Op) {
  Expr *castExpr = static_cast<Expr*>(Op.get());

  CXXMethodDecl *Method = 0;
  CastExpr::CastKind Kind = CastExpr::CK_Unknown;
  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
                     Kind, Method))
    return ExprError();

  if (Method) {
    // FIXME: preserve type source info here
    OwningExprResult CastArg = BuildCXXCastArgument(LParenLoc, Ty->getType(),
                                                    Kind, Method, move(Op));

    if (CastArg.isInvalid())
      return ExprError();

    castExpr = CastArg.takeAs<Expr>();
  } else {
    Op.release();
  }

  return Owned(new (Context) CStyleCastExpr(Ty->getType().getNonReferenceType(),
                                            Kind, castExpr, Ty,
                                            LParenLoc, RParenLoc));
}

/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
/// of comma binary operators.
Action::OwningExprResult
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg EA) {
  Expr *expr = EA.takeAs<Expr>();
  ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
  if (!E)
    return Owned(expr);

  OwningExprResult Result(*this, E->getExpr(0));

  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, move(Result),
                        Owned(E->getExpr(i)));

  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), move(Result));
}

Action::OwningExprResult
Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
                               SourceLocation RParenLoc, ExprArg Op,
                               TypeSourceInfo *TInfo) {
  ParenListExpr *PE = (ParenListExpr *)Op.get();
  QualType Ty = TInfo->getType();

  // If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
  // then handle it as such.
  if (getLangOptions().AltiVec && Ty->isVectorType()) {
    if (PE->getNumExprs() == 0) {
      Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
      return ExprError();
    }

    llvm::SmallVector<Expr *, 8> initExprs;
    for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
      initExprs.push_back(PE->getExpr(i));

    // FIXME: This means that pretty-printing the final AST will produce curly
    // braces instead of the original commas.
    Op.release();
    InitListExpr *E = new (Context) InitListExpr(LParenLoc, &initExprs[0],
                                                 initExprs.size(), RParenLoc);
    E->setType(Ty);
    return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Owned(E));
  } else {
    // This is not an AltiVec-style cast, so turn the ParenListExpr into a
    // sequence of BinOp comma operators.
    Op = MaybeConvertParenListExprToParenExpr(S, move(Op));
    return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, move(Op));
  }
}

Action::OwningExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
                                                  SourceLocation R,
                                                  MultiExprArg Val,
                                                  TypeTy *TypeOfCast) {
  unsigned nexprs = Val.size();
  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
  Expr *expr;
  if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
    expr = new (Context) ParenExpr(L, R, exprs[0]);
  else
    expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
  return Owned(expr);
}

/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lhs = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
                                        SourceLocation QuestionLoc) {
  // C++ is sufficiently different to merit its own checker.
  if (getLangOptions().CPlusPlus)
    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);

  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);

  UsualUnaryConversions(Cond);
  UsualUnaryConversions(LHS);
  UsualUnaryConversions(RHS);
  QualType CondTy = Cond->getType();
  QualType LHSTy = LHS->getType();
  QualType RHSTy = RHS->getType();

  // first, check the condition.
  if (!CondTy->isScalarType()) { // C99 6.5.15p2
    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
      << CondTy;
    return QualType();
  }

  // Now check the two expressions.
  if (LHSTy->isVectorType() || RHSTy->isVectorType())
    return CheckVectorOperands(QuestionLoc, LHS, RHS);

  // If both operands have arithmetic type, do the usual arithmetic conversions
  // to find a common type: C99 6.5.15p3,5.
  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
    UsualArithmeticConversions(LHS, RHS);
    return LHS->getType();
  }

  // If both operands are the same structure or union type, the result is that
  // type.
  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
      if (LHSRT->getDecl() == RHSRT->getDecl())
        // "If both the operands have structure or union type, the result has
        // that type."  This implies that CV qualifiers are dropped.
        return LHSTy.getUnqualifiedType();
    // FIXME: Type of conditional expression must be complete in C mode.
  }

  // C99 6.5.15p5: "If both operands have void type, the result has void type."
  // The following || allows only one side to be void (a GCC-ism).
  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
    if (!LHSTy->isVoidType())
      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
        << RHS->getSourceRange();
    if (!RHSTy->isVoidType())
      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
        << LHS->getSourceRange();
    ImpCastExprToType(LHS, Context.VoidTy, CastExpr::CK_ToVoid);
    ImpCastExprToType(RHS, Context.VoidTy, CastExpr::CK_ToVoid);
    return Context.VoidTy;
  }
  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
  // the type of the other operand."
  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
      RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    // promote the null to a pointer.
    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_Unknown);
    return LHSTy;
  }
  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
      LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_Unknown);
    return RHSTy;
  }
  
  // All objective-c pointer type analysis is done here.
  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
                                                        QuestionLoc);
  if (!compositeType.isNull())
    return compositeType;
  
  
  // Handle block pointer types.
  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
        QualType destType = Context.getPointerType(Context.VoidTy);
        ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
        ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
        return destType;
      }
      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
      return QualType();
    }
    // We have 2 block pointer types.
    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
      // Two identical block pointer types are always compatible.
      return LHSTy;
    }
    // The block pointer types aren't identical, continue checking.
    QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
    QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
    
    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
                                    rhptee.getUnqualifiedType())) {
      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
      // In this situation, we assume void* type. No especially good
      // reason, but this is what gcc does, and we do have to pick
      // to get a consistent AST.
      QualType incompatTy = Context.getPointerType(Context.VoidTy);
      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
      return incompatTy;
    }
    // The block pointer types are compatible.
    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
    return LHSTy;
  }
  
  // Check constraints for C object pointers types (C99 6.5.15p3,6).
  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
    // get the "pointed to" types
    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();

    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
      // Figure out necessary qualifiers (C99 6.5.15p6)
      QualType destPointee
        = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
      QualType destType = Context.getPointerType(destPointee);
      // Add qualifiers if necessary.
      ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
      // Promote to void*.
      ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
      return destType;
    }
    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
      QualType destPointee
        = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
      QualType destType = Context.getPointerType(destPointee);
      // Add qualifiers if necessary.
      ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
      // Promote to void*.
      ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
      return destType;
    }

    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
      // Two identical pointer types are always compatible.
      return LHSTy;
    }
    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
                                    rhptee.getUnqualifiedType())) {
      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
      // In this situation, we assume void* type. No especially good
      // reason, but this is what gcc does, and we do have to pick
      // to get a consistent AST.
      QualType incompatTy = Context.getPointerType(Context.VoidTy);
      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
      return incompatTy;
    }
    // The pointer types are compatible.
    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
    // differently qualified versions of compatible types, the result type is
    // a pointer to an appropriately qualified version of the *composite*
    // type.
    // FIXME: Need to calculate the composite type.
    // FIXME: Need to add qualifiers
    ImpCastExprToType(LHS, LHSTy, CastExpr::CK_BitCast);
    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
    return LHSTy;
  }

  // GCC compatibility: soften pointer/integer mismatch.
  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_IntegralToPointer);
    return RHSTy;
  }
  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_IntegralToPointer);
    return LHSTy;
  }

  // Otherwise, the operands are not compatible.
  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
  return QualType();
}

/// FindCompositeObjCPointerType - Helper method to find composite type of
/// two objective-c pointer types of the two input expressions.
QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
                                        SourceLocation QuestionLoc) {
  QualType LHSTy = LHS->getType();
  QualType RHSTy = RHS->getType();
  
  // Handle things like Class and struct objc_class*.  Here we case the result
  // to the pseudo-builtin, because that will be implicitly cast back to the
  // redefinition type if an attempt is made to access its fields.
  if (LHSTy->isObjCClassType() &&
      (RHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
    return LHSTy;
  }
  if (RHSTy->isObjCClassType() &&
      (LHSTy.getDesugaredType() == Context.ObjCClassRedefinitionType)) {
    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
    return RHSTy;
  }
  // And the same for struct objc_object* / id
  if (LHSTy->isObjCIdType() &&
      (RHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
    return LHSTy;
  }
  if (RHSTy->isObjCIdType() &&
      (LHSTy.getDesugaredType() == Context.ObjCIdRedefinitionType)) {
    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
    return RHSTy;
  }
  // And the same for struct objc_selector* / SEL
  if (Context.isObjCSelType(LHSTy) &&
      (RHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
    ImpCastExprToType(RHS, LHSTy, CastExpr::CK_BitCast);
    return LHSTy;
  }
  if (Context.isObjCSelType(RHSTy) &&
      (LHSTy.getDesugaredType() == Context.ObjCSelRedefinitionType)) {
    ImpCastExprToType(LHS, RHSTy, CastExpr::CK_BitCast);
    return RHSTy;
  }
  // Check constraints for Objective-C object pointers types.
  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
    
    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
      // Two identical object pointer types are always compatible.
      return LHSTy;
    }
    const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
    const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
    QualType compositeType = LHSTy;
    
    // If both operands are interfaces and either operand can be
    // assigned to the other, use that type as the composite
    // type. This allows
    //   xxx ? (A*) a : (B*) b
    // where B is a subclass of A.
    //
    // Additionally, as for assignment, if either type is 'id'
    // allow silent coercion. Finally, if the types are
    // incompatible then make sure to use 'id' as the composite
    // type so the result is acceptable for sending messages to.
    
    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
    // It could return the composite type.
    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
    } else if ((LHSTy->isObjCQualifiedIdType() ||
                RHSTy->isObjCQualifiedIdType()) &&
               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
      // Need to handle "id<xx>" explicitly.
      // GCC allows qualified id and any Objective-C type to devolve to
      // id. Currently localizing to here until clear this should be
      // part of ObjCQualifiedIdTypesAreCompatible.
      compositeType = Context.getObjCIdType();
    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
      compositeType = Context.getObjCIdType();
    } else if (!(compositeType = 
                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
      ;
    else {
      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
      << LHSTy << RHSTy
      << LHS->getSourceRange() << RHS->getSourceRange();
      QualType incompatTy = Context.getObjCIdType();
      ImpCastExprToType(LHS, incompatTy, CastExpr::CK_BitCast);
      ImpCastExprToType(RHS, incompatTy, CastExpr::CK_BitCast);
      return incompatTy;
    }
    // The object pointer types are compatible.
    ImpCastExprToType(LHS, compositeType, CastExpr::CK_BitCast);
    ImpCastExprToType(RHS, compositeType, CastExpr::CK_BitCast);
    return compositeType;
  }
  // Check Objective-C object pointer types and 'void *'
  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
    QualType destPointee
    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
    QualType destType = Context.getPointerType(destPointee);
    // Add qualifiers if necessary.
    ImpCastExprToType(LHS, destType, CastExpr::CK_NoOp);
    // Promote to void*.
    ImpCastExprToType(RHS, destType, CastExpr::CK_BitCast);
    return destType;
  }
  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
    QualType destPointee
    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
    QualType destType = Context.getPointerType(destPointee);
    // Add qualifiers if necessary.
    ImpCastExprToType(RHS, destType, CastExpr::CK_NoOp);
    // Promote to void*.
    ImpCastExprToType(LHS, destType, CastExpr::CK_BitCast);
    return destType;
  }
  return QualType();
}

/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
                                                  SourceLocation ColonLoc,
                                                  ExprArg Cond, ExprArg LHS,
                                                  ExprArg RHS) {
  Expr *CondExpr = (Expr *) Cond.get();
  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();

  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
  // was the condition.
  bool isLHSNull = LHSExpr == 0;
  if (isLHSNull)
    LHSExpr = CondExpr;

  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
                                             RHSExpr, QuestionLoc);
  if (result.isNull())
    return ExprError();

  Cond.release();
  LHS.release();
  RHS.release();
  return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
                                                 isLHSNull ? 0 : LHSExpr,
                                                 ColonLoc, RHSExpr, result));
}

// CheckPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
Sema::AssignConvertType
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
  QualType lhptee, rhptee;

  if ((lhsType->isObjCClassType() &&
       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
     (rhsType->isObjCClassType() &&
       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
      return Compatible;
  }

  // get the "pointed to" type (ignoring qualifiers at the top level)
  lhptee = lhsType->getAs<PointerType>()->getPointeeType();
  rhptee = rhsType->getAs<PointerType>()->getPointeeType();

  // make sure we operate on the canonical type
  lhptee = Context.getCanonicalType(lhptee);
  rhptee = Context.getCanonicalType(rhptee);

  AssignConvertType ConvTy = Compatible;

  // C99 6.5.16.1p1: This following citation is common to constraints
  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
  // qualifiers of the type *pointed to* by the right;
  // FIXME: Handle ExtQualType
  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
    ConvTy = CompatiblePointerDiscardsQualifiers;

  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
  // incomplete type and the other is a pointer to a qualified or unqualified
  // version of void...
  if (lhptee->isVoidType()) {
    if (rhptee->isIncompleteOrObjectType())
      return ConvTy;

    // As an extension, we allow cast to/from void* to function pointer.
    assert(rhptee->isFunctionType());
    return FunctionVoidPointer;
  }

  if (rhptee->isVoidType()) {
    if (lhptee->isIncompleteOrObjectType())
      return ConvTy;

    // As an extension, we allow cast to/from void* to function pointer.
    assert(lhptee->isFunctionType());
    return FunctionVoidPointer;
  }
  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
  // unqualified versions of compatible types, ...
  lhptee = lhptee.getUnqualifiedType();
  rhptee = rhptee.getUnqualifiedType();
  if (!Context.typesAreCompatible(lhptee, rhptee)) {
    // Check if the pointee types are compatible ignoring the sign.
    // We explicitly check for char so that we catch "char" vs
    // "unsigned char" on systems where "char" is unsigned.
    if (lhptee->isCharType())
      lhptee = Context.UnsignedCharTy;
    else if (lhptee->isSignedIntegerType())
      lhptee = Context.getCorrespondingUnsignedType(lhptee);
    
    if (rhptee->isCharType())
      rhptee = Context.UnsignedCharTy;
    else if (rhptee->isSignedIntegerType())
      rhptee = Context.getCorrespondingUnsignedType(rhptee);

    if (lhptee == rhptee) {
      // Types are compatible ignoring the sign. Qualifier incompatibility
      // takes priority over sign incompatibility because the sign
      // warning can be disabled.
      if (ConvTy != Compatible)
        return ConvTy;
      return IncompatiblePointerSign;
    }
    
    // If we are a multi-level pointer, it's possible that our issue is simply
    // one of qualification - e.g. char ** -> const char ** is not allowed. If
    // the eventual target type is the same and the pointers have the same
    // level of indirection, this must be the issue.
    if (lhptee->isPointerType() && rhptee->isPointerType()) {
      do {
        lhptee = lhptee->getAs<PointerType>()->getPointeeType();
        rhptee = rhptee->getAs<PointerType>()->getPointeeType();
      
        lhptee = Context.getCanonicalType(lhptee);
        rhptee = Context.getCanonicalType(rhptee);
      } while (lhptee->isPointerType() && rhptee->isPointerType());
      
      if (Context.hasSameUnqualifiedType(lhptee, rhptee))
        return IncompatibleNestedPointerQualifiers;
    }
    
    // General pointer incompatibility takes priority over qualifiers.
    return IncompatiblePointer;
  }
  return ConvTy;
}

/// CheckBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
Sema::AssignConvertType
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
                                          QualType rhsType) {
  QualType lhptee, rhptee;

  // get the "pointed to" type (ignoring qualifiers at the top level)
  lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
  rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();

  // make sure we operate on the canonical type
  lhptee = Context.getCanonicalType(lhptee);
  rhptee = Context.getCanonicalType(rhptee);

  AssignConvertType ConvTy = Compatible;

  // For blocks we enforce that qualifiers are identical.
  if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
    ConvTy = CompatiblePointerDiscardsQualifiers;

  if (!Context.typesAreCompatible(lhptee, rhptee))
    return IncompatibleBlockPointer;
  return ConvTy;
}

/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
/// for assignment compatibility.
Sema::AssignConvertType
Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
  if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
    return Compatible;
  QualType lhptee = 
  lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
  QualType rhptee = 
  rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
  // make sure we operate on the canonical type
  lhptee = Context.getCanonicalType(lhptee);
  rhptee = Context.getCanonicalType(rhptee);
  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
    return CompatiblePointerDiscardsQualifiers;
  
  if (Context.typesAreCompatible(lhsType, rhsType))
    return Compatible;
  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
    return IncompatibleObjCQualifiedId;
  return IncompatiblePointer;  
}

/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
///  int a, *pint;
///  short *pshort;
///  struct foo *pfoo;
///
///  pint = pshort; // warning: assignment from incompatible pointer type
///  a = pint; // warning: assignment makes integer from pointer without a cast
///  pint = a; // warning: assignment makes pointer from integer without a cast
///  pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
  // Get canonical types.  We're not formatting these types, just comparing
  // them.
  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();

  if (lhsType == rhsType)
    return Compatible; // Common case: fast path an exact match.

  if ((lhsType->isObjCClassType() &&
       (rhsType.getDesugaredType() == Context.ObjCClassRedefinitionType)) ||
     (rhsType->isObjCClassType() &&
       (lhsType.getDesugaredType() == Context.ObjCClassRedefinitionType))) {
      return Compatible;
  }

  // If the left-hand side is a reference type, then we are in a
  // (rare!) case where we've allowed the use of references in C,
  // e.g., as a parameter type in a built-in function. In this case,
  // just make sure that the type referenced is compatible with the
  // right-hand side type. The caller is responsible for adjusting
  // lhsType so that the resulting expression does not have reference
  // type.
  if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
      return Compatible;
    return Incompatible;
  }
  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
  // to the same ExtVector type.
  if (lhsType->isExtVectorType()) {
    if (rhsType->isExtVectorType())
      return lhsType == rhsType ? Compatible : Incompatible;
    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
      return Compatible;
  }

  if (lhsType->isVectorType() || rhsType->isVectorType()) {
    // If we are allowing lax vector conversions, and LHS and RHS are both
    // vectors, the total size only needs to be the same. This is a bitcast;
    // no bits are changed but the result type is different.
    if (getLangOptions().LaxVectorConversions &&
        lhsType->isVectorType() && rhsType->isVectorType()) {
      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
        return IncompatibleVectors;
    }
    return Incompatible;
  }

  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
    return Compatible;

  if (isa<PointerType>(lhsType)) {
    if (rhsType->isIntegerType())
      return IntToPointer;

    if (isa<PointerType>(rhsType))
      return CheckPointerTypesForAssignment(lhsType, rhsType);

    // In general, C pointers are not compatible with ObjC object pointers.
    if (isa<ObjCObjectPointerType>(rhsType)) {
      if (lhsType->isVoidPointerType()) // an exception to the rule.
        return Compatible;
      return IncompatiblePointer;
    }
    if (rhsType->getAs<BlockPointerType>()) {
      if (lhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
        return Compatible;

      // Treat block pointers as objects.
      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
        return Compatible;
    }
    return Incompatible;
  }

  if (isa<BlockPointerType>(lhsType)) {
    if (rhsType->isIntegerType())
      return IntToBlockPointer;

    // Treat block pointers as objects.
    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
      return Compatible;

    if (rhsType->isBlockPointerType())
      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);

    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
      if (RHSPT->getPointeeType()->isVoidType())
        return Compatible;
    }
    return Incompatible;
  }

  if (isa<ObjCObjectPointerType>(lhsType)) {
    if (rhsType->isIntegerType())
      return IntToPointer;

    // In general, C pointers are not compatible with ObjC object pointers.
    if (isa<PointerType>(rhsType)) {
      if (rhsType->isVoidPointerType()) // an exception to the rule.
        return Compatible;
      return IncompatiblePointer;
    }
    if (rhsType->isObjCObjectPointerType()) {
      return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
    }
    if (const PointerType *RHSPT = rhsType->getAs<PointerType>()) {
      if (RHSPT->getPointeeType()->isVoidType())
        return Compatible;
    }
    // Treat block pointers as objects.
    if (rhsType->isBlockPointerType())
      return Compatible;
    return Incompatible;
  }
  if (isa<PointerType>(rhsType)) {
    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
    if (lhsType == Context.BoolTy)
      return Compatible;

    if (lhsType->isIntegerType())
      return PointerToInt;

    if (isa<PointerType>(lhsType))
      return CheckPointerTypesForAssignment(lhsType, rhsType);

    if (isa<BlockPointerType>(lhsType) &&
        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
      return Compatible;
    return Incompatible;
  }
  if (isa<ObjCObjectPointerType>(rhsType)) {
    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
    if (lhsType == Context.BoolTy)
      return Compatible;

    if (lhsType->isIntegerType())
      return PointerToInt;

    // In general, C pointers are not compatible with ObjC object pointers.
    if (isa<PointerType>(lhsType)) {
      if (lhsType->isVoidPointerType()) // an exception to the rule.
        return Compatible;
      return IncompatiblePointer;
    }
    if (isa<BlockPointerType>(lhsType) &&
        rhsType->getAs<PointerType>()->getPointeeType()->isVoidType())
      return Compatible;
    return Incompatible;
  }

  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
    if (Context.typesAreCompatible(lhsType, rhsType))
      return Compatible;
  }
  return Incompatible;
}

/// \brief Constructs a transparent union from an expression that is
/// used to initialize the transparent union.
static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
                                      QualType UnionType, FieldDecl *Field) {
  // Build an initializer list that designates the appropriate member
  // of the transparent union.
  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
                                                   &E, 1,
                                                   SourceLocation());
  Initializer->setType(UnionType);
  Initializer->setInitializedFieldInUnion(Field);

  // Build a compound literal constructing a value of the transparent
  // union type from this initializer list.
  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
  E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
                                  Initializer, false);
}

Sema::AssignConvertType
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
  QualType FromType = rExpr->getType();

  // If the ArgType is a Union type, we want to handle a potential
  // transparent_union GCC extension.
  const RecordType *UT = ArgType->getAsUnionType();
  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
    return Incompatible;

  // The field to initialize within the transparent union.
  RecordDecl *UD = UT->getDecl();
  FieldDecl *InitField = 0;
  // It's compatible if the expression matches any of the fields.
  for (RecordDecl::field_iterator it = UD->field_begin(),
         itend = UD->field_end();
       it != itend; ++it) {
    if (it->getType()->isPointerType()) {
      // If the transparent union contains a pointer type, we allow:
      // 1) void pointer
      // 2) null pointer constant
      if (FromType->isPointerType())
        if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
          ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_BitCast);
          InitField = *it;
          break;
        }

      if (rExpr->isNullPointerConstant(Context, 
                                       Expr::NPC_ValueDependentIsNull)) {
        ImpCastExprToType(rExpr, it->getType(), CastExpr::CK_IntegralToPointer);
        InitField = *it;
        break;
      }
    }

    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
          == Compatible) {
      InitField = *it;
      break;
    }
  }

  if (!InitField)
    return Incompatible;

  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
  return Compatible;
}

Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
  if (getLangOptions().CPlusPlus) {
    if (!lhsType->isRecordType()) {
      // C++ 5.17p3: If the left operand is not of class type, the
      // expression is implicitly converted (C++ 4) to the
      // cv-unqualified type of the left operand.
      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
                                    AA_Assigning))
        return Incompatible;
      return Compatible;
    }

    // FIXME: Currently, we fall through and treat C++ classes like C
    // structures.
  }

  // C99 6.5.16.1p1: the left operand is a pointer and the right is
  // a null pointer constant.
  if ((lhsType->isPointerType() ||
       lhsType->isObjCObjectPointerType() ||
       lhsType->isBlockPointerType())
      && rExpr->isNullPointerConstant(Context, 
                                      Expr::NPC_ValueDependentIsNull)) {
    ImpCastExprToType(rExpr, lhsType, CastExpr::CK_Unknown);
    return Compatible;
  }

  // This check seems unnatural, however it is necessary to ensure the proper
  // conversion of functions/arrays. If the conversion were done for all
  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
  // expressions that surpress this implicit conversion (&, sizeof).
  //
  // Suppress this for references: C++ 8.5.3p5.
  if (!lhsType->isReferenceType())
    DefaultFunctionArrayLvalueConversion(rExpr);

  Sema::AssignConvertType result =
    CheckAssignmentConstraints(lhsType, rExpr->getType());

  // C99 6.5.16.1p2: The value of the right operand is converted to the
  // type of the assignment expression.
  // CheckAssignmentConstraints allows the left-hand side to be a reference,
  // so that we can use references in built-in functions even in C.
  // The getNonReferenceType() call makes sure that the resulting expression
  // does not have reference type.
  if (result != Incompatible && rExpr->getType() != lhsType)
    ImpCastExprToType(rExpr, lhsType.getNonReferenceType(),
                      CastExpr::CK_Unknown);
  return result;
}

QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
  Diag(Loc, diag::err_typecheck_invalid_operands)
    << lex->getType() << rex->getType()
    << lex->getSourceRange() << rex->getSourceRange();
  return QualType();
}

QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
  // For conversion purposes, we ignore any qualifiers.
  // For example, "const float" and "float" are equivalent.
  QualType lhsType =
    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
  QualType rhsType =
    Context.getCanonicalType(rex->getType()).getUnqualifiedType();

  // If the vector types are identical, return.
  if (lhsType == rhsType)
    return lhsType;

  // Handle the case of a vector & extvector type of the same size and element
  // type.  It would be nice if we only had one vector type someday.
  if (getLangOptions().LaxVectorConversions) {
    // FIXME: Should we warn here?
    if (const VectorType *LV = lhsType->getAs<VectorType>()) {
      if (const VectorType *RV = rhsType->getAs<VectorType>())
        if (LV->getElementType() == RV->getElementType() &&
            LV->getNumElements() == RV->getNumElements()) {
          return lhsType->isExtVectorType() ? lhsType : rhsType;
        }
    }
  }

  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
  // swap back (so that we don't reverse the inputs to a subtract, for instance.
  bool swapped = false;
  if (rhsType->isExtVectorType()) {
    swapped = true;
    std::swap(rex, lex);
    std::swap(rhsType, lhsType);
  }

  // Handle the case of an ext vector and scalar.
  if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
    QualType EltTy = LV->getElementType();
    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
        ImpCastExprToType(rex, lhsType, CastExpr::CK_IntegralCast);
        if (swapped) std::swap(rex, lex);
        return lhsType;
      }
    }
    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
        rhsType->isRealFloatingType()) {
      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
        ImpCastExprToType(rex, lhsType, CastExpr::CK_FloatingCast);
        if (swapped) std::swap(rex, lex);
        return lhsType;
      }
    }
  }

  // Vectors of different size or scalar and non-ext-vector are errors.
  Diag(Loc, diag::err_typecheck_vector_not_convertable)
    << lex->getType() << rex->getType()
    << lex->getSourceRange() << rex->getSourceRange();
  return QualType();
}

QualType Sema::CheckMultiplyDivideOperands(
  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorOperands(Loc, lex, rex);

  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);

  if (!lex->getType()->isArithmeticType() ||
      !rex->getType()->isArithmeticType())
    return InvalidOperands(Loc, lex, rex);
  
  // Check for division by zero.
  if (isDiv &&
      rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
    DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero) 
                                     << rex->getSourceRange());
  
  return compType;
}

QualType Sema::CheckRemainderOperands(
  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
      return CheckVectorOperands(Loc, lex, rex);
    return InvalidOperands(Loc, lex, rex);
  }

  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);

  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
    return InvalidOperands(Loc, lex, rex);
  
  // Check for remainder by zero.
  if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
    DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
                                 << rex->getSourceRange());
  
  return compType;
}

QualType Sema::CheckAdditionOperands( // C99 6.5.6
  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
    QualType compType = CheckVectorOperands(Loc, lex, rex);
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);

  // handle the common case first (both operands are arithmetic).
  if (lex->getType()->isArithmeticType() &&
      rex->getType()->isArithmeticType()) {
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  // Put any potential pointer into PExp
  Expr* PExp = lex, *IExp = rex;
  if (IExp->getType()->isAnyPointerType())
    std::swap(PExp, IExp);

  if (PExp->getType()->isAnyPointerType()) {

    if (IExp->getType()->isIntegerType()) {
      QualType PointeeTy = PExp->getType()->getPointeeType();

      // Check for arithmetic on pointers to incomplete types.
      if (PointeeTy->isVoidType()) {
        if (getLangOptions().CPlusPlus) {
          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
            << lex->getSourceRange() << rex->getSourceRange();
          return QualType();
        }

        // GNU extension: arithmetic on pointer to void
        Diag(Loc, diag::ext_gnu_void_ptr)
          << lex->getSourceRange() << rex->getSourceRange();
      } else if (PointeeTy->isFunctionType()) {
        if (getLangOptions().CPlusPlus) {
          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
            << lex->getType() << lex->getSourceRange();
          return QualType();
        }

        // GNU extension: arithmetic on pointer to function
        Diag(Loc, diag::ext_gnu_ptr_func_arith)
          << lex->getType() << lex->getSourceRange();
      } else {
        // Check if we require a complete type.
        if (((PExp->getType()->isPointerType() &&
              !PExp->getType()->isDependentType()) ||
              PExp->getType()->isObjCObjectPointerType()) &&
             RequireCompleteType(Loc, PointeeTy,
                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
                             << PExp->getSourceRange()
                             << PExp->getType()))
          return QualType();
      }
      // Diagnose bad cases where we step over interface counts.
      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
          << PointeeTy << PExp->getSourceRange();
        return QualType();
      }

      if (CompLHSTy) {
        QualType LHSTy = Context.isPromotableBitField(lex);
        if (LHSTy.isNull()) {
          LHSTy = lex->getType();
          if (LHSTy->isPromotableIntegerType())
            LHSTy = Context.getPromotedIntegerType(LHSTy);
        }
        *CompLHSTy = LHSTy;
      }
      return PExp->getType();
    }
  }

  return InvalidOperands(Loc, lex, rex);
}

// C99 6.5.6
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
                                        SourceLocation Loc, QualType* CompLHSTy) {
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
    QualType compType = CheckVectorOperands(Loc, lex, rex);
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);

  // Enforce type constraints: C99 6.5.6p3.

  // Handle the common case first (both operands are arithmetic).
  if (lex->getType()->isArithmeticType()
      && rex->getType()->isArithmeticType()) {
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  // Either ptr - int   or   ptr - ptr.
  if (lex->getType()->isAnyPointerType()) {
    QualType lpointee = lex->getType()->getPointeeType();

    // The LHS must be an completely-defined object type.

    bool ComplainAboutVoid = false;
    Expr *ComplainAboutFunc = 0;
    if (lpointee->isVoidType()) {
      if (getLangOptions().CPlusPlus) {
        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
          << lex->getSourceRange() << rex->getSourceRange();
        return QualType();
      }

      // GNU C extension: arithmetic on pointer to void
      ComplainAboutVoid = true;
    } else if (lpointee->isFunctionType()) {
      if (getLangOptions().CPlusPlus) {
        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
          << lex->getType() << lex->getSourceRange();
        return QualType();
      }

      // GNU C extension: arithmetic on pointer to function
      ComplainAboutFunc = lex;
    } else if (!lpointee->isDependentType() &&
               RequireCompleteType(Loc, lpointee,
                                   PDiag(diag::err_typecheck_sub_ptr_object)
                                     << lex->getSourceRange()
                                     << lex->getType()))
      return QualType();

    // Diagnose bad cases where we step over interface counts.
    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
        << lpointee << lex->getSourceRange();
      return QualType();
    }

    // The result type of a pointer-int computation is the pointer type.
    if (rex->getType()->isIntegerType()) {
      if (ComplainAboutVoid)
        Diag(Loc, diag::ext_gnu_void_ptr)
          << lex->getSourceRange() << rex->getSourceRange();
      if (ComplainAboutFunc)
        Diag(Loc, diag::ext_gnu_ptr_func_arith)
          << ComplainAboutFunc->getType()
          << ComplainAboutFunc->getSourceRange();

      if (CompLHSTy) *CompLHSTy = lex->getType();
      return lex->getType();
    }

    // Handle pointer-pointer subtractions.
    if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
      QualType rpointee = RHSPTy->getPointeeType();

      // RHS must be a completely-type object type.
      // Handle the GNU void* extension.
      if (rpointee->isVoidType()) {
        if (getLangOptions().CPlusPlus) {
          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
            << lex->getSourceRange() << rex->getSourceRange();
          return QualType();
        }

        ComplainAboutVoid = true;
      } else if (rpointee->isFunctionType()) {
        if (getLangOptions().CPlusPlus) {
          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
            << rex->getType() << rex->getSourceRange();
          return QualType();
        }

        // GNU extension: arithmetic on pointer to function
        if (!ComplainAboutFunc)
          ComplainAboutFunc = rex;
      } else if (!rpointee->isDependentType() &&
                 RequireCompleteType(Loc, rpointee,
                                     PDiag(diag::err_typecheck_sub_ptr_object)
                                       << rex->getSourceRange()
                                       << rex->getType()))
        return QualType();

      if (getLangOptions().CPlusPlus) {
        // Pointee types must be the same: C++ [expr.add]
        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
            << lex->getType() << rex->getType()
            << lex->getSourceRange() << rex->getSourceRange();
          return QualType();
        }
      } else {
        // Pointee types must be compatible C99 6.5.6p3
        if (!Context.typesAreCompatible(
                Context.getCanonicalType(lpointee).getUnqualifiedType(),
                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
            << lex->getType() << rex->getType()
            << lex->getSourceRange() << rex->getSourceRange();
          return QualType();
        }
      }

      if (ComplainAboutVoid)
        Diag(Loc, diag::ext_gnu_void_ptr)
          << lex->getSourceRange() << rex->getSourceRange();
      if (ComplainAboutFunc)
        Diag(Loc, diag::ext_gnu_ptr_func_arith)
          << ComplainAboutFunc->getType()
          << ComplainAboutFunc->getSourceRange();

      if (CompLHSTy) *CompLHSTy = lex->getType();
      return Context.getPointerDiffType();
    }
  }

  return InvalidOperands(Loc, lex, rex);
}

// C99 6.5.7
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
                                  bool isCompAssign) {
  // C99 6.5.7p2: Each of the operands shall have integer type.
  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
    return InvalidOperands(Loc, lex, rex);

  // Vector shifts promote their scalar inputs to vector type.
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorOperands(Loc, lex, rex);

  // Shifts don't perform usual arithmetic conversions, they just do integer
  // promotions on each operand. C99 6.5.7p3
  QualType LHSTy = Context.isPromotableBitField(lex);
  if (LHSTy.isNull()) {
    LHSTy = lex->getType();
    if (LHSTy->isPromotableIntegerType())
      LHSTy = Context.getPromotedIntegerType(LHSTy);
  }
  if (!isCompAssign)
    ImpCastExprToType(lex, LHSTy, CastExpr::CK_IntegralCast);

  UsualUnaryConversions(rex);

  // Sanity-check shift operands
  llvm::APSInt Right;
  // Check right/shifter operand
  if (!rex->isValueDependent() &&
      rex->isIntegerConstantExpr(Right, Context)) {
    if (Right.isNegative())
      Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
    else {
      llvm::APInt LeftBits(Right.getBitWidth(),
                          Context.getTypeSize(lex->getType()));
      if (Right.uge(LeftBits))
        Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
    }
  }

  // "The type of the result is that of the promoted left operand."
  return LHSTy;
}

// C99 6.5.8, C++ [expr.rel]
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
                                    unsigned OpaqueOpc, bool isRelational) {
  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;

  // Handle vector comparisons separately.
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);

  CheckSignCompare(lex, rex, Loc, diag::warn_mixed_sign_comparison,
                   (Opc == BinaryOperator::EQ || Opc == BinaryOperator::NE));

  // C99 6.5.8p3 / C99 6.5.9p4
  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
    UsualArithmeticConversions(lex, rex);
  else {
    UsualUnaryConversions(lex);
    UsualUnaryConversions(rex);
  }
  QualType lType = lex->getType();
  QualType rType = rex->getType();

  if (!lType->isFloatingType()
      && !(lType->isBlockPointerType() && isRelational)) {
    // For non-floating point types, check for self-comparisons of the form
    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
    // often indicate logic errors in the program.
    // NOTE: Don't warn about comparisons of enum constants. These can arise
    //  from macro expansions, and are usually quite deliberate.
    Expr *LHSStripped = lex->IgnoreParens();
    Expr *RHSStripped = rex->IgnoreParens();
    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
        if (DRL->getDecl() == DRR->getDecl() &&
            !isa<EnumConstantDecl>(DRL->getDecl()))
          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));

    if (isa<CastExpr>(LHSStripped))
      LHSStripped = LHSStripped->IgnoreParenCasts();
    if (isa<CastExpr>(RHSStripped))
      RHSStripped = RHSStripped->IgnoreParenCasts();

    // Warn about comparisons against a string constant (unless the other
    // operand is null), the user probably wants strcmp.
    Expr *literalString = 0;
    Expr *literalStringStripped = 0;
    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
        !RHSStripped->isNullPointerConstant(Context, 
                                            Expr::NPC_ValueDependentIsNull)) {
      literalString = lex;
      literalStringStripped = LHSStripped;
    } else if ((isa<StringLiteral>(RHSStripped) ||
                isa<ObjCEncodeExpr>(RHSStripped)) &&
               !LHSStripped->isNullPointerConstant(Context, 
                                            Expr::NPC_ValueDependentIsNull)) {
      literalString = rex;
      literalStringStripped = RHSStripped;
    }

    if (literalString) {
      std::string resultComparison;
      switch (Opc) {
      case BinaryOperator::LT: resultComparison = ") < 0"; break;
      case BinaryOperator::GT: resultComparison = ") > 0"; break;
      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
      case BinaryOperator::NE: resultComparison = ") != 0"; break;
      default: assert(false && "Invalid comparison operator");
      }
      
      DiagRuntimeBehavior(Loc,
        PDiag(diag::warn_stringcompare)
          << isa<ObjCEncodeExpr>(literalStringStripped)
          << literalString->getSourceRange()
          << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
          << CodeModificationHint::CreateInsertion(lex->getLocStart(),
                                                   "strcmp(")
          << CodeModificationHint::CreateInsertion(
                                         PP.getLocForEndOfToken(rex->getLocEnd()),
                                         resultComparison));
    }
  }

  // The result of comparisons is 'bool' in C++, 'int' in C.
  QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;

  if (isRelational) {
    if (lType->isRealType() && rType->isRealType())
      return ResultTy;
  } else {
    // Check for comparisons of floating point operands using != and ==.
    if (lType->isFloatingType() && rType->isFloatingType())
      CheckFloatComparison(Loc,lex,rex);

    if (lType->isArithmeticType() && rType->isArithmeticType())
      return ResultTy;
  }

  bool LHSIsNull = lex->isNullPointerConstant(Context, 
                                              Expr::NPC_ValueDependentIsNull);
  bool RHSIsNull = rex->isNullPointerConstant(Context, 
                                              Expr::NPC_ValueDependentIsNull);

  // All of the following pointer related warnings are GCC extensions, except
  // when handling null pointer constants. One day, we can consider making them
  // errors (when -pedantic-errors is enabled).
  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
    QualType LCanPointeeTy =
      Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
    QualType RCanPointeeTy =
      Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());

    if (getLangOptions().CPlusPlus) {
      if (LCanPointeeTy == RCanPointeeTy)
        return ResultTy;
      if (!isRelational &&
          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
        // Valid unless comparison between non-null pointer and function pointer
        // This is a gcc extension compatibility comparison.
        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
            && !LHSIsNull && !RHSIsNull) {
          Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
          ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
          return ResultTy;
        }
      }
      // C++ [expr.rel]p2:
      //   [...] Pointer conversions (4.10) and qualification
      //   conversions (4.4) are performed on pointer operands (or on
      //   a pointer operand and a null pointer constant) to bring
      //   them to their composite pointer type. [...]
      //
      // C++ [expr.eq]p1 uses the same notion for (in)equality
      // comparisons of pointers.
      bool NonStandardCompositeType = false;
      QualType T = FindCompositePointerType(lex, rex,
                              isSFINAEContext()? 0 : &NonStandardCompositeType);
      if (T.isNull()) {
        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
        return QualType();
      } else if (NonStandardCompositeType) {
        Diag(Loc, 
             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
          << lType << rType << T 
          << lex->getSourceRange() << rex->getSourceRange();
      }

      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
      return ResultTy;
    }
    // C99 6.5.9p2 and C99 6.5.8p2
    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
                                   RCanPointeeTy.getUnqualifiedType())) {
      // Valid unless a relational comparison of function pointers
      if (isRelational && LCanPointeeTy->isFunctionType()) {
        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
      }
    } else if (!isRelational &&
               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
      // Valid unless comparison between non-null pointer and function pointer
      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
          && !LHSIsNull && !RHSIsNull) {
        Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
      }
    } else {
      // Invalid
      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
    }
    if (LCanPointeeTy != RCanPointeeTy)
      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
    return ResultTy;
  }

  if (getLangOptions().CPlusPlus) {
    // Comparison of pointers with null pointer constants and equality
    // comparisons of member pointers to null pointer constants.
    if (RHSIsNull &&
        (lType->isPointerType() ||
         (!isRelational && lType->isMemberPointerType()))) {
      ImpCastExprToType(rex, lType, CastExpr::CK_NullToMemberPointer);
      return ResultTy;
    }
    if (LHSIsNull &&
        (rType->isPointerType() ||
         (!isRelational && rType->isMemberPointerType()))) {
      ImpCastExprToType(lex, rType, CastExpr::CK_NullToMemberPointer);
      return ResultTy;
    }

    // Comparison of member pointers.
    if (!isRelational &&
        lType->isMemberPointerType() && rType->isMemberPointerType()) {
      // C++ [expr.eq]p2:
      //   In addition, pointers to members can be compared, or a pointer to
      //   member and a null pointer constant. Pointer to member conversions
      //   (4.11) and qualification conversions (4.4) are performed to bring
      //   them to a common type. If one operand is a null pointer constant,
      //   the common type is the type of the other operand. Otherwise, the
      //   common type is a pointer to member type similar (4.4) to the type
      //   of one of the operands, with a cv-qualification signature (4.4)
      //   that is the union of the cv-qualification signatures of the operand
      //   types.
      bool NonStandardCompositeType = false;
      QualType T = FindCompositePointerType(lex, rex,
                              isSFINAEContext()? 0 : &NonStandardCompositeType);
      if (T.isNull()) {
        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
        return QualType();
      } else if (NonStandardCompositeType) {
        Diag(Loc, 
             diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
          << lType << rType << T 
          << lex->getSourceRange() << rex->getSourceRange();
      }

      ImpCastExprToType(lex, T, CastExpr::CK_BitCast);
      ImpCastExprToType(rex, T, CastExpr::CK_BitCast);
      return ResultTy;
    }

    // Comparison of nullptr_t with itself.
    if (lType->isNullPtrType() && rType->isNullPtrType())
      return ResultTy;
  }

  // Handle block pointer types.
  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
    QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
    QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();

    if (!LHSIsNull && !RHSIsNull &&
        !Context.typesAreCompatible(lpointee, rpointee)) {
      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
    }
    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
    return ResultTy;
  }
  // Allow block pointers to be compared with null pointer constants.
  if (!isRelational
      && ((lType->isBlockPointerType() && rType->isPointerType())
          || (lType->isPointerType() && rType->isBlockPointerType()))) {
    if (!LHSIsNull && !RHSIsNull) {
      if (!((rType->isPointerType() && rType->getAs<PointerType>()
             ->getPointeeType()->isVoidType())
            || (lType->isPointerType() && lType->getAs<PointerType>()
                ->getPointeeType()->isVoidType())))
        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
    }
    ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
    return ResultTy;
  }

  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
    if (lType->isPointerType() || rType->isPointerType()) {
      const PointerType *LPT = lType->getAs<PointerType>();
      const PointerType *RPT = rType->getAs<PointerType>();
      bool LPtrToVoid = LPT ?
        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
      bool RPtrToVoid = RPT ?
        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;

      if (!LPtrToVoid && !RPtrToVoid &&
          !Context.typesAreCompatible(lType, rType)) {
        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
      }
      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
      return ResultTy;
    }
    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
      if (!Context.areComparableObjCPointerTypes(lType, rType))
        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
      ImpCastExprToType(rex, lType, CastExpr::CK_BitCast);
      return ResultTy;
    }
  }
  if (lType->isAnyPointerType() && rType->isIntegerType()) {
    unsigned DiagID = 0;
    if (RHSIsNull) {
      if (isRelational)
        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
    } else if (isRelational)
      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
    else
      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;

    if (DiagID) {
      Diag(Loc, DiagID)
        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
    }
    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
    return ResultTy;
  }
  if (lType->isIntegerType() && rType->isAnyPointerType()) {
    unsigned DiagID = 0;
    if (LHSIsNull) {
      if (isRelational)
        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
    } else if (isRelational)
      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
    else
      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;

    if (DiagID) {
      Diag(Loc, DiagID)
        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
    }
    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
    return ResultTy;
  }
  // Handle block pointers.
  if (!isRelational && RHSIsNull
      && lType->isBlockPointerType() && rType->isIntegerType()) {
    ImpCastExprToType(rex, lType, CastExpr::CK_IntegralToPointer);
    return ResultTy;
  }
  if (!isRelational && LHSIsNull
      && lType->isIntegerType() && rType->isBlockPointerType()) {
    ImpCastExprToType(lex, rType, CastExpr::CK_IntegralToPointer);
    return ResultTy;
  }
  return InvalidOperands(Loc, lex, rex);
}

/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types.  Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
                                          SourceLocation Loc,
                                          bool isRelational) {
  // Check to make sure we're operating on vectors of the same type and width,
  // Allowing one side to be a scalar of element type.
  QualType vType = CheckVectorOperands(Loc, lex, rex);
  if (vType.isNull())
    return vType;

  QualType lType = lex->getType();
  QualType rType = rex->getType();

  // For non-floating point types, check for self-comparisons of the form
  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
  // often indicate logic errors in the program.
  if (!lType->isFloatingType()) {
    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
        if (DRL->getDecl() == DRR->getDecl())
          DiagRuntimeBehavior(Loc, PDiag(diag::warn_selfcomparison));
  }

  // Check for comparisons of floating point operands using != and ==.
  if (!isRelational && lType->isFloatingType()) {
    assert (rType->isFloatingType());
    CheckFloatComparison(Loc,lex,rex);
  }

  // Return the type for the comparison, which is the same as vector type for
  // integer vectors, or an integer type of identical size and number of
  // elements for floating point vectors.
  if (lType->isIntegerType())
    return lType;

  const VectorType *VTy = lType->getAs<VectorType>();
  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
  if (TypeSize == Context.getTypeSize(Context.IntTy))
    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
  if (TypeSize == Context.getTypeSize(Context.LongTy))
    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());

  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
         "Unhandled vector element size in vector compare");
  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
}

inline QualType Sema::CheckBitwiseOperands(
  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
    return CheckVectorOperands(Loc, lex, rex);

  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);

  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
    return compType;
  return InvalidOperands(Loc, lex, rex);
}

inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
  Expr *&lex, Expr *&rex, SourceLocation Loc) {
  if (!Context.getLangOptions().CPlusPlus) {
    UsualUnaryConversions(lex);
    UsualUnaryConversions(rex);

    if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
      return InvalidOperands(Loc, lex, rex);
    
    return Context.IntTy;
  }
  
  // C++ [expr.log.and]p1
  // C++ [expr.log.or]p1
  // The operands are both implicitly converted to type bool (clause 4).
  StandardConversionSequence LHS;
  if (!IsStandardConversion(lex, Context.BoolTy,
                            /*InOverloadResolution=*/false, LHS))
    return InvalidOperands(Loc, lex, rex);

  if (PerformImplicitConversion(lex, Context.BoolTy, LHS,
                                AA_Passing, /*IgnoreBaseAccess=*/false))
    return InvalidOperands(Loc, lex, rex);
  
  StandardConversionSequence RHS;
  if (!IsStandardConversion(rex, Context.BoolTy,
                            /*InOverloadResolution=*/false, RHS))
    return InvalidOperands(Loc, lex, rex);
  
  if (PerformImplicitConversion(rex, Context.BoolTy, RHS,
                                AA_Passing, /*IgnoreBaseAccess=*/false))
    return InvalidOperands(Loc, lex, rex);
  
  // C++ [expr.log.and]p2
  // C++ [expr.log.or]p2
  // The result is a bool.
  return Context.BoolTy;
}

/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
/// is a read-only property; return true if so. A readonly property expression
/// depends on various declarations and thus must be treated specially.
///
static bool IsReadonlyProperty(Expr *E, Sema &S) {
  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
      QualType BaseType = PropExpr->getBase()->getType();
      if (const ObjCObjectPointerType *OPT =
            BaseType->getAsObjCInterfacePointerType())
        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
          if (S.isPropertyReadonly(PDecl, IFace))
            return true;
    }
  }
  return false;
}

/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
/// emit an error and return true.  If so, return false.
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
  SourceLocation OrigLoc = Loc;
  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
                                                              &Loc);
  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
    IsLV = Expr::MLV_ReadonlyProperty;
  if (IsLV == Expr::MLV_Valid)
    return false;

  unsigned Diag = 0;
  bool NeedType = false;
  switch (IsLV) { // C99 6.5.16p2
  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
  case Expr::MLV_ArrayType:
    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
    NeedType = true;
    break;
  case Expr::MLV_NotObjectType:
    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
    NeedType = true;
    break;
  case Expr::MLV_LValueCast:
    Diag = diag::err_typecheck_lvalue_casts_not_supported;
    break;
  case Expr::MLV_Valid:
    llvm_unreachable("did not take early return for MLV_Valid");
  case Expr::MLV_InvalidExpression:
  case Expr::MLV_MemberFunction:
  case Expr::MLV_ClassTemporary:
    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
    break;
  case Expr::MLV_IncompleteType:
  case Expr::MLV_IncompleteVoidType:
    return S.RequireCompleteType(Loc, E->getType(),
                PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
                  << E->getSourceRange());
  case Expr::MLV_DuplicateVectorComponents:
    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
    break;
  case Expr::MLV_NotBlockQualified:
    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
    break;
  case Expr::MLV_ReadonlyProperty:
    Diag = diag::error_readonly_property_assignment;
    break;
  case Expr::MLV_NoSetterProperty:
    Diag = diag::error_nosetter_property_assignment;
    break;
  case Expr::MLV_SubObjCPropertySetting:
    Diag = diag::error_no_subobject_property_setting;
    break;
  case Expr::MLV_SubObjCPropertyGetterSetting:
    Diag = diag::error_no_subobject_property_getter_setting;
    break;
  }

  SourceRange Assign;
  if (Loc != OrigLoc)
    Assign = SourceRange(OrigLoc, OrigLoc);
  if (NeedType)
    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
  else
    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
  return true;
}



// C99 6.5.16.1
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
                                       SourceLocation Loc,
                                       QualType CompoundType) {
  // Verify that LHS is a modifiable lvalue, and emit error if not.
  if (CheckForModifiableLvalue(LHS, Loc, *this))
    return QualType();

  QualType LHSType = LHS->getType();
  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;

  AssignConvertType ConvTy;
  if (CompoundType.isNull()) {
    // Simple assignment "x = y".
    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
    // Special case of NSObject attributes on c-style pointer types.
    if (ConvTy == IncompatiblePointer &&
        ((Context.isObjCNSObjectType(LHSType) &&
          RHSType->isObjCObjectPointerType()) ||
         (Context.isObjCNSObjectType(RHSType) &&
          LHSType->isObjCObjectPointerType())))
      ConvTy = Compatible;

    // If the RHS is a unary plus or minus, check to see if they = and + are
    // right next to each other.  If so, the user may have typo'd "x =+ 4"
    // instead of "x += 4".
    Expr *RHSCheck = RHS;
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
      RHSCheck = ICE->getSubExpr();
    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
      if ((UO->getOpcode() == UnaryOperator::Plus ||
           UO->getOpcode() == UnaryOperator::Minus) &&
          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
          // Only if the two operators are exactly adjacent.
          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
          // And there is a space or other character before the subexpr of the
          // unary +/-.  We don't want to warn on "x=-1".
          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
          UO->getSubExpr()->getLocStart().isFileID()) {
        Diag(Loc, diag::warn_not_compound_assign)
          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
      }
    }
  } else {
    // Compound assignment "x += y"
    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
  }

  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
                               RHS, AA_Assigning))
    return QualType();

  // C99 6.5.16p3: The type of an assignment expression is the type of the
  // left operand unless the left operand has qualified type, in which case
  // it is the unqualified version of the type of the left operand.
  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
  // is converted to the type of the assignment expression (above).
  // C++ 5.17p1: the type of the assignment expression is that of its left
  // operand.
  return LHSType.getUnqualifiedType();
}

// C99 6.5.17
QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
  // C++ does not perform this conversion (C++ [expr.comma]p1).
  if (!getLangOptions().CPlusPlus)
    DefaultFunctionArrayLvalueConversion(RHS);

  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
  // incomplete in C++).

  return RHS->getType();
}

/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
                                              bool isInc) {
  if (Op->isTypeDependent())
    return Context.DependentTy;

  QualType ResType = Op->getType();
  assert(!ResType.isNull() && "no type for increment/decrement expression");

  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
    // Decrement of bool is not allowed.
    if (!isInc) {
      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
      return QualType();
    }
    // Increment of bool sets it to true, but is deprecated.
    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
  } else if (ResType->isRealType()) {
    // OK!
  } else if (ResType->isAnyPointerType()) {
    QualType PointeeTy = ResType->getPointeeType();

    // C99 6.5.2.4p2, 6.5.6p2
    if (PointeeTy->isVoidType()) {
      if (getLangOptions().CPlusPlus) {
        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
          << Op->getSourceRange();
        return QualType();
      }

      // Pointer to void is a GNU extension in C.
      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
    } else if (PointeeTy->isFunctionType()) {
      if (getLangOptions().CPlusPlus) {
        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
          << Op->getType() << Op->getSourceRange();
        return QualType();
      }

      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
        << ResType << Op->getSourceRange();
    } else if (RequireCompleteType(OpLoc, PointeeTy,
                           PDiag(diag::err_typecheck_arithmetic_incomplete_type)
                             << Op->getSourceRange()
                             << ResType))
      return QualType();
    // Diagnose bad cases where we step over interface counts.
    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
        << PointeeTy << Op->getSourceRange();
      return QualType();
    }
  } else if (ResType->isAnyComplexType()) {
    // C99 does not support ++/-- on complex types, we allow as an extension.
    Diag(OpLoc, diag::ext_integer_increment_complex)
      << ResType << Op->getSourceRange();
  } else {
    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
      << ResType << int(isInc) << Op->getSourceRange();
    return QualType();
  }
  // At this point, we know we have a real, complex or pointer type.
  // Now make sure the operand is a modifiable lvalue.
  if (CheckForModifiableLvalue(Op, OpLoc, *this))
    return QualType();
  return ResType;
}

/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
///  - &(x) => x
///  - &*****f => f for f a function designator.
///  - &s.xx => s
///  - &s.zz[1].yy -> s, if zz is an array
///  - *(x + 1) -> x, if x is an array
///  - &"123"[2] -> 0
///  - & __real__ x -> x
static NamedDecl *getPrimaryDecl(Expr *E) {
  switch (E->getStmtClass()) {
  case Stmt::DeclRefExprClass:
    return cast<DeclRefExpr>(E)->getDecl();
  case Stmt::MemberExprClass:
    // If this is an arrow operator, the address is an offset from
    // the base's value, so the object the base refers to is
    // irrelevant.
    if (cast<MemberExpr>(E)->isArrow())
      return 0;
    // Otherwise, the expression refers to a part of the base
    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
  case Stmt::ArraySubscriptExprClass: {
    // FIXME: This code shouldn't be necessary!  We should catch the implicit
    // promotion of register arrays earlier.
    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
      if (ICE->getSubExpr()->getType()->isArrayType())
        return getPrimaryDecl(ICE->getSubExpr());
    }
    return 0;
  }
  case Stmt::UnaryOperatorClass: {
    UnaryOperator *UO = cast<UnaryOperator>(E);

    switch(UO->getOpcode()) {
    case UnaryOperator::Real:
    case UnaryOperator::Imag:
    case UnaryOperator::Extension:
      return getPrimaryDecl(UO->getSubExpr());
    default:
      return 0;
    }
  }
  case Stmt::ParenExprClass:
    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
  case Stmt::ImplicitCastExprClass:
    // If the result of an implicit cast is an l-value, we care about
    // the sub-expression; otherwise, the result here doesn't matter.
    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
  default:
    return 0;
  }
}

/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
  // Make sure to ignore parentheses in subsequent checks
  op = op->IgnoreParens();

  if (op->isTypeDependent())
    return Context.DependentTy;

  if (getLangOptions().C99) {
    // Implement C99-only parts of addressof rules.
    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
      if (uOp->getOpcode() == UnaryOperator::Deref)
        // Per C99 6.5.3.2, the address of a deref always returns a valid result
        // (assuming the deref expression is valid).
        return uOp->getSubExpr()->getType();
    }
    // Technically, there should be a check for array subscript
    // expressions here, but the result of one is always an lvalue anyway.
  }
  NamedDecl *dcl = getPrimaryDecl(op);
  Expr::isLvalueResult lval = op->isLvalue(Context);

  MemberExpr *ME = dyn_cast<MemberExpr>(op);
  if (lval == Expr::LV_MemberFunction && ME &&
      isa<CXXMethodDecl>(ME->getMemberDecl())) {
    ValueDecl *dcl = cast<MemberExpr>(op)->getMemberDecl();
    // &f where f is a member of the current object, or &o.f, or &p->f
    // All these are not allowed, and we need to catch them before the dcl
    // branch of the if, below.
    Diag(OpLoc, diag::err_unqualified_pointer_member_function)
        << dcl;
    // FIXME: Improve this diagnostic and provide a fixit.

    // Now recover by acting as if the function had been accessed qualified.
    return Context.getMemberPointerType(op->getType(),
                Context.getTypeDeclType(cast<RecordDecl>(dcl->getDeclContext()))
                       .getTypePtr());
  } else if (lval == Expr::LV_ClassTemporary) {
    Diag(OpLoc, isSFINAEContext()? diag::err_typecheck_addrof_class_temporary
                                 : diag::ext_typecheck_addrof_class_temporary)
      << op->getType() << op->getSourceRange();
    if (isSFINAEContext())
      return QualType();
  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
    // C99 6.5.3.2p1
    // The operand must be either an l-value or a function designator
    if (!op->getType()->isFunctionType()) {
      // FIXME: emit more specific diag...
      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
        << op->getSourceRange();
      return QualType();
    }
  } else if (op->getBitField()) { // C99 6.5.3.2p1
    // The operand cannot be a bit-field
    Diag(OpLoc, diag::err_typecheck_address_of)
      << "bit-field" << op->getSourceRange();
        return QualType();
  } else if (op->refersToVectorElement()) {
    // The operand cannot be an element of a vector
    Diag(OpLoc, diag::err_typecheck_address_of)
      << "vector element" << op->getSourceRange();
    return QualType();
  } else if (isa<ObjCPropertyRefExpr>(op)) {
    // cannot take address of a property expression.
    Diag(OpLoc, diag::err_typecheck_address_of)
      << "property expression" << op->getSourceRange();
    return QualType();
  } else if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(op)) {
    // FIXME: Can LHS ever be null here?
    if (!CheckAddressOfOperand(CO->getTrueExpr(), OpLoc).isNull())
      return CheckAddressOfOperand(CO->getFalseExpr(), OpLoc);
  } else if (isa<UnresolvedLookupExpr>(op)) {
    return Context.OverloadTy;
  } else if (dcl) { // C99 6.5.3.2p1
    // We have an lvalue with a decl. Make sure the decl is not declared
    // with the register storage-class specifier.
    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
      if (vd->getStorageClass() == VarDecl::Register) {
        Diag(OpLoc, diag::err_typecheck_address_of)
          << "register variable" << op->getSourceRange();
        return QualType();
      }
    } else if (isa<FunctionTemplateDecl>(dcl)) {
      return Context.OverloadTy;
    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
      // Okay: we can take the address of a field.
      // Could be a pointer to member, though, if there is an explicit
      // scope qualifier for the class.
      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
        DeclContext *Ctx = dcl->getDeclContext();
        if (Ctx && Ctx->isRecord()) {
          if (FD->getType()->isReferenceType()) {
            Diag(OpLoc,
                 diag::err_cannot_form_pointer_to_member_of_reference_type)
              << FD->getDeclName() << FD->getType();
            return QualType();
          }

          return Context.getMemberPointerType(op->getType(),
                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
        }
      }
    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
      // Okay: we can take the address of a function.
      // As above.
      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
          MD->isInstance())
        return Context.getMemberPointerType(op->getType(),
              Context.getTypeDeclType(MD->getParent()).getTypePtr());
    } else if (!isa<FunctionDecl>(dcl))
      assert(0 && "Unknown/unexpected decl type");
  }

  if (lval == Expr::LV_IncompleteVoidType) {
    // Taking the address of a void variable is technically illegal, but we
    // allow it in cases which are otherwise valid.
    // Example: "extern void x; void* y = &x;".
    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
  }

  // If the operand has type "type", the result has type "pointer to type".
  return Context.getPointerType(op->getType());
}

QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
  if (Op->isTypeDependent())
    return Context.DependentTy;

  UsualUnaryConversions(Op);
  QualType Ty = Op->getType();

  // Note that per both C89 and C99, this is always legal, even if ptype is an
  // incomplete type or void.  It would be possible to warn about dereferencing
  // a void pointer, but it's completely well-defined, and such a warning is
  // unlikely to catch any mistakes.
  if (const PointerType *PT = Ty->getAs<PointerType>())
    return PT->getPointeeType();

  if (const ObjCObjectPointerType *OPT = Ty->getAs<ObjCObjectPointerType>())
    return OPT->getPointeeType();

  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
    << Ty << Op->getSourceRange();
  return QualType();
}

static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
  tok::TokenKind Kind) {
  BinaryOperator::Opcode Opc;
  switch (Kind) {
  default: assert(0 && "Unknown binop!");
  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
  case tok::star:                 Opc = BinaryOperator::Mul; break;
  case tok::slash:                Opc = BinaryOperator::Div; break;
  case tok::percent:              Opc = BinaryOperator::Rem; break;
  case tok::plus:                 Opc = BinaryOperator::Add; break;
  case tok::minus:                Opc = BinaryOperator::Sub; break;
  case tok::lessless:             Opc = BinaryOperator::Shl; break;
  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
  case tok::lessequal:            Opc = BinaryOperator::LE; break;
  case tok::less:                 Opc = BinaryOperator::LT; break;
  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
  case tok::greater:              Opc = BinaryOperator::GT; break;
  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
  case tok::amp:                  Opc = BinaryOperator::And; break;
  case tok::caret:                Opc = BinaryOperator::Xor; break;
  case tok::pipe:                 Opc = BinaryOperator::Or; break;
  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
  case tok::equal:                Opc = BinaryOperator::Assign; break;
  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
  case tok::comma:                Opc = BinaryOperator::Comma; break;
  }
  return Opc;
}

static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
  tok::TokenKind Kind) {
  UnaryOperator::Opcode Opc;
  switch (Kind) {
  default: assert(0 && "Unknown unary op!");
  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
  case tok::star:         Opc = UnaryOperator::Deref; break;
  case tok::plus:         Opc = UnaryOperator::Plus; break;
  case tok::minus:        Opc = UnaryOperator::Minus; break;
  case tok::tilde:        Opc = UnaryOperator::Not; break;
  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
  case tok::kw___real:    Opc = UnaryOperator::Real; break;
  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
  }
  return Opc;
}

/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
                                                  unsigned Op,
                                                  Expr *lhs, Expr *rhs) {
  QualType ResultTy;     // Result type of the binary operator.
  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
  // The following two variables are used for compound assignment operators
  QualType CompLHSTy;    // Type of LHS after promotions for computation
  QualType CompResultTy; // Type of computation result

  switch (Opc) {
  case BinaryOperator::Assign:
    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
    break;
  case BinaryOperator::PtrMemD:
  case BinaryOperator::PtrMemI:
    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
                                            Opc == BinaryOperator::PtrMemI);
    break;
  case BinaryOperator::Mul:
  case BinaryOperator::Div:
    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
                                           Opc == BinaryOperator::Div);
    break;
  case BinaryOperator::Rem:
    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
    break;
  case BinaryOperator::Add:
    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
    break;
  case BinaryOperator::Sub:
    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
    break;
  case BinaryOperator::Shl:
  case BinaryOperator::Shr:
    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
    break;
  case BinaryOperator::LE:
  case BinaryOperator::LT:
  case BinaryOperator::GE:
  case BinaryOperator::GT:
    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
    break;
  case BinaryOperator::EQ:
  case BinaryOperator::NE:
    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
    break;
  case BinaryOperator::And:
  case BinaryOperator::Xor:
  case BinaryOperator::Or:
    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
    break;
  case BinaryOperator::LAnd:
  case BinaryOperator::LOr:
    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
    break;
  case BinaryOperator::MulAssign:
  case BinaryOperator::DivAssign:
    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
                                              Opc == BinaryOperator::DivAssign);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
    break;
  case BinaryOperator::RemAssign:
    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
    break;
  case BinaryOperator::AddAssign:
    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
    if (!CompResultTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
    break;
  case BinaryOperator::SubAssign:
    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
    if (!CompResultTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
    break;
  case BinaryOperator::ShlAssign:
  case BinaryOperator::ShrAssign:
    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
    break;
  case BinaryOperator::AndAssign:
  case BinaryOperator::XorAssign:
  case BinaryOperator::OrAssign:
    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull())
      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
    break;
  case BinaryOperator::Comma:
    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
    break;
  }
  if (ResultTy.isNull())
    return ExprError();
  if (CompResultTy.isNull())
    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
  else
    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
                                                      CompLHSTy, CompResultTy,
                                                      OpLoc));
}

/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
/// ParenRange in parentheses.
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
                               const PartialDiagnostic &PD,
                               SourceRange ParenRange,
                      const PartialDiagnostic &SecondPD = PartialDiagnostic(0),
                               SourceRange SecondParenRange = SourceRange()) {
  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
  if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
    // We can't display the parentheses, so just dig the
    // warning/error and return.
    Self.Diag(Loc, PD);
    return;
  }

  Self.Diag(Loc, PD)
    << CodeModificationHint::CreateInsertion(ParenRange.getBegin(), "(")
    << CodeModificationHint::CreateInsertion(EndLoc, ")");
  
  if (!SecondPD.getDiagID())
    return;
  
  EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
  if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
    // We can't display the parentheses, so just dig the
    // warning/error and return.
    Self.Diag(Loc, SecondPD);
    return;
  }
  
  Self.Diag(Loc, SecondPD)
    << CodeModificationHint::CreateInsertion(SecondParenRange.getBegin(), "(")
    << CodeModificationHint::CreateInsertion(EndLoc, ")");
}

/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
/// operators are mixed in a way that suggests that the programmer forgot that
/// comparison operators have higher precedence. The most typical example of
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperator::Opcode Opc,
                                      SourceLocation OpLoc,Expr *lhs,Expr *rhs){
  typedef BinaryOperator BinOp;
  BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
                rhsopc = static_cast<BinOp::Opcode>(-1);
  if (BinOp *BO = dyn_cast<BinOp>(lhs))
    lhsopc = BO->getOpcode();
  if (BinOp *BO = dyn_cast<BinOp>(rhs))
    rhsopc = BO->getOpcode();

  // Subs are not binary operators.
  if (lhsopc == -1 && rhsopc == -1)
    return;

  // Bitwise operations are sometimes used as eager logical ops.
  // Don't diagnose this.
  if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
      (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
    return;

  if (BinOp::isComparisonOp(lhsopc))
    SuggestParentheses(Self, OpLoc,
      PDiag(diag::warn_precedence_bitwise_rel)
          << SourceRange(lhs->getLocStart(), OpLoc)
          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
      lhs->getSourceRange(),
      PDiag(diag::note_precedence_bitwise_first)
          << BinOp::getOpcodeStr(Opc),
      SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
  else if (BinOp::isComparisonOp(rhsopc))
    SuggestParentheses(Self, OpLoc,
      PDiag(diag::warn_precedence_bitwise_rel)
          << SourceRange(OpLoc, rhs->getLocEnd())
          << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
      rhs->getSourceRange(),
      PDiag(diag::note_precedence_bitwise_first)
        << BinOp::getOpcodeStr(Opc),
      SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()));
}

/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
/// precedence. This currently diagnoses only "arg1 'bitwise' arg2 'eq' arg3".
/// But it could also warn about arg1 && arg2 || arg3, as GCC 4.3+ does.
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperator::Opcode Opc,
                                    SourceLocation OpLoc, Expr *lhs, Expr *rhs){
  if (BinaryOperator::isBitwiseOp(Opc))
    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
}

// Binary Operators.  'Tok' is the token for the operator.
Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
                                          tok::TokenKind Kind,
                                          ExprArg LHS, ExprArg RHS) {
  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();

  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
  assert((rhs != 0) && "ActOnBinOp(): missing right expression");

  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);

  return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
}

Action::OwningExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
                                          BinaryOperator::Opcode Opc,
                                          Expr *lhs, Expr *rhs) {
  if (getLangOptions().CPlusPlus &&
      (lhs->getType()->isOverloadableType() ||
       rhs->getType()->isOverloadableType())) {
    // Find all of the overloaded operators visible from this
    // point. We perform both an operator-name lookup from the local
    // scope and an argument-dependent lookup based on the types of
    // the arguments.
    UnresolvedSet<16> Functions;
    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
    if (S && OverOp != OO_None)
      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
                                   Functions);
    
    // Build the (potentially-overloaded, potentially-dependent)
    // binary operation.
    return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
  }
  
  // Build a built-in binary operation.
  return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
}

Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
                                                    unsigned OpcIn,
                                                    ExprArg InputArg) {
  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);

  // FIXME: Input is modified below, but InputArg is not updated appropriately.
  Expr *Input = (Expr *)InputArg.get();
  QualType resultType;
  switch (Opc) {
  case UnaryOperator::OffsetOf:
    assert(false && "Invalid unary operator");
    break;

  case UnaryOperator::PreInc:
  case UnaryOperator::PreDec:
  case UnaryOperator::PostInc:
  case UnaryOperator::PostDec:
    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
                                                Opc == UnaryOperator::PreInc ||
                                                Opc == UnaryOperator::PostInc);
    break;
  case UnaryOperator::AddrOf:
    resultType = CheckAddressOfOperand(Input, OpLoc);
    break;
  case UnaryOperator::Deref:
    DefaultFunctionArrayLvalueConversion(Input);
    resultType = CheckIndirectionOperand(Input, OpLoc);
    break;
  case UnaryOperator::Plus:
  case UnaryOperator::Minus:
    UsualUnaryConversions(Input);
    resultType = Input->getType();
    if (resultType->isDependentType())
      break;
    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
      break;
    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
             resultType->isEnumeralType())
      break;
    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
             Opc == UnaryOperator::Plus &&
             resultType->isPointerType())
      break;

    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
      << resultType << Input->getSourceRange());
  case UnaryOperator::Not: // bitwise complement
    UsualUnaryConversions(Input);
    resultType = Input->getType();
    if (resultType->isDependentType())
      break;
    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
    if (resultType->isComplexType() || resultType->isComplexIntegerType())
      // C99 does not support '~' for complex conjugation.
      Diag(OpLoc, diag::ext_integer_complement_complex)
        << resultType << Input->getSourceRange();
    else if (!resultType->isIntegerType())
      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
        << resultType << Input->getSourceRange());
    break;
  case UnaryOperator::LNot: // logical negation
    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
    DefaultFunctionArrayLvalueConversion(Input);
    resultType = Input->getType();
    if (resultType->isDependentType())
      break;
    if (!resultType->isScalarType()) // C99 6.5.3.3p1
      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
        << resultType << Input->getSourceRange());
    // LNot always has type int. C99 6.5.3.3p5.
    // In C++, it's bool. C++ 5.3.1p8
    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
    break;
  case UnaryOperator::Real:
  case UnaryOperator::Imag:
    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
    break;
  case UnaryOperator::Extension:
    resultType = Input->getType();
    break;
  }
  if (resultType.isNull())
    return ExprError();

  InputArg.release();
  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
}

Action::OwningExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
                                            UnaryOperator::Opcode Opc,
                                            ExprArg input) {
  Expr *Input = (Expr*)input.get();
  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
      Opc != UnaryOperator::Extension) {
    // Find all of the overloaded operators visible from this
    // point. We perform both an operator-name lookup from the local
    // scope and an argument-dependent lookup based on the types of
    // the arguments.
    UnresolvedSet<16> Functions;
    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
    if (S && OverOp != OO_None)
      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
                                   Functions);
    
    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
  }
  
  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
}

// Unary Operators.  'Tok' is the token for the operator.
Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
                                            tok::TokenKind Op, ExprArg input) {
  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), move(input));
}

/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
                                            SourceLocation LabLoc,
                                            IdentifierInfo *LabelII) {
  // Look up the record for this label identifier.
  LabelStmt *&LabelDecl = getLabelMap()[LabelII];

  // If we haven't seen this label yet, create a forward reference. It
  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
  if (LabelDecl == 0)
    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);

  // Create the AST node.  The address of a label always has type 'void*'.
  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
                                       Context.getPointerType(Context.VoidTy)));
}

Sema::OwningExprResult
Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
                    SourceLocation RPLoc) { // "({..})"
  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);

  bool isFileScope
    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
  if (isFileScope)
    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));

  // FIXME: there are a variety of strange constraints to enforce here, for
  // example, it is not possible to goto into a stmt expression apparently.
  // More semantic analysis is needed.

  // If there are sub stmts in the compound stmt, take the type of the last one
  // as the type of the stmtexpr.
  QualType Ty = Context.VoidTy;

  if (!Compound->body_empty()) {
    Stmt *LastStmt = Compound->body_back();
    // If LastStmt is a label, skip down through into the body.
    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
      LastStmt = Label->getSubStmt();

    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
      Ty = LastExpr->getType();
  }

  // FIXME: Check that expression type is complete/non-abstract; statement
  // expressions are not lvalues.

  substmt.release();
  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
}

Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
                                                  SourceLocation BuiltinLoc,
                                                  SourceLocation TypeLoc,
                                                  TypeTy *argty,
                                                  OffsetOfComponent *CompPtr,
                                                  unsigned NumComponents,
                                                  SourceLocation RPLoc) {
  // FIXME: This function leaks all expressions in the offset components on
  // error.
  // FIXME: Preserve type source info.
  QualType ArgTy = GetTypeFromParser(argty);
  assert(!ArgTy.isNull() && "Missing type argument!");

  bool Dependent = ArgTy->isDependentType();

  // We must have at least one component that refers to the type, and the first
  // one is known to be a field designator.  Verify that the ArgTy represents
  // a struct/union/class.
  if (!Dependent && !ArgTy->isRecordType())
    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);

  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
  // with an incomplete type would be illegal.

  // Otherwise, create a null pointer as the base, and iteratively process
  // the offsetof designators.
  QualType ArgTyPtr = Context.getPointerType(ArgTy);
  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
                                    ArgTy, SourceLocation());

  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
  // GCC extension, diagnose them.
  // FIXME: This diagnostic isn't actually visible because the location is in
  // a system header!
  if (NumComponents != 1)
    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);

  if (!Dependent) {
    bool DidWarnAboutNonPOD = false;

    if (RequireCompleteType(TypeLoc, Res->getType(),
                            diag::err_offsetof_incomplete_type))
      return ExprError();

    // FIXME: Dependent case loses a lot of information here. And probably
    // leaks like a sieve.
    for (unsigned i = 0; i != NumComponents; ++i) {
      const OffsetOfComponent &OC = CompPtr[i];
      if (OC.isBrackets) {
        // Offset of an array sub-field.  TODO: Should we allow vector elements?
        const ArrayType *AT = Context.getAsArrayType(Res->getType());
        if (!AT) {
          Res->Destroy(Context);
          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
            << Res->getType());
        }

        // FIXME: C++: Verify that operator[] isn't overloaded.

        // Promote the array so it looks more like a normal array subscript
        // expression.
        DefaultFunctionArrayLvalueConversion(Res);

        // C99 6.5.2.1p1
        Expr *Idx = static_cast<Expr*>(OC.U.E);
        // FIXME: Leaks Res
        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
          return ExprError(Diag(Idx->getLocStart(),
                                diag::err_typecheck_subscript_not_integer)
            << Idx->getSourceRange());

        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
                                               OC.LocEnd);
        continue;
      }

      const RecordType *RC = Res->getType()->getAs<RecordType>();
      if (!RC) {
        Res->Destroy(Context);
        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
          << Res->getType());
      }

      // Get the decl corresponding to this.
      RecordDecl *RD = RC->getDecl();
      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
        if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
            DiagRuntimeBehavior(BuiltinLoc,
                                PDiag(diag::warn_offsetof_non_pod_type)
                                  << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
                                  << Res->getType()))
          DidWarnAboutNonPOD = true;
      }

      LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
      LookupQualifiedName(R, RD);

      FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
      // FIXME: Leaks Res
      if (!MemberDecl)
        return ExprError(Diag(BuiltinLoc, diag::err_no_member)
         << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd));

      // FIXME: C++: Verify that MemberDecl isn't a static field.
      // FIXME: Verify that MemberDecl isn't a bitfield.
      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
        Res = BuildAnonymousStructUnionMemberReference(
            OC.LocEnd, MemberDecl, Res, OC.LocEnd).takeAs<Expr>();
      } else {
        PerformObjectMemberConversion(Res, /*Qualifier=*/0, MemberDecl);
        // MemberDecl->getType() doesn't get the right qualifiers, but it
        // doesn't matter here.
        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
                MemberDecl->getType().getNonReferenceType());
      }
    }
  }

  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
                                           Context.getSizeType(), BuiltinLoc));
}


Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
                                                      TypeTy *arg1,TypeTy *arg2,
                                                      SourceLocation RPLoc) {
  // FIXME: Preserve type source info.
  QualType argT1 = GetTypeFromParser(arg1);
  QualType argT2 = GetTypeFromParser(arg2);

  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");

  if (getLangOptions().CPlusPlus) {
    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
      << SourceRange(BuiltinLoc, RPLoc);
    return ExprError();
  }

  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
                                                 argT1, argT2, RPLoc));
}

Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
                                             ExprArg cond,
                                             ExprArg expr1, ExprArg expr2,
                                             SourceLocation RPLoc) {
  Expr *CondExpr = static_cast<Expr*>(cond.get());
  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
  Expr *RHSExpr = static_cast<Expr*>(expr2.get());

  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");

  QualType resType;
  bool ValueDependent = false;
  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
    resType = Context.DependentTy;
    ValueDependent = true;
  } else {
    // The conditional expression is required to be a constant expression.
    llvm::APSInt condEval(32);
    SourceLocation ExpLoc;
    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
      return ExprError(Diag(ExpLoc,
                       diag::err_typecheck_choose_expr_requires_constant)
        << CondExpr->getSourceRange());

    // If the condition is > zero, then the AST type is the same as the LSHExpr.
    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
    ValueDependent = condEval.getZExtValue() ? LHSExpr->isValueDependent()
                                             : RHSExpr->isValueDependent();
  }

  cond.release(); expr1.release(); expr2.release();
  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
                                        resType, RPLoc,
                                        resType->isDependentType(),
                                        ValueDependent));
}

//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//

/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
  PushBlockScope(BlockScope, Block);
  CurContext->addDecl(Block);
  PushDeclContext(BlockScope, Block);
}

void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
  BlockScopeInfo *CurBlock = getCurBlock();
  
  if (ParamInfo.getNumTypeObjects() == 0
      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);

    if (T->isArrayType()) {
      Diag(ParamInfo.getSourceRange().getBegin(),
           diag::err_block_returns_array);
      return;
    }

    // The parameter list is optional, if there was none, assume ().
    if (!T->isFunctionType())
      T = Context.getFunctionType(T, 0, 0, false, 0, false, false, 0, 0, false,
                                  CC_Default);

    CurBlock->hasPrototype = true;
    CurBlock->isVariadic = false;
    // Check for a valid sentinel attribute on this block.
    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
      Diag(ParamInfo.getAttributes()->getLoc(),
           diag::warn_attribute_sentinel_not_variadic) << 1;
      // FIXME: remove the attribute.
    }
    QualType RetTy = T.getTypePtr()->getAs<FunctionType>()->getResultType();

    // Do not allow returning a objc interface by-value.
    if (RetTy->isObjCInterfaceType()) {
      Diag(ParamInfo.getSourceRange().getBegin(),
           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
      return;
    }

    CurBlock->ReturnType = RetTy;
    return;
  }

  // Analyze arguments to block.
  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
         "Not a function declarator!");
  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;

  CurBlock->hasPrototype = FTI.hasPrototype;
  CurBlock->isVariadic = true;

  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
  // no arguments, not a function that takes a single void argument.
  if (FTI.hasPrototype &&
      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
    // empty arg list, don't push any params.
    CurBlock->isVariadic = false;
  } else if (FTI.hasPrototype) {
    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
      ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
      if (Param->getIdentifier() == 0 &&
          !Param->isImplicit() &&
          !Param->isInvalidDecl() &&
          !getLangOptions().CPlusPlus)
        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
      CurBlock->Params.push_back(Param);
    }
    CurBlock->isVariadic = FTI.isVariadic;
  }
  CurBlock->TheDecl->setParams(CurBlock->Params.data(),
                               CurBlock->Params.size());
  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
    (*AI)->setOwningFunction(CurBlock->TheDecl);

    // If this has an identifier, add it to the scope stack.
    if ((*AI)->getIdentifier())
      PushOnScopeChains(*AI, CurBlock->TheScope);
  }

  // Check for a valid sentinel attribute on this block.
  if (!CurBlock->isVariadic &&
      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
    Diag(ParamInfo.getAttributes()->getLoc(),
         diag::warn_attribute_sentinel_not_variadic) << 1;
    // FIXME: remove the attribute.
  }

  // Analyze the return type.
  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
  QualType RetTy = T->getAs<FunctionType>()->getResultType();

  // Do not allow returning a objc interface by-value.
  if (RetTy->isObjCInterfaceType()) {
    Diag(ParamInfo.getSourceRange().getBegin(),
         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
  } else if (!RetTy->isDependentType())
    CurBlock->ReturnType = RetTy;
}

/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
  // Pop off CurBlock, handle nested blocks.
  PopDeclContext();
  PopFunctionOrBlockScope();
  // FIXME: Delete the ParmVarDecl objects as well???
}

/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed.  ^(int x){...}
Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
                                                StmtArg body, Scope *CurScope) {
  // If blocks are disabled, emit an error.
  if (!LangOpts.Blocks)
    Diag(CaretLoc, diag::err_blocks_disable);

  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());

  PopDeclContext();

  QualType RetTy = Context.VoidTy;
  if (!BSI->ReturnType.isNull())
    RetTy = BSI->ReturnType;

  llvm::SmallVector<QualType, 8> ArgTypes;
  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
    ArgTypes.push_back(BSI->Params[i]->getType());

  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
  QualType BlockTy;
  if (!BSI->hasPrototype)
    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
                                      NoReturn, CC_Default);
  else
    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
                                      BSI->isVariadic, 0, false, false, 0, 0,
                                      NoReturn, CC_Default);

  // FIXME: Check that return/parameter types are complete/non-abstract
  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
  BlockTy = Context.getBlockPointerType(BlockTy);

  // If needed, diagnose invalid gotos and switches in the block.
  if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));

  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());

  bool Good = true;
  // Check goto/label use.
  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
         I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
    LabelStmt *L = I->second;

    // Verify that we have no forward references left.  If so, there was a goto
    // or address of a label taken, but no definition of it.
    if (L->getSubStmt() != 0)
      continue;

    // Emit error.
    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
    Good = false;
  }
  if (!Good) {
    PopFunctionOrBlockScope();
    return ExprError();
  }
  
  AnalysisContext AC(BSI->TheDecl);
  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody(), AC);
  CheckUnreachable(AC);
  Expr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
                                         BSI->hasBlockDeclRefExprs);
  PopFunctionOrBlockScope();  
  return Owned(Result);
}

Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
                                        ExprArg expr, TypeTy *type,
                                        SourceLocation RPLoc) {
  QualType T = GetTypeFromParser(type);
  Expr *E = static_cast<Expr*>(expr.get());
  Expr *OrigExpr = E;

  InitBuiltinVaListType();

  // Get the va_list type
  QualType VaListType = Context.getBuiltinVaListType();
  if (VaListType->isArrayType()) {
    // Deal with implicit array decay; for example, on x86-64,
    // va_list is an array, but it's supposed to decay to
    // a pointer for va_arg.
    VaListType = Context.getArrayDecayedType(VaListType);
    // Make sure the input expression also decays appropriately.
    UsualUnaryConversions(E);
  } else {
    // Otherwise, the va_list argument must be an l-value because
    // it is modified by va_arg.
    if (!E->isTypeDependent() &&
        CheckForModifiableLvalue(E, BuiltinLoc, *this))
      return ExprError();
  }

  if (!E->isTypeDependent() &&
      !Context.hasSameType(VaListType, E->getType())) {
    return ExprError(Diag(E->getLocStart(),
                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
      << OrigExpr->getType() << E->getSourceRange());
  }

  // FIXME: Check that type is complete/non-abstract
  // FIXME: Warn if a non-POD type is passed in.

  expr.release();
  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
                                       RPLoc));
}

Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
  // The type of __null will be int or long, depending on the size of
  // pointers on the target.
  QualType Ty;
  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
    Ty = Context.IntTy;
  else
    Ty = Context.LongTy;

  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
}

static void 
MakeObjCStringLiteralCodeModificationHint(Sema& SemaRef,
                                          QualType DstType,
                                          Expr *SrcExpr,
                                          CodeModificationHint &Hint) {
  if (!SemaRef.getLangOptions().ObjC1)
    return;
  
  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
  if (!PT)
    return;

  // Check if the destination is of type 'id'.
  if (!PT->isObjCIdType()) {
    // Check if the destination is the 'NSString' interface.
    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
    if (!ID || !ID->getIdentifier()->isStr("NSString"))
      return;
  }
  
  // Strip off any parens and casts.
  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
  if (!SL || SL->isWide())
    return;
  
  Hint = CodeModificationHint::CreateInsertion(SL->getLocStart(), "@");
}

bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
                                    SourceLocation Loc,
                                    QualType DstType, QualType SrcType,
                                    Expr *SrcExpr, AssignmentAction Action) {
  // Decode the result (notice that AST's are still created for extensions).
  bool isInvalid = false;
  unsigned DiagKind;
  CodeModificationHint Hint;
  
  switch (ConvTy) {
  default: assert(0 && "Unknown conversion type");
  case Compatible: return false;
  case PointerToInt:
    DiagKind = diag::ext_typecheck_convert_pointer_int;
    break;
  case IntToPointer:
    DiagKind = diag::ext_typecheck_convert_int_pointer;
    break;
  case IncompatiblePointer:
    MakeObjCStringLiteralCodeModificationHint(*this, DstType, SrcExpr, Hint);
    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
    break;
  case IncompatiblePointerSign:
    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
    break;
  case FunctionVoidPointer:
    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
    break;
  case CompatiblePointerDiscardsQualifiers:
    // If the qualifiers lost were because we were applying the
    // (deprecated) C++ conversion from a string literal to a char*
    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
    // Ideally, this check would be performed in
    // CheckPointerTypesForAssignment. However, that would require a
    // bit of refactoring (so that the second argument is an
    // expression, rather than a type), which should be done as part
    // of a larger effort to fix CheckPointerTypesForAssignment for
    // C++ semantics.
    if (getLangOptions().CPlusPlus &&
        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
      return false;
    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
    break;
  case IncompatibleNestedPointerQualifiers:
    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
    break;
  case IntToBlockPointer:
    DiagKind = diag::err_int_to_block_pointer;
    break;
  case IncompatibleBlockPointer:
    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
    break;
  case IncompatibleObjCQualifiedId:
    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
    // it can give a more specific diagnostic.
    DiagKind = diag::warn_incompatible_qualified_id;
    break;
  case IncompatibleVectors:
    DiagKind = diag::warn_incompatible_vectors;
    break;
  case Incompatible:
    DiagKind = diag::err_typecheck_convert_incompatible;
    isInvalid = true;
    break;
  }

  Diag(Loc, DiagKind) << DstType << SrcType << Action
    << SrcExpr->getSourceRange() << Hint;
  return isInvalid;
}

bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
  llvm::APSInt ICEResult;
  if (E->isIntegerConstantExpr(ICEResult, Context)) {
    if (Result)
      *Result = ICEResult;
    return false;
  }

  Expr::EvalResult EvalResult;

  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
      EvalResult.HasSideEffects) {
    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();

    if (EvalResult.Diag) {
      // We only show the note if it's not the usual "invalid subexpression"
      // or if it's actually in a subexpression.
      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
        Diag(EvalResult.DiagLoc, EvalResult.Diag);
    }

    return true;
  }

  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
    E->getSourceRange();

  if (EvalResult.Diag &&
      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
    Diag(EvalResult.DiagLoc, EvalResult.Diag);

  if (Result)
    *Result = EvalResult.Val.getInt();
  return false;
}

void
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
  ExprEvalContexts.push_back(
        ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
}

void
Sema::PopExpressionEvaluationContext() {
  // Pop the current expression evaluation context off the stack.
  ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
  ExprEvalContexts.pop_back();

  if (Rec.Context == PotentiallyPotentiallyEvaluated) {
    if (Rec.PotentiallyReferenced) {
      // Mark any remaining declarations in the current position of the stack
      // as "referenced". If they were not meant to be referenced, semantic
      // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
      for (PotentiallyReferencedDecls::iterator 
             I = Rec.PotentiallyReferenced->begin(),
             IEnd = Rec.PotentiallyReferenced->end();
           I != IEnd; ++I)
        MarkDeclarationReferenced(I->first, I->second);
    }

    if (Rec.PotentiallyDiagnosed) {
      // Emit any pending diagnostics.
      for (PotentiallyEmittedDiagnostics::iterator
                I = Rec.PotentiallyDiagnosed->begin(),
             IEnd = Rec.PotentiallyDiagnosed->end();
           I != IEnd; ++I)
        Diag(I->first, I->second);
    }
  } 

  // When are coming out of an unevaluated context, clear out any
  // temporaries that we may have created as part of the evaluation of
  // the expression in that context: they aren't relevant because they
  // will never be constructed.
  if (Rec.Context == Unevaluated && 
      ExprTemporaries.size() > Rec.NumTemporaries)
    ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
                          ExprTemporaries.end());

  // Destroy the popped expression evaluation record.
  Rec.Destroy();
}

/// \brief Note that the given declaration was referenced in the source code.
///
/// This routine should be invoke whenever a given declaration is referenced
/// in the source code, and where that reference occurred. If this declaration
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
/// C99 6.9p3), then the declaration will be marked as used.
///
/// \param Loc the location where the declaration was referenced.
///
/// \param D the declaration that has been referenced by the source code.
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
  assert(D && "No declaration?");

  if (D->isUsed())
    return;

  // Mark a parameter or variable declaration "used", regardless of whether we're in a
  // template or not. The reason for this is that unevaluated expressions
  // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
  // -Wunused-parameters)
  if (isa<ParmVarDecl>(D) || 
      (isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod()))
    D->setUsed(true);

  // Do not mark anything as "used" within a dependent context; wait for
  // an instantiation.
  if (CurContext->isDependentContext())
    return;

  switch (ExprEvalContexts.back().Context) {
    case Unevaluated:
      // We are in an expression that is not potentially evaluated; do nothing.
      return;

    case PotentiallyEvaluated:
      // We are in a potentially-evaluated expression, so this declaration is
      // "used"; handle this below.
      break;

    case PotentiallyPotentiallyEvaluated:
      // We are in an expression that may be potentially evaluated; queue this
      // declaration reference until we know whether the expression is
      // potentially evaluated.
      ExprEvalContexts.back().addReferencedDecl(Loc, D);
      return;
  }

  // Note that this declaration has been used.
  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
    unsigned TypeQuals;
    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
        if (!Constructor->isUsed())
          DefineImplicitDefaultConstructor(Loc, Constructor);
    } else if (Constructor->isImplicit() &&
               Constructor->isCopyConstructor(TypeQuals)) {
      if (!Constructor->isUsed())
        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
    }
    
    MaybeMarkVirtualMembersReferenced(Loc, Constructor);
  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
    if (Destructor->isImplicit() && !Destructor->isUsed())
      DefineImplicitDestructor(Loc, Destructor);

  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
        MethodDecl->getOverloadedOperator() == OO_Equal) {
      if (!MethodDecl->isUsed())
        DefineImplicitOverloadedAssign(Loc, MethodDecl);
    }
  }
  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    // Implicit instantiation of function templates and member functions of
    // class templates.
    if (!Function->getBody() && Function->isImplicitlyInstantiable()) {
      bool AlreadyInstantiated = false;
      if (FunctionTemplateSpecializationInfo *SpecInfo
                                = Function->getTemplateSpecializationInfo()) {
        if (SpecInfo->getPointOfInstantiation().isInvalid())
          SpecInfo->setPointOfInstantiation(Loc);
        else if (SpecInfo->getTemplateSpecializationKind() 
                   == TSK_ImplicitInstantiation)
          AlreadyInstantiated = true;
      } else if (MemberSpecializationInfo *MSInfo 
                                  = Function->getMemberSpecializationInfo()) {
        if (MSInfo->getPointOfInstantiation().isInvalid())
          MSInfo->setPointOfInstantiation(Loc);
        else if (MSInfo->getTemplateSpecializationKind() 
                   == TSK_ImplicitInstantiation)
          AlreadyInstantiated = true;
      }
      
      if (!AlreadyInstantiated) {
        if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
            cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
          PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
                                                                      Loc));
        else
          PendingImplicitInstantiations.push_back(std::make_pair(Function, 
                                                                 Loc));
      }
    }
    
    // FIXME: keep track of references to static functions
    Function->setUsed(true);
   
    return;
  }

  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    // Implicit instantiation of static data members of class templates.
    if (Var->isStaticDataMember() &&
        Var->getInstantiatedFromStaticDataMember()) {
      MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
      assert(MSInfo && "Missing member specialization information?");
      if (MSInfo->getPointOfInstantiation().isInvalid() &&
          MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
        MSInfo->setPointOfInstantiation(Loc);
        PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
      }
    }

    // FIXME: keep track of references to static data?

    D->setUsed(true);
    return;
  }
}

/// \brief Emit a diagnostic that describes an effect on the run-time behavior
/// of the program being compiled.
///
/// This routine emits the given diagnostic when the code currently being
/// type-checked is "potentially evaluated", meaning that there is a 
/// possibility that the code will actually be executable. Code in sizeof()
/// expressions, code used only during overload resolution, etc., are not
/// potentially evaluated. This routine will suppress such diagnostics or,
/// in the absolutely nutty case of potentially potentially evaluated
/// expressions (C++ typeid), queue the diagnostic to potentially emit it 
/// later.
/// 
/// This routine should be used for all diagnostics that describe the run-time
/// behavior of a program, such as passing a non-POD value through an ellipsis.
/// Failure to do so will likely result in spurious diagnostics or failures
/// during overload resolution or within sizeof/alignof/typeof/typeid.
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, 
                               const PartialDiagnostic &PD) {
  switch (ExprEvalContexts.back().Context ) {
  case Unevaluated:
    // The argument will never be evaluated, so don't complain.
    break;
      
  case PotentiallyEvaluated:
    Diag(Loc, PD);
    return true;
      
  case PotentiallyPotentiallyEvaluated:
    ExprEvalContexts.back().addDiagnostic(Loc, PD);
    break;
  }

  return false;
}

bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
                               CallExpr *CE, FunctionDecl *FD) {
  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
    return false;

  PartialDiagnostic Note =
    FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
    << FD->getDeclName() : PDiag();
  SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
  
  if (RequireCompleteType(Loc, ReturnType,
                          FD ? 
                          PDiag(diag::err_call_function_incomplete_return)
                            << CE->getSourceRange() << FD->getDeclName() :
                          PDiag(diag::err_call_incomplete_return) 
                            << CE->getSourceRange(),
                          std::make_pair(NoteLoc, Note)))
    return true;

  return false;
}

// Diagnose the common s/=/==/ typo.  Note that adding parentheses
// will prevent this condition from triggering, which is what we want.
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
  SourceLocation Loc;

  unsigned diagnostic = diag::warn_condition_is_assignment;

  if (isa<BinaryOperator>(E)) {
    BinaryOperator *Op = cast<BinaryOperator>(E);
    if (Op->getOpcode() != BinaryOperator::Assign)
      return;

    // Greylist some idioms by putting them into a warning subcategory.
    if (ObjCMessageExpr *ME
          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
      Selector Sel = ME->getSelector();

      // self = [<foo> init...]
      if (isSelfExpr(Op->getLHS())
          && Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
        diagnostic = diag::warn_condition_is_idiomatic_assignment;

      // <foo> = [<bar> nextObject]
      else if (Sel.isUnarySelector() &&
               Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
        diagnostic = diag::warn_condition_is_idiomatic_assignment;
    }

    Loc = Op->getOperatorLoc();
  } else if (isa<CXXOperatorCallExpr>(E)) {
    CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
    if (Op->getOperator() != OO_Equal)
      return;

    Loc = Op->getOperatorLoc();
  } else {
    // Not an assignment.
    return;
  }

  SourceLocation Open = E->getSourceRange().getBegin();
  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
  
  Diag(Loc, diagnostic)
    << E->getSourceRange()
    << CodeModificationHint::CreateInsertion(Open, "(")
    << CodeModificationHint::CreateInsertion(Close, ")");
  Diag(Loc, diag::note_condition_assign_to_comparison)
    << CodeModificationHint::CreateReplacement(Loc, "==");
}

bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
  DiagnoseAssignmentAsCondition(E);

  if (!E->isTypeDependent()) {
    DefaultFunctionArrayLvalueConversion(E);

    QualType T = E->getType();

    if (getLangOptions().CPlusPlus) {
      if (CheckCXXBooleanCondition(E)) // C++ 6.4p4
        return true;
    } else if (!T->isScalarType()) { // C99 6.8.4.1p1
      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
        << T << E->getSourceRange();
      return true;
    }
  }

  return false;
}
OpenPOWER on IntegriCloud