summaryrefslogtreecommitdiffstats
path: root/lib/Sema/Sema.cpp
blob: f0812bfe7fdb49fd28ae14ae46c2726a43ca98b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the actions class which performs semantic analysis and
// builds an AST out of a parse stream.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/APFloat.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;

/// Determines whether we should have an a.k.a. clause when
/// pretty-printing a type.  There are three main criteria:
///
/// 1) Some types provide very minimal sugar that doesn't impede the
///    user's understanding --- for example, elaborated type
///    specifiers.  If this is all the sugar we see, we don't want an
///    a.k.a. clause.
/// 2) Some types are technically sugared but are much more familiar
///    when seen in their sugared form --- for example, va_list,
///    vector types, and the magic Objective C types.  We don't
///    want to desugar these, even if we do produce an a.k.a. clause.
/// 3) Some types may have already been desugared previously in this diagnostic.
///    if this is the case, doing another "aka" would just be clutter.
///
static bool ShouldAKA(ASTContext &Context, QualType QT,
                      const Diagnostic::ArgumentValue *PrevArgs,
                      unsigned NumPrevArgs,
                      QualType &DesugaredQT) {
  QualType InputTy = QT;
  
  bool AKA = false;
  QualifierCollector Qc;

  while (true) {
    const Type *Ty = Qc.strip(QT);

    // Don't aka just because we saw an elaborated type...
    if (isa<ElaboratedType>(Ty)) {
      QT = cast<ElaboratedType>(Ty)->desugar();
      continue;
    }

    // ...or a qualified name type...
    if (isa<QualifiedNameType>(Ty)) {
      QT = cast<QualifiedNameType>(Ty)->desugar();
      continue;
    }

    // ...or a substituted template type parameter.
    if (isa<SubstTemplateTypeParmType>(Ty)) {
      QT = cast<SubstTemplateTypeParmType>(Ty)->desugar();
      continue;
    }
      
    // Don't desugar template specializations. 
    if (isa<TemplateSpecializationType>(Ty))
      break;

    // Don't desugar magic Objective-C types.
    if (QualType(Ty,0) == Context.getObjCIdType() ||
        QualType(Ty,0) == Context.getObjCClassType() ||
        QualType(Ty,0) == Context.getObjCSelType() ||
        QualType(Ty,0) == Context.getObjCProtoType())
      break;

    // Don't desugar va_list.
    if (QualType(Ty,0) == Context.getBuiltinVaListType())
      break;

    // Otherwise, do a single-step desugar.
    QualType Underlying;
    bool IsSugar = false;
    switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
    case Type::Class: { \
      const Class##Type *CTy = cast<Class##Type>(Ty); \
      if (CTy->isSugared()) { \
        IsSugar = true; \
        Underlying = CTy->desugar(); \
      } \
      break; \
    }
#include "clang/AST/TypeNodes.def"
    }

    // If it wasn't sugared, we're done.
    if (!IsSugar)
      break;

    // If the desugared type is a vector type, we don't want to expand
    // it, it will turn into an attribute mess. People want their "vec4".
    if (isa<VectorType>(Underlying))
      break;

    // Otherwise, we're tearing through something opaque; note that
    // we'll eventually need an a.k.a. clause and keep going.
    AKA = true;
    QT = Underlying;
    continue;
  }

  // If we never tore through opaque sugar, don't print aka.
  if (!AKA) return false;

  // If we did, check to see if we already desugared this type in this
  // diagnostic.  If so, don't do it again.
  for (unsigned i = 0; i != NumPrevArgs; ++i) {
    // TODO: Handle ak_declcontext case.
    if (PrevArgs[i].first == Diagnostic::ak_qualtype) {
      void *Ptr = (void*)PrevArgs[i].second;
      QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
      if (PrevTy == InputTy)
        return false;
    }
  }
  
  DesugaredQT = Qc.apply(QT);
  return true;
}

/// \brief Convert the given type to a string suitable for printing as part of 
/// a diagnostic. 
///
/// \param Context the context in which the type was allocated
/// \param Ty the type to print
static std::string
ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
                              const Diagnostic::ArgumentValue *PrevArgs,
                              unsigned NumPrevArgs) {
  // FIXME: Playing with std::string is really slow.
  std::string S = Ty.getAsString(Context.PrintingPolicy);
  
  // Consider producing an a.k.a. clause if removing all the direct
  // sugar gives us something "significantly different".

  QualType DesugaredTy;
  if (ShouldAKA(Context, Ty, PrevArgs, NumPrevArgs, DesugaredTy)) {
    S = "'"+S+"' (aka '";
    S += DesugaredTy.getAsString(Context.PrintingPolicy);
    S += "')";
    return S;
  }

  S = "'" + S + "'";
  return S;
}
                                       
/// ConvertQualTypeToStringFn - This function is used to pretty print the
/// specified QualType as a string in diagnostics.
static void ConvertArgToStringFn(Diagnostic::ArgumentKind Kind, intptr_t Val,
                                 const char *Modifier, unsigned ModLen,
                                 const char *Argument, unsigned ArgLen,
                                 const Diagnostic::ArgumentValue *PrevArgs,
                                 unsigned NumPrevArgs,
                                 llvm::SmallVectorImpl<char> &Output,
                                 void *Cookie) {
  ASTContext &Context = *static_cast<ASTContext*>(Cookie);

  std::string S;
  bool NeedQuotes = true;
  
  switch (Kind) {
  default: assert(0 && "unknown ArgumentKind");
  case Diagnostic::ak_qualtype: {
    assert(ModLen == 0 && ArgLen == 0 &&
           "Invalid modifier for QualType argument");

    QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
    S = ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, NumPrevArgs);
    NeedQuotes = false;
    break;
  }
  case Diagnostic::ak_declarationname: {
    DeclarationName N = DeclarationName::getFromOpaqueInteger(Val);
    S = N.getAsString();

    if (ModLen == 9 && !memcmp(Modifier, "objcclass", 9) && ArgLen == 0)
      S = '+' + S;
    else if (ModLen == 12 && !memcmp(Modifier, "objcinstance", 12) && ArgLen==0)
      S = '-' + S;
    else
      assert(ModLen == 0 && ArgLen == 0 &&
             "Invalid modifier for DeclarationName argument");
    break;
  }
  case Diagnostic::ak_nameddecl: {
    bool Qualified;
    if (ModLen == 1 && Modifier[0] == 'q' && ArgLen == 0)
      Qualified = true;
    else {
      assert(ModLen == 0 && ArgLen == 0 &&
           "Invalid modifier for NamedDecl* argument");
      Qualified = false;
    }
    reinterpret_cast<NamedDecl*>(Val)->
      getNameForDiagnostic(S, Context.PrintingPolicy, Qualified);
    break;
  }
  case Diagnostic::ak_nestednamespec: {
    llvm::raw_string_ostream OS(S);
    reinterpret_cast<NestedNameSpecifier*>(Val)->print(OS,
                                                       Context.PrintingPolicy);
    NeedQuotes = false;
    break;
  }
  case Diagnostic::ak_declcontext: {
    DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
    assert(DC && "Should never have a null declaration context");
    
    if (DC->isTranslationUnit()) {
      // FIXME: Get these strings from some localized place
      if (Context.getLangOptions().CPlusPlus)
        S = "the global namespace";
      else
        S = "the global scope";
    } else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
      S = ConvertTypeToDiagnosticString(Context, Context.getTypeDeclType(Type),
                                        PrevArgs, NumPrevArgs);
    } else {
      // FIXME: Get these strings from some localized place
      NamedDecl *ND = cast<NamedDecl>(DC);
      if (isa<NamespaceDecl>(ND))
        S += "namespace ";
      else if (isa<ObjCMethodDecl>(ND))
        S += "method ";
      else if (isa<FunctionDecl>(ND))
        S += "function ";

      S += "'";
      ND->getNameForDiagnostic(S, Context.PrintingPolicy, true);
      S += "'";
    }
    NeedQuotes = false;
    break;
  }
  }

  if (NeedQuotes)
    Output.push_back('\'');
  
  Output.append(S.begin(), S.end());
  
  if (NeedQuotes)
    Output.push_back('\'');
}


static inline RecordDecl *CreateStructDecl(ASTContext &C, const char *Name) {
  if (C.getLangOptions().CPlusPlus)
    return CXXRecordDecl::Create(C, TagDecl::TK_struct,
                                 C.getTranslationUnitDecl(),
                                 SourceLocation(), &C.Idents.get(Name));

  return RecordDecl::Create(C, TagDecl::TK_struct,
                            C.getTranslationUnitDecl(),
                            SourceLocation(), &C.Idents.get(Name));
}

void Sema::ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) {
  TUScope = S;
  PushDeclContext(S, Context.getTranslationUnitDecl());

  if (PP.getTargetInfo().getPointerWidth(0) >= 64) {
    DeclaratorInfo *DInfo;

    // Install [u]int128_t for 64-bit targets.
    DInfo = Context.getTrivialDeclaratorInfo(Context.Int128Ty);
    PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
                                          SourceLocation(),
                                          &Context.Idents.get("__int128_t"),
                                          DInfo), TUScope);

    DInfo = Context.getTrivialDeclaratorInfo(Context.UnsignedInt128Ty);
    PushOnScopeChains(TypedefDecl::Create(Context, CurContext,
                                          SourceLocation(),
                                          &Context.Idents.get("__uint128_t"),
                                          DInfo), TUScope);
  }


  if (!PP.getLangOptions().ObjC1) return;

  // Built-in ObjC types may already be set by PCHReader (hence isNull checks).
  if (Context.getObjCSelType().isNull()) {
    // Create the built-in typedef for 'SEL'.
    QualType SelT = Context.getPointerType(Context.ObjCBuiltinSelTy);
    DeclaratorInfo *SelInfo = Context.getTrivialDeclaratorInfo(SelT);
    TypedefDecl *SelTypedef
      = TypedefDecl::Create(Context, CurContext, SourceLocation(),
                            &Context.Idents.get("SEL"), SelInfo);
    PushOnScopeChains(SelTypedef, TUScope);
    Context.setObjCSelType(Context.getTypeDeclType(SelTypedef));
    Context.ObjCSelRedefinitionType = Context.getObjCSelType();
  }

  // Synthesize "@class Protocol;
  if (Context.getObjCProtoType().isNull()) {
    ObjCInterfaceDecl *ProtocolDecl =
      ObjCInterfaceDecl::Create(Context, CurContext, SourceLocation(),
                                &Context.Idents.get("Protocol"),
                                SourceLocation(), true);
    Context.setObjCProtoType(Context.getObjCInterfaceType(ProtocolDecl));
    PushOnScopeChains(ProtocolDecl, TUScope, false);
  }
  // Create the built-in typedef for 'id'.
  if (Context.getObjCIdType().isNull()) {
    QualType IdT = Context.getObjCObjectPointerType(Context.ObjCBuiltinIdTy);
    DeclaratorInfo *IdInfo = Context.getTrivialDeclaratorInfo(IdT);
    TypedefDecl *IdTypedef
      = TypedefDecl::Create(Context, CurContext, SourceLocation(),
                            &Context.Idents.get("id"), IdInfo);
    PushOnScopeChains(IdTypedef, TUScope);
    Context.setObjCIdType(Context.getTypeDeclType(IdTypedef));
    Context.ObjCIdRedefinitionType = Context.getObjCIdType();
  }
  // Create the built-in typedef for 'Class'.
  if (Context.getObjCClassType().isNull()) {
    QualType ClassType
      = Context.getObjCObjectPointerType(Context.ObjCBuiltinClassTy);
    DeclaratorInfo *ClassInfo = Context.getTrivialDeclaratorInfo(ClassType);
    TypedefDecl *ClassTypedef
      = TypedefDecl::Create(Context, CurContext, SourceLocation(),
                            &Context.Idents.get("Class"), ClassInfo);
    PushOnScopeChains(ClassTypedef, TUScope);
    Context.setObjCClassType(Context.getTypeDeclType(ClassTypedef));
    Context.ObjCClassRedefinitionType = Context.getObjCClassType();
  }
}

Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
           bool CompleteTranslationUnit,
           CodeCompleteConsumer *CodeCompleter)
  : LangOpts(pp.getLangOptions()), PP(pp), Context(ctxt), Consumer(consumer),
    Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()),
    ExternalSource(0), CodeCompleter(CodeCompleter), CurContext(0), 
    PreDeclaratorDC(0), CurBlock(0), PackContext(0), ParsingDeclDepth(0),
    IdResolver(pp.getLangOptions()), StdNamespace(0), StdBadAlloc(0),
    GlobalNewDeleteDeclared(false), 
    CompleteTranslationUnit(CompleteTranslationUnit),
    NumSFINAEErrors(0), NonInstantiationEntries(0), 
    CurrentInstantiationScope(0) 
{
  TUScope = 0;
  if (getLangOptions().CPlusPlus)
    FieldCollector.reset(new CXXFieldCollector());

  // Tell diagnostics how to render things from the AST library.
  PP.getDiagnostics().SetArgToStringFn(ConvertArgToStringFn, &Context);

  ExprEvalContexts.push_back(
                  ExpressionEvaluationContextRecord(PotentiallyEvaluated, 0));
}

/// Retrieves the width and signedness of the given integer type,
/// or returns false if it is not an integer type.
///
/// \param T must be canonical
static bool getIntProperties(ASTContext &C, const Type *T,
                             unsigned &BitWidth, bool &Signed) {
  assert(T->isCanonicalUnqualified());

  if (const VectorType *VT = dyn_cast<VectorType>(T))
    T = VT->getElementType().getTypePtr();
  if (const ComplexType *CT = dyn_cast<ComplexType>(T))
    T = CT->getElementType().getTypePtr();

  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
    if (!BT->isInteger()) return false;

    BitWidth = C.getIntWidth(QualType(T, 0));
    Signed = BT->isSignedInteger();
    return true;
  }

  if (const FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
    BitWidth = FWIT->getWidth();
    Signed = FWIT->isSigned();
    return true;
  }

  return false;
}

/// Checks whether the given value will have the same value if it it
/// is truncated to the given width, then extended back to the
/// original width.
static bool IsSameIntAfterCast(const llvm::APSInt &value,
                               unsigned TargetWidth) {
  unsigned SourceWidth = value.getBitWidth();
  llvm::APSInt truncated = value;
  truncated.trunc(TargetWidth);
  truncated.extend(SourceWidth);
  return (truncated == value);
}

/// Checks whether the given value will have the same value if it
/// is truncated to the given width, then extended back to the original
/// width.
///
/// The value might be a vector or a complex.
static bool IsSameIntAfterCast(const APValue &value, unsigned TargetWidth) {
  if (value.isInt())
    return IsSameIntAfterCast(value.getInt(), TargetWidth);

  if (value.isVector()) {
    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
      if (!IsSameIntAfterCast(value.getVectorElt(i), TargetWidth))
        return false;
    return true;
  }

  if (value.isComplexInt()) {
    return IsSameIntAfterCast(value.getComplexIntReal(), TargetWidth) &&
           IsSameIntAfterCast(value.getComplexIntImag(), TargetWidth);
  }

  // This can happen with lossless casts to intptr_t of "based" lvalues.
  // Assume it might use arbitrary bits.
  assert(value.isLValue());
  return false;
}
                               

/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
                                 const llvm::fltSemantics &Src,
                                 const llvm::fltSemantics &Tgt) {
  llvm::APFloat truncated = value;

  bool ignored;
  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);

  return truncated.bitwiseIsEqual(value);
}

/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
///
/// The value might be a vector of floats (or a complex number).
static bool IsSameFloatAfterCast(const APValue &value,
                                 const llvm::fltSemantics &Src,
                                 const llvm::fltSemantics &Tgt) {
  if (value.isFloat())
    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);

  if (value.isVector()) {
    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
        return false;
    return true;
  }

  assert(value.isComplexFloat());
  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
}

/// Determines if it's reasonable for the given expression to be truncated
/// down to the given integer width.
/// * Boolean expressions are automatically white-listed.
/// * Arithmetic operations on implicitly-promoted operands of the
///   target width or less are okay --- not because the results are
///   actually guaranteed to fit within the width, but because the
///   user is effectively pretending that the operations are closed
///   within the implicitly-promoted type.
static bool IsExprValueWithinWidth(ASTContext &C, Expr *E, unsigned Width) {
  E = E->IgnoreParens();

#ifndef NDEBUG
  {
    const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr();
    unsigned EWidth;
    bool ESigned;

    if (!getIntProperties(C, ETy, EWidth, ESigned))
      assert(0 && "expression not of integer type");

    // The caller should never let this happen.
    assert(EWidth > Width && "called on expr whose type is too small");
  }
#endif

  // Strip implicit casts off.
  while (isa<ImplicitCastExpr>(E)) {
    E = cast<ImplicitCastExpr>(E)->getSubExpr();

    const Type *ETy = E->getType()->getCanonicalTypeInternal().getTypePtr();

    unsigned EWidth;
    bool ESigned;
    if (!getIntProperties(C, ETy, EWidth, ESigned))
      return false;

    if (EWidth <= Width)
      return true;
  }

  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    switch (BO->getOpcode()) {

    // Boolean-valued operations are white-listed.
    case BinaryOperator::LAnd:
    case BinaryOperator::LOr:
    case BinaryOperator::LT:
    case BinaryOperator::GT:
    case BinaryOperator::LE:
    case BinaryOperator::GE:
    case BinaryOperator::EQ:
    case BinaryOperator::NE:
      return true;

    // Operations with opaque sources are black-listed.
    case BinaryOperator::PtrMemD:
    case BinaryOperator::PtrMemI:
      return false;

    // Left shift gets black-listed based on a judgement call.
    case BinaryOperator::Shl:
      return false;

    // Various special cases.
    case BinaryOperator::Shr:
      return IsExprValueWithinWidth(C, BO->getLHS(), Width);
    case BinaryOperator::Comma:
      return IsExprValueWithinWidth(C, BO->getRHS(), Width);
    case BinaryOperator::Sub:
      if (BO->getLHS()->getType()->isPointerType())
        return false;
      // fallthrough
      
    // Any other operator is okay if the operands are
    // promoted from expressions of appropriate size.
    default:
      return IsExprValueWithinWidth(C, BO->getLHS(), Width) &&
             IsExprValueWithinWidth(C, BO->getRHS(), Width);
    }
  }

  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    switch (UO->getOpcode()) {
    // Boolean-valued operations are white-listed.
    case UnaryOperator::LNot:
      return true;

    // Operations with opaque sources are black-listed.
    case UnaryOperator::Deref:
    case UnaryOperator::AddrOf: // should be impossible
      return false;

    case UnaryOperator::OffsetOf:
      return false;

    default:
      return IsExprValueWithinWidth(C, UO->getSubExpr(), Width);
    }
  }

  // Don't diagnose if the expression is an integer constant
  // whose value in the target type is the same as it was
  // in the original type.
  Expr::EvalResult result;
  if (E->Evaluate(result, C))
    if (IsSameIntAfterCast(result.Val, Width))
      return true;

  return false;
}

/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, unsigned diag) {
  S.Diag(E->getExprLoc(), diag) << E->getType() << T << E->getSourceRange();
}

/// Implements -Wconversion.
static void CheckImplicitConversion(Sema &S, Expr *E, QualType T) {
  // Don't diagnose in unevaluated contexts.
  if (S.ExprEvalContexts.back().Context == Sema::Unevaluated)
    return;

  // Don't diagnose for value-dependent expressions.
  if (E->isValueDependent())
    return;

  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();

  // Never diagnose implicit casts to bool.
  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
    return;

  // Strip vector types.
  if (isa<VectorType>(Source)) {
    if (!isa<VectorType>(Target))
      return DiagnoseImpCast(S, E, T, diag::warn_impcast_vector_scalar);

    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
  }

  // Strip complex types.
  if (isa<ComplexType>(Source)) {
    if (!isa<ComplexType>(Target))
      return DiagnoseImpCast(S, E, T, diag::warn_impcast_complex_scalar);

    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
  }

  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);

  // If the source is floating point...
  if (SourceBT && SourceBT->isFloatingPoint()) {
    // ...and the target is floating point...
    if (TargetBT && TargetBT->isFloatingPoint()) {
      // ...then warn if we're dropping FP rank.

      // Builtin FP kinds are ordered by increasing FP rank.
      if (SourceBT->getKind() > TargetBT->getKind()) {
        // Don't warn about float constants that are precisely
        // representable in the target type.
        Expr::EvalResult result;
        if (E->Evaluate(result, S.Context)) {
          // Value might be a float, a float vector, or a float complex.
          if (IsSameFloatAfterCast(result.Val,
                     S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
                     S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
            return;
        }

        DiagnoseImpCast(S, E, T, diag::warn_impcast_float_precision);
      }
      return;
    }

    // If the target is integral, always warn.
    if ((TargetBT && TargetBT->isInteger()) ||
        isa<FixedWidthIntType>(Target))
      // TODO: don't warn for integer values?
      return DiagnoseImpCast(S, E, T, diag::warn_impcast_float_integer);

    return;
  }

  unsigned SourceWidth, TargetWidth;
  bool SourceSigned, TargetSigned;

  if (!getIntProperties(S.Context, Source, SourceWidth, SourceSigned) ||
      !getIntProperties(S.Context, Target, TargetWidth, TargetSigned))
    return;

  if (SourceWidth > TargetWidth) {
    if (IsExprValueWithinWidth(S.Context, E, TargetWidth))
      return;

    // People want to build with -Wshorten-64-to-32 and not -Wconversion
    // and by god we'll let them.
    if (SourceWidth == 64 && TargetWidth == 32)
      return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_64_32);
    return DiagnoseImpCast(S, E, T, diag::warn_impcast_integer_precision);
  }

  return;
}

/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast.
/// If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
void Sema::ImpCastExprToType(Expr *&Expr, QualType Ty,
                             CastExpr::CastKind Kind, bool isLvalue) {
  QualType ExprTy = Context.getCanonicalType(Expr->getType());
  QualType TypeTy = Context.getCanonicalType(Ty);

  if (ExprTy == TypeTy)
    return;

  if (Expr->getType()->isPointerType() && Ty->isPointerType()) {
    QualType ExprBaseType = cast<PointerType>(ExprTy)->getPointeeType();
    QualType BaseType = cast<PointerType>(TypeTy)->getPointeeType();
    if (ExprBaseType.getAddressSpace() != BaseType.getAddressSpace()) {
      Diag(Expr->getExprLoc(), diag::err_implicit_pointer_address_space_cast)
        << Expr->getSourceRange();
    }
  }

  CheckImplicitConversion(*this, Expr, Ty);

  if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(Expr)) {
    if (ImpCast->getCastKind() == Kind) {
      ImpCast->setType(Ty);
      ImpCast->setLvalueCast(isLvalue);
      return;
    }
  }

  Expr = new (Context) ImplicitCastExpr(Ty, Kind, Expr, isLvalue);
}

void Sema::DeleteExpr(ExprTy *E) {
  if (E) static_cast<Expr*>(E)->Destroy(Context);
}
void Sema::DeleteStmt(StmtTy *S) {
  if (S) static_cast<Stmt*>(S)->Destroy(Context);
}

/// ActOnEndOfTranslationUnit - This is called at the very end of the
/// translation unit when EOF is reached and all but the top-level scope is
/// popped.
void Sema::ActOnEndOfTranslationUnit() {
  // C++: Perform implicit template instantiations.
  //
  // FIXME: When we perform these implicit instantiations, we do not carefully
  // keep track of the point of instantiation (C++ [temp.point]). This means
  // that name lookup that occurs within the template instantiation will
  // always happen at the end of the translation unit, so it will find
  // some names that should not be found. Although this is common behavior
  // for C++ compilers, it is technically wrong. In the future, we either need
  // to be able to filter the results of name lookup or we need to perform
  // template instantiations earlier.
  PerformPendingImplicitInstantiations();

  // Check for #pragma weak identifiers that were never declared
  // FIXME: This will cause diagnostics to be emitted in a non-determinstic
  // order!  Iterating over a densemap like this is bad.
  for (llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator
       I = WeakUndeclaredIdentifiers.begin(),
       E = WeakUndeclaredIdentifiers.end(); I != E; ++I) {
    if (I->second.getUsed()) continue;

    Diag(I->second.getLocation(), diag::warn_weak_identifier_undeclared)
      << I->first;
  }

  if (!CompleteTranslationUnit)
    return;

  // C99 6.9.2p2:
  //   A declaration of an identifier for an object that has file
  //   scope without an initializer, and without a storage-class
  //   specifier or with the storage-class specifier static,
  //   constitutes a tentative definition. If a translation unit
  //   contains one or more tentative definitions for an identifier,
  //   and the translation unit contains no external definition for
  //   that identifier, then the behavior is exactly as if the
  //   translation unit contains a file scope declaration of that
  //   identifier, with the composite type as of the end of the
  //   translation unit, with an initializer equal to 0.
  for (unsigned i = 0, e = TentativeDefinitionList.size(); i != e; ++i) {
    VarDecl *VD = TentativeDefinitions.lookup(TentativeDefinitionList[i]);

    // If the tentative definition was completed, it will be in the list, but
    // not the map.
    if (VD == 0 || VD->isInvalidDecl() || !VD->isTentativeDefinition(Context))
      continue;

    if (const IncompleteArrayType *ArrayT
        = Context.getAsIncompleteArrayType(VD->getType())) {
      if (RequireCompleteType(VD->getLocation(),
                              ArrayT->getElementType(),
                              diag::err_tentative_def_incomplete_type_arr)) {
        VD->setInvalidDecl();
        continue;
      }

      // Set the length of the array to 1 (C99 6.9.2p5).
      Diag(VD->getLocation(), diag::warn_tentative_incomplete_array);
      llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true);
      QualType T = Context.getConstantArrayType(ArrayT->getElementType(),
                                                One, ArrayType::Normal, 0);
      VD->setType(T);
    } else if (RequireCompleteType(VD->getLocation(), VD->getType(),
                                   diag::err_tentative_def_incomplete_type))
      VD->setInvalidDecl();

    // Notify the consumer that we've completed a tentative definition.
    if (!VD->isInvalidDecl())
      Consumer.CompleteTentativeDefinition(VD);

  }
}


//===----------------------------------------------------------------------===//
// Helper functions.
//===----------------------------------------------------------------------===//

DeclContext *Sema::getFunctionLevelDeclContext() {
  DeclContext *DC = PreDeclaratorDC ? PreDeclaratorDC : CurContext;

  while (isa<BlockDecl>(DC))
    DC = DC->getParent();

  return DC;
}

/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed.  If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *Sema::getCurFunctionDecl() {
  DeclContext *DC = getFunctionLevelDeclContext();
  return dyn_cast<FunctionDecl>(DC);
}

ObjCMethodDecl *Sema::getCurMethodDecl() {
  DeclContext *DC = getFunctionLevelDeclContext();
  return dyn_cast<ObjCMethodDecl>(DC);
}

NamedDecl *Sema::getCurFunctionOrMethodDecl() {
  DeclContext *DC = getFunctionLevelDeclContext();
  if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC))
    return cast<NamedDecl>(DC);
  return 0;
}

Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() {
  if (!this->Emit())
    return;

  // If this is not a note, and we're in a template instantiation
  // that is different from the last template instantiation where
  // we emitted an error, print a template instantiation
  // backtrace.
  if (!SemaRef.Diags.isBuiltinNote(DiagID) &&
      !SemaRef.ActiveTemplateInstantiations.empty() &&
      SemaRef.ActiveTemplateInstantiations.back()
        != SemaRef.LastTemplateInstantiationErrorContext) {
    SemaRef.PrintInstantiationStack();
    SemaRef.LastTemplateInstantiationErrorContext
      = SemaRef.ActiveTemplateInstantiations.back();
  }
}

Sema::SemaDiagnosticBuilder
Sema::Diag(SourceLocation Loc, const PartialDiagnostic& PD) {
  SemaDiagnosticBuilder Builder(Diag(Loc, PD.getDiagID()));
  PD.Emit(Builder);

  return Builder;
}

void Sema::ActOnComment(SourceRange Comment) {
  Context.Comments.push_back(Comment);
}

OpenPOWER on IntegriCloud