summaryrefslogtreecommitdiffstats
path: root/lib/Sema/JumpDiagnostics.cpp
blob: ae154aae20628013c5767e1fc3ed083753f78f4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//===--- JumpDiagnostics.cpp - Analyze Jump Targets for VLA issues --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the JumpScopeChecker class, which is used to diagnose
// jumps that enter a VLA scope in an invalid way.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtCXX.h"
#include "llvm/ADT/BitVector.h"
using namespace clang;

namespace {

/// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
/// into VLA and other protected scopes.  For example, this rejects:
///    goto L;
///    int a[n];
///  L:
///
class JumpScopeChecker {
  Sema &S;

  /// GotoScope - This is a record that we use to keep track of all of the
  /// scopes that are introduced by VLAs and other things that scope jumps like
  /// gotos.  This scope tree has nothing to do with the source scope tree,
  /// because you can have multiple VLA scopes per compound statement, and most
  /// compound statements don't introduce any scopes.
  struct GotoScope {
    /// ParentScope - The index in ScopeMap of the parent scope.  This is 0 for
    /// the parent scope is the function body.
    unsigned ParentScope;

    /// InDiag - The diagnostic to emit if there is a jump into this scope.
    unsigned InDiag;

    /// OutDiag - The diagnostic to emit if there is an indirect jump out
    /// of this scope.  Direct jumps always clean up their current scope
    /// in an orderly way.
    unsigned OutDiag;

    /// Loc - Location to emit the diagnostic.
    SourceLocation Loc;

    GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
              SourceLocation L)
      : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
  };

  llvm::SmallVector<GotoScope, 48> Scopes;
  llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
  llvm::SmallVector<Stmt*, 16> Jumps;

  llvm::SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
  llvm::SmallVector<LabelDecl*, 4> IndirectJumpTargets;
public:
  JumpScopeChecker(Stmt *Body, Sema &S);
private:
  void BuildScopeInformation(Decl *D, unsigned &ParentScope);
  void BuildScopeInformation(Stmt *S, unsigned ParentScope);
  void VerifyJumps();
  void VerifyIndirectJumps();
  void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
                            LabelDecl *Target, unsigned TargetScope);
  void CheckJump(Stmt *From, Stmt *To,
                 SourceLocation DiagLoc, unsigned JumpDiag);

  unsigned GetDeepestCommonScope(unsigned A, unsigned B);
};
} // end anonymous namespace


JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) {
  // Add a scope entry for function scope.
  Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));

  // Build information for the top level compound statement, so that we have a
  // defined scope record for every "goto" and label.
  BuildScopeInformation(Body, 0);

  // Check that all jumps we saw are kosher.
  VerifyJumps();
  VerifyIndirectJumps();
}

/// GetDeepestCommonScope - Finds the innermost scope enclosing the
/// two scopes.
unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
  while (A != B) {
    // Inner scopes are created after outer scopes and therefore have
    // higher indices.
    if (A < B) {
      assert(Scopes[B].ParentScope < B);
      B = Scopes[B].ParentScope;
    } else {
      assert(Scopes[A].ParentScope < A);
      A = Scopes[A].ParentScope;
    }
  }
  return A;
}

/// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
/// diagnostic that should be emitted if control goes over it. If not, return 0.
static std::pair<unsigned,unsigned>
    GetDiagForGotoScopeDecl(const Decl *D, bool isCPlusPlus) {
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    unsigned InDiag = 0, OutDiag = 0;
    if (VD->getType()->isVariablyModifiedType())
      InDiag = diag::note_protected_by_vla;

    if (VD->hasAttr<BlocksAttr>()) {
      InDiag = diag::note_protected_by___block;
      OutDiag = diag::note_exits___block;
    } else if (VD->hasAttr<CleanupAttr>()) {
      InDiag = diag::note_protected_by_cleanup;
      OutDiag = diag::note_exits_cleanup;
    } else if (isCPlusPlus) {
      if (!VD->hasLocalStorage())
        return std::make_pair(InDiag, OutDiag);
      
      ASTContext &Context = D->getASTContext();
      QualType T = Context.getBaseElementType(VD->getType());
      if (!T->isDependentType()) {
        // C++0x [stmt.dcl]p3:
        //   A program that jumps from a point where a variable with automatic
        //   storage duration is not in scope to a point where it is in scope
        //   is ill-formed unless the variable has scalar type, class type with
        //   a trivial default constructor and a trivial destructor, a 
        //   cv-qualified version of one of these types, or an array of one of
        //   the preceding types and is declared without an initializer (8.5).
        // Check whether this is a C++ class.
        CXXRecordDecl *Record = T->getAsCXXRecordDecl();
        
        if (const Expr *Init = VD->getInit()) {
          bool CallsTrivialConstructor = false;
          if (Record) {
            // FIXME: With generalized initializer lists, this may
            // classify "X x{};" as having no initializer.
            if (const CXXConstructExpr *Construct 
                                        = dyn_cast<CXXConstructExpr>(Init))
              if (const CXXConstructorDecl *Constructor
                                                = Construct->getConstructor())
                if ((Context.getLangOptions().CPlusPlus0x
                       ? Record->hasTrivialDefaultConstructor()
                       : Record->isPOD()) &&
                    Constructor->isDefaultConstructor())
                  CallsTrivialConstructor = true;
          }
          
          if (!CallsTrivialConstructor)
            InDiag = diag::note_protected_by_variable_init;
        }
        
        // Note whether we have a class with a non-trivial destructor.
        if (Record && !Record->hasTrivialDestructor())
          OutDiag = diag::note_exits_dtor;
      }
    }
    
    return std::make_pair(InDiag, OutDiag);    
  }

  if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
    if (TD->getUnderlyingType()->isVariablyModifiedType())
      return std::make_pair((unsigned) diag::note_protected_by_vla_typedef, 0);
  }

  if (const TypeAliasDecl *TD = dyn_cast<TypeAliasDecl>(D)) {
    if (TD->getUnderlyingType()->isVariablyModifiedType())
      return std::make_pair((unsigned) diag::note_protected_by_vla_type_alias, 0);
  }

  return std::make_pair(0U, 0U);
}

/// \brief Build scope information for a declaration that is part of a DeclStmt.
void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
  bool isCPlusPlus = this->S.getLangOptions().CPlusPlus;
  
  // If this decl causes a new scope, push and switch to it.
  std::pair<unsigned,unsigned> Diags
    = GetDiagForGotoScopeDecl(D, isCPlusPlus);
  if (Diags.first || Diags.second) {
    Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
                               D->getLocation()));
    ParentScope = Scopes.size()-1;
  }
  
  // If the decl has an initializer, walk it with the potentially new
  // scope we just installed.
  if (VarDecl *VD = dyn_cast<VarDecl>(D))
    if (Expr *Init = VD->getInit())
      BuildScopeInformation(Init, ParentScope);
}

/// BuildScopeInformation - The statements from CI to CE are known to form a
/// coherent VLA scope with a specified parent node.  Walk through the
/// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
/// walking the AST as needed.
void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned ParentScope) {
  bool SkipFirstSubStmt = false;
  
  // If we found a label, remember that it is in ParentScope scope.
  switch (S->getStmtClass()) {
  case Stmt::AddrLabelExprClass:
    IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
    break;

  case Stmt::IndirectGotoStmtClass:
    // "goto *&&lbl;" is a special case which we treat as equivalent
    // to a normal goto.  In addition, we don't calculate scope in the
    // operand (to avoid recording the address-of-label use), which
    // works only because of the restricted set of expressions which
    // we detect as constant targets.
    if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
      LabelAndGotoScopes[S] = ParentScope;
      Jumps.push_back(S);
      return;
    }

    LabelAndGotoScopes[S] = ParentScope;
    IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
    break;

  case Stmt::SwitchStmtClass:
    // Evaluate the condition variable before entering the scope of the switch
    // statement.
    if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
      BuildScopeInformation(Var, ParentScope);
      SkipFirstSubStmt = true;
    }
    // Fall through
      
  case Stmt::GotoStmtClass:
    // Remember both what scope a goto is in as well as the fact that we have
    // it.  This makes the second scan not have to walk the AST again.
    LabelAndGotoScopes[S] = ParentScope;
    Jumps.push_back(S);
    break;

  default:
    break;
  }

  for (Stmt::child_range CI = S->children(); CI; ++CI) {
    if (SkipFirstSubStmt) {
      SkipFirstSubStmt = false;
      continue;
    }
    
    Stmt *SubStmt = *CI;
    if (SubStmt == 0) continue;

    // Cases, labels, and defaults aren't "scope parents".  It's also
    // important to handle these iteratively instead of recursively in
    // order to avoid blowing out the stack.
    while (true) {
      Stmt *Next;
      if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt))
        Next = CS->getSubStmt();
      else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt))
        Next = DS->getSubStmt();
      else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
        Next = LS->getSubStmt();
      else
        break;

      LabelAndGotoScopes[SubStmt] = ParentScope;
      SubStmt = Next;
    }

    // If this is a declstmt with a VLA definition, it defines a scope from here
    // to the end of the containing context.
    if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
      // The decl statement creates a scope if any of the decls in it are VLAs
      // or have the cleanup attribute.
      for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
           I != E; ++I)
        BuildScopeInformation(*I, ParentScope);
      continue;
    }

    // Disallow jumps into any part of an @try statement by pushing a scope and
    // walking all sub-stmts in that scope.
    if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
      // Recursively walk the AST for the @try part.
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_objc_try,
                                 diag::note_exits_objc_try,
                                 AT->getAtTryLoc()));
      if (Stmt *TryPart = AT->getTryBody())
        BuildScopeInformation(TryPart, Scopes.size()-1);

      // Jump from the catch to the finally or try is not valid.
      for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
        ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
        Scopes.push_back(GotoScope(ParentScope,
                                   diag::note_protected_by_objc_catch,
                                   diag::note_exits_objc_catch,
                                   AC->getAtCatchLoc()));
        // @catches are nested and it isn't
        BuildScopeInformation(AC->getCatchBody(), Scopes.size()-1);
      }

      // Jump from the finally to the try or catch is not valid.
      if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
        Scopes.push_back(GotoScope(ParentScope,
                                   diag::note_protected_by_objc_finally,
                                   diag::note_exits_objc_finally,
                                   AF->getAtFinallyLoc()));
        BuildScopeInformation(AF, Scopes.size()-1);
      }

      continue;
    }

    // Disallow jumps into the protected statement of an @synchronized, but
    // allow jumps into the object expression it protects.
    if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){
      // Recursively walk the AST for the @synchronized object expr, it is
      // evaluated in the normal scope.
      BuildScopeInformation(AS->getSynchExpr(), ParentScope);

      // Recursively walk the AST for the @synchronized part, protected by a new
      // scope.
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_objc_synchronized,
                                 diag::note_exits_objc_synchronized,
                                 AS->getAtSynchronizedLoc()));
      BuildScopeInformation(AS->getSynchBody(), Scopes.size()-1);
      continue;
    }

    // Disallow jumps into any part of a C++ try statement. This is pretty
    // much the same as for Obj-C.
    if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) {
      Scopes.push_back(GotoScope(ParentScope,
                                 diag::note_protected_by_cxx_try,
                                 diag::note_exits_cxx_try,
                                 TS->getSourceRange().getBegin()));
      if (Stmt *TryBlock = TS->getTryBlock())
        BuildScopeInformation(TryBlock, Scopes.size()-1);

      // Jump from the catch into the try is not allowed either.
      for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
        CXXCatchStmt *CS = TS->getHandler(I);
        Scopes.push_back(GotoScope(ParentScope,
                                   diag::note_protected_by_cxx_catch,
                                   diag::note_exits_cxx_catch,
                                   CS->getSourceRange().getBegin()));
        BuildScopeInformation(CS->getHandlerBlock(), Scopes.size()-1);
      }

      continue;
    }

    // Recursively walk the AST.
    BuildScopeInformation(SubStmt, ParentScope);
  }
}

/// VerifyJumps - Verify each element of the Jumps array to see if they are
/// valid, emitting diagnostics if not.
void JumpScopeChecker::VerifyJumps() {
  while (!Jumps.empty()) {
    Stmt *Jump = Jumps.pop_back_val();

    // With a goto,
    if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
      CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
                diag::err_goto_into_protected_scope);
      continue;
    }

    // We only get indirect gotos here when they have a constant target.
    if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
      LabelDecl *Target = IGS->getConstantTarget();
      CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
                diag::err_goto_into_protected_scope);
      continue;
    }

    SwitchStmt *SS = cast<SwitchStmt>(Jump);
    for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
         SC = SC->getNextSwitchCase()) {
      assert(LabelAndGotoScopes.count(SC) && "Case not visited?");
      CheckJump(SS, SC, SC->getLocStart(),
                diag::err_switch_into_protected_scope);
    }
  }
}

/// VerifyIndirectJumps - Verify whether any possible indirect jump
/// might cross a protection boundary.  Unlike direct jumps, indirect
/// jumps count cleanups as protection boundaries:  since there's no
/// way to know where the jump is going, we can't implicitly run the
/// right cleanups the way we can with direct jumps.
///
/// Thus, an indirect jump is "trivial" if it bypasses no
/// initializations and no teardowns.  More formally, an indirect jump
/// from A to B is trivial if the path out from A to DCA(A,B) is
/// trivial and the path in from DCA(A,B) to B is trivial, where
/// DCA(A,B) is the deepest common ancestor of A and B.
/// Jump-triviality is transitive but asymmetric.
///
/// A path in is trivial if none of the entered scopes have an InDiag.
/// A path out is trivial is none of the exited scopes have an OutDiag.
///
/// Under these definitions, this function checks that the indirect
/// jump between A and B is trivial for every indirect goto statement A
/// and every label B whose address was taken in the function.
void JumpScopeChecker::VerifyIndirectJumps() {
  if (IndirectJumps.empty()) return;

  // If there aren't any address-of-label expressions in this function,
  // complain about the first indirect goto.
  if (IndirectJumpTargets.empty()) {
    S.Diag(IndirectJumps[0]->getGotoLoc(),
           diag::err_indirect_goto_without_addrlabel);
    return;
  }

  // Collect a single representative of every scope containing an
  // indirect goto.  For most code bases, this substantially cuts
  // down on the number of jump sites we'll have to consider later.
  typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
  llvm::SmallVector<JumpScope, 32> JumpScopes;
  {
    llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
    for (llvm::SmallVectorImpl<IndirectGotoStmt*>::iterator
           I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
      IndirectGotoStmt *IG = *I;
      assert(LabelAndGotoScopes.count(IG) &&
             "indirect jump didn't get added to scopes?");
      unsigned IGScope = LabelAndGotoScopes[IG];
      IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
      if (!Entry) Entry = IG;
    }
    JumpScopes.reserve(JumpScopesMap.size());
    for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
           I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
      JumpScopes.push_back(*I);
  }

  // Collect a single representative of every scope containing a
  // label whose address was taken somewhere in the function.
  // For most code bases, there will be only one such scope.
  llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
  for (llvm::SmallVectorImpl<LabelDecl*>::iterator
         I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
       I != E; ++I) {
    LabelDecl *TheLabel = *I;
    assert(LabelAndGotoScopes.count(TheLabel->getStmt()) &&
           "Referenced label didn't get added to scopes?");
    unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
    LabelDecl *&Target = TargetScopes[LabelScope];
    if (!Target) Target = TheLabel;
  }

  // For each target scope, make sure it's trivially reachable from
  // every scope containing a jump site.
  //
  // A path between scopes always consists of exitting zero or more
  // scopes, then entering zero or more scopes.  We build a set of
  // of scopes S from which the target scope can be trivially
  // entered, then verify that every jump scope can be trivially
  // exitted to reach a scope in S.
  llvm::BitVector Reachable(Scopes.size(), false);
  for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
         TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
    unsigned TargetScope = TI->first;
    LabelDecl *TargetLabel = TI->second;

    Reachable.reset();

    // Mark all the enclosing scopes from which you can safely jump
    // into the target scope.  'Min' will end up being the index of
    // the shallowest such scope.
    unsigned Min = TargetScope;
    while (true) {
      Reachable.set(Min);

      // Don't go beyond the outermost scope.
      if (Min == 0) break;

      // Stop if we can't trivially enter the current scope.
      if (Scopes[Min].InDiag) break;

      Min = Scopes[Min].ParentScope;
    }

    // Walk through all the jump sites, checking that they can trivially
    // reach this label scope.
    for (llvm::SmallVectorImpl<JumpScope>::iterator
           I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
      unsigned Scope = I->first;

      // Walk out the "scope chain" for this scope, looking for a scope
      // we've marked reachable.  For well-formed code this amortizes
      // to O(JumpScopes.size() / Scopes.size()):  we only iterate
      // when we see something unmarked, and in well-formed code we
      // mark everything we iterate past.
      bool IsReachable = false;
      while (true) {
        if (Reachable.test(Scope)) {
          // If we find something reachable, mark all the scopes we just
          // walked through as reachable.
          for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
            Reachable.set(S);
          IsReachable = true;
          break;
        }

        // Don't walk out if we've reached the top-level scope or we've
        // gotten shallower than the shallowest reachable scope.
        if (Scope == 0 || Scope < Min) break;

        // Don't walk out through an out-diagnostic.
        if (Scopes[Scope].OutDiag) break;

        Scope = Scopes[Scope].ParentScope;
      }

      // Only diagnose if we didn't find something.
      if (IsReachable) continue;

      DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
    }
  }
}

/// Diagnose an indirect jump which is known to cross scopes.
void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
                                            unsigned JumpScope,
                                            LabelDecl *Target,
                                            unsigned TargetScope) {
  assert(JumpScope != TargetScope);

  S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
  S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);

  unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);

  // Walk out the scope chain until we reach the common ancestor.
  for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
    if (Scopes[I].OutDiag)
      S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);

  // Now walk into the scopes containing the label whose address was taken.
  for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
    if (Scopes[I].InDiag)
      S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
}

/// CheckJump - Validate that the specified jump statement is valid: that it is
/// jumping within or out of its current scope, not into a deeper one.
void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To,
                                 SourceLocation DiagLoc, unsigned JumpDiag) {
  assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?");
  unsigned FromScope = LabelAndGotoScopes[From];

  assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?");
  unsigned ToScope = LabelAndGotoScopes[To];

  // Common case: exactly the same scope, which is fine.
  if (FromScope == ToScope) return;

  unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);

  // It's okay to jump out from a nested scope.
  if (CommonScope == ToScope) return;

  // Pull out (and reverse) any scopes we might need to diagnose skipping.
  llvm::SmallVector<unsigned, 10> ToScopes;
  for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope)
    if (Scopes[I].InDiag)
      ToScopes.push_back(I);

  // If the only scopes present are cleanup scopes, we're okay.
  if (ToScopes.empty()) return;

  S.Diag(DiagLoc, JumpDiag);

  // Emit diagnostics for whatever is left in ToScopes.
  for (unsigned i = 0, e = ToScopes.size(); i != e; ++i)
    S.Diag(Scopes[ToScopes[i]].Loc, Scopes[ToScopes[i]].InDiag);
}

void Sema::DiagnoseInvalidJumps(Stmt *Body) {
  (void)JumpScopeChecker(Body, *this);
}
OpenPOWER on IntegriCloud