summaryrefslogtreecommitdiffstats
path: root/lib/MC/MCAssembler.cpp
blob: 0afdf98cbe797a6b80470e8c7b12694080b508cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "assembler"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Target/TargetMachOWriterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;

class MachObjectWriter;

STATISTIC(EmittedFragments, "Number of emitted assembler fragments");

// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.

static void WriteFileData(raw_ostream &OS, const MCSectionData &SD,
                          MachObjectWriter &MOW);

/// isVirtualSection - Check if this is a section which does not actually exist
/// in the object file.
static bool isVirtualSection(const MCSection &Section) {
  // FIXME: Lame.
  const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
  unsigned Type = SMO.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
  return (Type == MCSectionMachO::S_ZEROFILL);
}

class MachObjectWriter {
  // See <mach-o/loader.h>.
  enum {
    Header_Magic32 = 0xFEEDFACE,
    Header_Magic64 = 0xFEEDFACF
  };
  
  static const unsigned Header32Size = 28;
  static const unsigned Header64Size = 32;
  static const unsigned SegmentLoadCommand32Size = 56;
  static const unsigned Section32Size = 68;
  static const unsigned SymtabLoadCommandSize = 24;
  static const unsigned DysymtabLoadCommandSize = 80;
  static const unsigned Nlist32Size = 12;
  static const unsigned RelocationInfoSize = 8;

  enum HeaderFileType {
    HFT_Object = 0x1
  };

  enum HeaderFlags {
    HF_SubsectionsViaSymbols = 0x2000
  };

  enum LoadCommandType {
    LCT_Segment = 0x1,
    LCT_Symtab = 0x2,
    LCT_Dysymtab = 0xb
  };

  // See <mach-o/nlist.h>.
  enum SymbolTypeType {
    STT_Undefined = 0x00,
    STT_Absolute  = 0x02,
    STT_Section   = 0x0e
  };

  enum SymbolTypeFlags {
    // If any of these bits are set, then the entry is a stab entry number (see
    // <mach-o/stab.h>. Otherwise the other masks apply.
    STF_StabsEntryMask = 0xe0,

    STF_TypeMask       = 0x0e,
    STF_External       = 0x01,
    STF_PrivateExtern  = 0x10
  };

  /// IndirectSymbolFlags - Flags for encoding special values in the indirect
  /// symbol entry.
  enum IndirectSymbolFlags {
    ISF_Local    = 0x80000000,
    ISF_Absolute = 0x40000000
  };

  /// RelocationFlags - Special flags for addresses.
  enum RelocationFlags {
    RF_Scattered = 0x80000000
  };

  enum RelocationInfoType {
    RIT_Vanilla             = 0,
    RIT_Pair                = 1,
    RIT_Difference          = 2,
    RIT_PreboundLazyPointer = 3,
    RIT_LocalDifference     = 4
  };

  /// MachSymbolData - Helper struct for containing some precomputed information
  /// on symbols.
  struct MachSymbolData {
    MCSymbolData *SymbolData;
    uint64_t StringIndex;
    uint8_t SectionIndex;

    // Support lexicographic sorting.
    bool operator<(const MachSymbolData &RHS) const {
      const std::string &Name = SymbolData->getSymbol().getName();
      return Name < RHS.SymbolData->getSymbol().getName();
    }
  };

  raw_ostream &OS;
  bool IsLSB;

public:
  MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true) 
    : OS(_OS), IsLSB(_IsLSB) {
  }

  /// @name Helper Methods
  /// @{

  void Write8(uint8_t Value) {
    OS << char(Value);
  }

  void Write16(uint16_t Value) {
    if (IsLSB) {
      Write8(uint8_t(Value >> 0));
      Write8(uint8_t(Value >> 8));
    } else {
      Write8(uint8_t(Value >> 8));
      Write8(uint8_t(Value >> 0));
    }
  }

  void Write32(uint32_t Value) {
    if (IsLSB) {
      Write16(uint16_t(Value >> 0));
      Write16(uint16_t(Value >> 16));
    } else {
      Write16(uint16_t(Value >> 16));
      Write16(uint16_t(Value >> 0));
    }
  }

  void Write64(uint64_t Value) {
    if (IsLSB) {
      Write32(uint32_t(Value >> 0));
      Write32(uint32_t(Value >> 32));
    } else {
      Write32(uint32_t(Value >> 32));
      Write32(uint32_t(Value >> 0));
    }
  }

  void WriteZeros(unsigned N) {
    const char Zeros[16] = { 0 };
    
    for (unsigned i = 0, e = N / 16; i != e; ++i)
      OS << StringRef(Zeros, 16);
    
    OS << StringRef(Zeros, N % 16);
  }

  void WriteString(const StringRef &Str, unsigned ZeroFillSize = 0) {
    OS << Str;
    if (ZeroFillSize)
      WriteZeros(ZeroFillSize - Str.size());
  }

  /// @}
  
  void WriteHeader32(unsigned NumLoadCommands, unsigned LoadCommandsSize,
                     bool SubsectionsViaSymbols) {
    uint32_t Flags = 0;

    if (SubsectionsViaSymbols)
      Flags |= HF_SubsectionsViaSymbols;

    // struct mach_header (28 bytes)

    uint64_t Start = OS.tell();
    (void) Start;

    Write32(Header_Magic32);

    // FIXME: Support cputype.
    Write32(TargetMachOWriterInfo::HDR_CPU_TYPE_I386);
    // FIXME: Support cpusubtype.
    Write32(TargetMachOWriterInfo::HDR_CPU_SUBTYPE_I386_ALL);
    Write32(HFT_Object);
    Write32(NumLoadCommands);    // Object files have a single load command, the
                                 // segment.
    Write32(LoadCommandsSize);
    Write32(Flags);

    assert(OS.tell() - Start == Header32Size);
  }

  /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command.
  ///
  /// \arg NumSections - The number of sections in this segment.
  /// \arg SectionDataSize - The total size of the sections.
  void WriteSegmentLoadCommand32(unsigned NumSections,
                                 uint64_t VMSize,
                                 uint64_t SectionDataStartOffset,
                                 uint64_t SectionDataSize) {
    // struct segment_command (56 bytes)

    uint64_t Start = OS.tell();
    (void) Start;

    Write32(LCT_Segment);
    Write32(SegmentLoadCommand32Size + NumSections * Section32Size);

    WriteString("", 16);
    Write32(0); // vmaddr
    Write32(VMSize); // vmsize
    Write32(SectionDataStartOffset); // file offset
    Write32(SectionDataSize); // file size
    Write32(0x7); // maxprot
    Write32(0x7); // initprot
    Write32(NumSections);
    Write32(0); // flags

    assert(OS.tell() - Start == SegmentLoadCommand32Size);
  }

  void WriteSection32(const MCSectionData &SD, uint64_t FileOffset,
                      uint64_t RelocationsStart, unsigned NumRelocations) {
    // The offset is unused for virtual sections.
    if (isVirtualSection(SD.getSection())) {
      assert(SD.getFileSize() == 0 && "Invalid file size!");
      FileOffset = 0;
    }

    // struct section (68 bytes)

    uint64_t Start = OS.tell();
    (void) Start;

    // FIXME: cast<> support!
    const MCSectionMachO &Section =
      static_cast<const MCSectionMachO&>(SD.getSection());
    WriteString(Section.getSectionName(), 16);
    WriteString(Section.getSegmentName(), 16);
    Write32(SD.getAddress()); // address
    Write32(SD.getSize()); // size
    Write32(FileOffset);

    assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
    Write32(Log2_32(SD.getAlignment()));
    Write32(NumRelocations ? RelocationsStart : 0);
    Write32(NumRelocations);
    Write32(Section.getTypeAndAttributes());
    Write32(0); // reserved1
    Write32(Section.getStubSize()); // reserved2

    assert(OS.tell() - Start == Section32Size);
  }

  void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols,
                              uint32_t StringTableOffset,
                              uint32_t StringTableSize) {
    // struct symtab_command (24 bytes)

    uint64_t Start = OS.tell();
    (void) Start;

    Write32(LCT_Symtab);
    Write32(SymtabLoadCommandSize);
    Write32(SymbolOffset);
    Write32(NumSymbols);
    Write32(StringTableOffset);
    Write32(StringTableSize);

    assert(OS.tell() - Start == SymtabLoadCommandSize);
  }

  void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol,
                                uint32_t NumLocalSymbols,
                                uint32_t FirstExternalSymbol,
                                uint32_t NumExternalSymbols,
                                uint32_t FirstUndefinedSymbol,
                                uint32_t NumUndefinedSymbols,
                                uint32_t IndirectSymbolOffset,
                                uint32_t NumIndirectSymbols) {
    // struct dysymtab_command (80 bytes)

    uint64_t Start = OS.tell();
    (void) Start;

    Write32(LCT_Dysymtab);
    Write32(DysymtabLoadCommandSize);
    Write32(FirstLocalSymbol);
    Write32(NumLocalSymbols);
    Write32(FirstExternalSymbol);
    Write32(NumExternalSymbols);
    Write32(FirstUndefinedSymbol);
    Write32(NumUndefinedSymbols);
    Write32(0); // tocoff
    Write32(0); // ntoc
    Write32(0); // modtaboff
    Write32(0); // nmodtab
    Write32(0); // extrefsymoff
    Write32(0); // nextrefsyms
    Write32(IndirectSymbolOffset);
    Write32(NumIndirectSymbols);
    Write32(0); // extreloff
    Write32(0); // nextrel
    Write32(0); // locreloff
    Write32(0); // nlocrel

    assert(OS.tell() - Start == DysymtabLoadCommandSize);
  }

  void WriteNlist32(MachSymbolData &MSD) {
    MCSymbolData &Data = *MSD.SymbolData;
    const MCSymbol &Symbol = Data.getSymbol();
    uint8_t Type = 0;
    uint16_t Flags = Data.getFlags();
    uint32_t Address = 0;

    // Set the N_TYPE bits. See <mach-o/nlist.h>.
    //
    // FIXME: Are the prebound or indirect fields possible here?
    if (Symbol.isUndefined())
      Type = STT_Undefined;
    else if (Symbol.isAbsolute())
      Type = STT_Absolute;
    else
      Type = STT_Section;

    // FIXME: Set STAB bits.

    if (Data.isPrivateExtern())
      Type |= STF_PrivateExtern;

    // Set external bit.
    if (Data.isExternal() || Symbol.isUndefined())
      Type |= STF_External;

    // Compute the symbol address.
    if (Symbol.isDefined()) {
      if (Symbol.isAbsolute()) {
        llvm_unreachable("FIXME: Not yet implemented!");
      } else {
        Address = Data.getFragment()->getAddress() + Data.getOffset();
      }
    } else if (Data.isCommon()) {
      // Common symbols are encoded with the size in the address
      // field, and their alignment in the flags.
      Address = Data.getCommonSize();

      // Common alignment is packed into the 'desc' bits.
      if (unsigned Align = Data.getCommonAlignment()) {
        unsigned Log2Size = Log2_32(Align);
        assert((1U << Log2Size) == Align && "Invalid 'common' alignment!");
        if (Log2Size > 15)
          llvm_report_error("invalid 'common' alignment '" +
                            Twine(Align) + "'");
        // FIXME: Keep this mask with the SymbolFlags enumeration.
        Flags = (Flags & 0xF0FF) | (Log2Size << 8);
      }
    }

    // struct nlist (12 bytes)

    Write32(MSD.StringIndex);
    Write8(Type);
    Write8(MSD.SectionIndex);
    
    // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc'
    // value.
    Write16(Flags);
    Write32(Address);
  }

  struct MachRelocationEntry {
    uint32_t Word0;
    uint32_t Word1;
  };
  void ComputeScatteredRelocationInfo(MCAssembler &Asm,
                                      MCSectionData::Fixup &Fixup,
                             DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap,
                                     std::vector<MachRelocationEntry> &Relocs) {
    uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset;
    unsigned IsPCRel = 0;
    unsigned Type = RIT_Vanilla;

    // See <reloc.h>.

    const MCSymbol *A = Fixup.Value.getSymA();
    MCSymbolData *SD = SymbolMap.lookup(A);
    uint32_t Value = SD->getFragment()->getAddress() + SD->getOffset();
    uint32_t Value2 = 0;

    if (const MCSymbol *B = Fixup.Value.getSymB()) {
      Type = RIT_LocalDifference;

      MCSymbolData *SD = SymbolMap.lookup(B);
      Value2 = SD->getFragment()->getAddress() + SD->getOffset();
    }

    unsigned Log2Size = Log2_32(Fixup.Size);
    assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!");

    // The value which goes in the fixup is current value of the expression.
    Fixup.FixedValue = Value - Value2 + Fixup.Value.getConstant();

    MachRelocationEntry MRE;
    MRE.Word0 = ((Address   <<  0) |
                 (Type      << 24) |
                 (Log2Size  << 28) |
                 (IsPCRel   << 30) |
                 RF_Scattered);
    MRE.Word1 = Value;
    Relocs.push_back(MRE);

    if (Type == RIT_LocalDifference) {
      Type = RIT_Pair;

      MachRelocationEntry MRE;
      MRE.Word0 = ((0         <<  0) |
                   (Type      << 24) |
                   (Log2Size  << 28) |
                   (0   << 30) |
                   RF_Scattered);
      MRE.Word1 = Value2;
      Relocs.push_back(MRE);
    }
  }

  void ComputeRelocationInfo(MCAssembler &Asm,
                             MCSectionData::Fixup &Fixup,
                             DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap,
                             std::vector<MachRelocationEntry> &Relocs) {
    // If this is a local symbol plus an offset or a difference, then we need a
    // scattered relocation entry.
    if (Fixup.Value.getSymB()) // a - b
      return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs);
    if (Fixup.Value.getSymA() && Fixup.Value.getConstant())
      if (!Fixup.Value.getSymA()->isUndefined())
        return ComputeScatteredRelocationInfo(Asm, Fixup, SymbolMap, Relocs);
        
    // See <reloc.h>.
    uint32_t Address = Fixup.Fragment->getOffset() + Fixup.Offset;
    uint32_t Value = 0;
    unsigned Index = 0;
    unsigned IsPCRel = 0;
    unsigned IsExtern = 0;
    unsigned Type = 0;

    if (Fixup.Value.isAbsolute()) { // constant
      // SymbolNum of 0 indicates the absolute section.
      Type = RIT_Vanilla;
      Value = 0;
      llvm_unreachable("FIXME: Not yet implemented!");
    } else {
      const MCSymbol *Symbol = Fixup.Value.getSymA();
      MCSymbolData *SD = SymbolMap.lookup(Symbol);
      
      if (Symbol->isUndefined()) {
        IsExtern = 1;
        Index = SD->getIndex();
        Value = 0;
      } else {
        // The index is the section ordinal.
        //
        // FIXME: O(N)
        Index = 1;
        for (MCAssembler::iterator it = Asm.begin(),
               ie = Asm.end(); it != ie; ++it, ++Index)
          if (&*it == SD->getFragment()->getParent())
            break;
        Value = SD->getFragment()->getAddress() + SD->getOffset();
      }

      Type = RIT_Vanilla;
    }

    // The value which goes in the fixup is current value of the expression.
    Fixup.FixedValue = Value + Fixup.Value.getConstant();

    unsigned Log2Size = Log2_32(Fixup.Size);
    assert((1U << Log2Size) == Fixup.Size && "Invalid fixup size!");

    // struct relocation_info (8 bytes)
    MachRelocationEntry MRE;
    MRE.Word0 = Address;
    MRE.Word1 = ((Index     <<  0) |
                 (IsPCRel   << 24) |
                 (Log2Size  << 25) |
                 (IsExtern  << 27) |
                 (Type      << 28));
    Relocs.push_back(MRE);
  }
  
  void BindIndirectSymbols(MCAssembler &Asm,
                           DenseMap<const MCSymbol*,MCSymbolData*> &SymbolMap) {
    // This is the point where 'as' creates actual symbols for indirect symbols
    // (in the following two passes). It would be easier for us to do this
    // sooner when we see the attribute, but that makes getting the order in the
    // symbol table much more complicated than it is worth.
    //
    // FIXME: Revisit this when the dust settles.

    // Bind non lazy symbol pointers first.
    for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
           ie = Asm.indirect_symbol_end(); it != ie; ++it) {
      // FIXME: cast<> support!
      const MCSectionMachO &Section =
        static_cast<const MCSectionMachO&>(it->SectionData->getSection());

      unsigned Type =
        Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
      if (Type != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS)
        continue;

      MCSymbolData *&Entry = SymbolMap[it->Symbol];
      if (!Entry)
        Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm);
    }

    // Then lazy symbol pointers and symbol stubs.
    for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
           ie = Asm.indirect_symbol_end(); it != ie; ++it) {
      // FIXME: cast<> support!
      const MCSectionMachO &Section =
        static_cast<const MCSectionMachO&>(it->SectionData->getSection());

      unsigned Type =
        Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
      if (Type != MCSectionMachO::S_LAZY_SYMBOL_POINTERS &&
          Type != MCSectionMachO::S_SYMBOL_STUBS)
        continue;

      MCSymbolData *&Entry = SymbolMap[it->Symbol];
      if (!Entry) {
        Entry = new MCSymbolData(*it->Symbol, 0, 0, &Asm);

        // Set the symbol type to undefined lazy, but only on construction.
        //
        // FIXME: Do not hardcode.
        Entry->setFlags(Entry->getFlags() | 0x0001);
      }
    }
  }

  /// ComputeSymbolTable - Compute the symbol table data
  ///
  /// \param StringTable [out] - The string table data.
  /// \param StringIndexMap [out] - Map from symbol names to offsets in the
  /// string table.
  void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
                          std::vector<MachSymbolData> &LocalSymbolData,
                          std::vector<MachSymbolData> &ExternalSymbolData,
                          std::vector<MachSymbolData> &UndefinedSymbolData) {
    // Build section lookup table.
    DenseMap<const MCSection*, uint8_t> SectionIndexMap;
    unsigned Index = 1;
    for (MCAssembler::iterator it = Asm.begin(),
           ie = Asm.end(); it != ie; ++it, ++Index)
      SectionIndexMap[&it->getSection()] = Index;
    assert(Index <= 256 && "Too many sections!");

    // Index 0 is always the empty string.
    StringMap<uint64_t> StringIndexMap;
    StringTable += '\x00';

    // Build the symbol arrays and the string table, but only for non-local
    // symbols.
    //
    // The particular order that we collect the symbols and create the string
    // table, then sort the symbols is chosen to match 'as'. Even though it
    // doesn't matter for correctness, this is important for letting us diff .o
    // files.
    for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
           ie = Asm.symbol_end(); it != ie; ++it) {
      const MCSymbol &Symbol = it->getSymbol();

      // Ignore assembler temporaries.
      if (it->getSymbol().isTemporary())
        continue;

      if (!it->isExternal() && !Symbol.isUndefined())
        continue;

      uint64_t &Entry = StringIndexMap[Symbol.getName()];
      if (!Entry) {
        Entry = StringTable.size();
        StringTable += Symbol.getName();
        StringTable += '\x00';
      }

      MachSymbolData MSD;
      MSD.SymbolData = it;
      MSD.StringIndex = Entry;

      if (Symbol.isUndefined()) {
        MSD.SectionIndex = 0;
        UndefinedSymbolData.push_back(MSD);
      } else if (Symbol.isAbsolute()) {
        MSD.SectionIndex = 0;
        ExternalSymbolData.push_back(MSD);
      } else {
        MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
        assert(MSD.SectionIndex && "Invalid section index!");
        ExternalSymbolData.push_back(MSD);
      }
    }

    // Now add the data for local symbols.
    for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
           ie = Asm.symbol_end(); it != ie; ++it) {
      const MCSymbol &Symbol = it->getSymbol();

      // Ignore assembler temporaries.
      if (it->getSymbol().isTemporary())
        continue;

      if (it->isExternal() || Symbol.isUndefined())
        continue;

      uint64_t &Entry = StringIndexMap[Symbol.getName()];
      if (!Entry) {
        Entry = StringTable.size();
        StringTable += Symbol.getName();
        StringTable += '\x00';
      }

      MachSymbolData MSD;
      MSD.SymbolData = it;
      MSD.StringIndex = Entry;

      if (Symbol.isAbsolute()) {
        MSD.SectionIndex = 0;
        LocalSymbolData.push_back(MSD);
      } else {
        MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
        assert(MSD.SectionIndex && "Invalid section index!");
        LocalSymbolData.push_back(MSD);
      }
    }

    // External and undefined symbols are required to be in lexicographic order.
    std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
    std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());

    // Set the symbol indices.
    Index = 0;
    for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
      LocalSymbolData[i].SymbolData->setIndex(Index++);
    for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
      ExternalSymbolData[i].SymbolData->setIndex(Index++);
    for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
      UndefinedSymbolData[i].SymbolData->setIndex(Index++);

    // The string table is padded to a multiple of 4.
    //
    // FIXME: Check to see if this varies per arch.
    while (StringTable.size() % 4)
      StringTable += '\x00';
  }

  void WriteObject(MCAssembler &Asm) {
    unsigned NumSections = Asm.size();

    // Compute the symbol -> symbol data map.
    //
    // FIXME: This should not be here.
    DenseMap<const MCSymbol*, MCSymbolData *> SymbolMap;
    for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
           ie = Asm.symbol_end(); it != ie; ++it)
      SymbolMap[&it->getSymbol()] = it;

    // Create symbol data for any indirect symbols.
    BindIndirectSymbols(Asm, SymbolMap);

    // Compute symbol table information.
    SmallString<256> StringTable;
    std::vector<MachSymbolData> LocalSymbolData;
    std::vector<MachSymbolData> ExternalSymbolData;
    std::vector<MachSymbolData> UndefinedSymbolData;
    unsigned NumSymbols = Asm.symbol_size();

    // No symbol table command is written if there are no symbols.
    if (NumSymbols)
      ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
                         UndefinedSymbolData);
  
    // The section data starts after the header, the segment load command (and
    // section headers) and the symbol table.
    unsigned NumLoadCommands = 1;
    uint64_t LoadCommandsSize =
      SegmentLoadCommand32Size + NumSections * Section32Size;

    // Add the symbol table load command sizes, if used.
    if (NumSymbols) {
      NumLoadCommands += 2;
      LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize;
    }

    // Compute the total size of the section data, as well as its file size and
    // vm size.
    uint64_t SectionDataStart = Header32Size + LoadCommandsSize;
    uint64_t SectionDataSize = 0;
    uint64_t SectionDataFileSize = 0;
    uint64_t VMSize = 0;
    for (MCAssembler::iterator it = Asm.begin(),
           ie = Asm.end(); it != ie; ++it) {
      MCSectionData &SD = *it;

      VMSize = std::max(VMSize, SD.getAddress() + SD.getSize());

      if (isVirtualSection(SD.getSection()))
        continue;

      SectionDataSize = std::max(SectionDataSize,
                                 SD.getAddress() + SD.getSize());
      SectionDataFileSize = std::max(SectionDataFileSize, 
                                     SD.getAddress() + SD.getFileSize());
    }

    // The section data is passed to 4 bytes.
    //
    // FIXME: Is this machine dependent?
    unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
    SectionDataFileSize += SectionDataPadding;

    // Write the prolog, starting with the header and load command...
    WriteHeader32(NumLoadCommands, LoadCommandsSize,
                  Asm.getSubsectionsViaSymbols());
    WriteSegmentLoadCommand32(NumSections, VMSize,
                              SectionDataStart, SectionDataSize);
  
    // ... and then the section headers.
    // 
    // We also compute the section relocations while we do this. Note that
    // compute relocation info will also update the fixup to have the correct
    // value; this will be overwrite the appropriate data in the fragment when
    // it is written.
    std::vector<MachRelocationEntry> RelocInfos;
    uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
    for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie;
         ++it) {
      MCSectionData &SD = *it;

      // The assembler writes relocations in the reverse order they were seen.
      //
      // FIXME: It is probably more complicated than this.
      unsigned NumRelocsStart = RelocInfos.size();
      for (unsigned i = 0, e = SD.fixup_size(); i != e; ++i)
        ComputeRelocationInfo(Asm, SD.getFixups()[e - i - 1], SymbolMap,
                              RelocInfos);

      unsigned NumRelocs = RelocInfos.size() - NumRelocsStart;
      uint64_t SectionStart = SectionDataStart + SD.getAddress();
      WriteSection32(SD, SectionStart, RelocTableEnd, NumRelocs);
      RelocTableEnd += NumRelocs * RelocationInfoSize;
    }
    
    // Write the symbol table load command, if used.
    if (NumSymbols) {
      unsigned FirstLocalSymbol = 0;
      unsigned NumLocalSymbols = LocalSymbolData.size();
      unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
      unsigned NumExternalSymbols = ExternalSymbolData.size();
      unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
      unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
      unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
      unsigned NumSymTabSymbols =
        NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
      uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
      uint64_t IndirectSymbolOffset = 0;

      // If used, the indirect symbols are written after the section data.
      if (NumIndirectSymbols)
        IndirectSymbolOffset = RelocTableEnd;

      // The symbol table is written after the indirect symbol data.
      uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize;

      // The string table is written after symbol table.
      uint64_t StringTableOffset =
        SymbolTableOffset + NumSymTabSymbols * Nlist32Size;
      WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
                             StringTableOffset, StringTable.size());

      WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
                               FirstExternalSymbol, NumExternalSymbols,
                               FirstUndefinedSymbol, NumUndefinedSymbols,
                               IndirectSymbolOffset, NumIndirectSymbols);
    }

    // Write the actual section data.
    for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
      WriteFileData(OS, *it, *this);

    // Write the extra padding.
    WriteZeros(SectionDataPadding);

    // Write the relocation entries.
    for (unsigned i = 0, e = RelocInfos.size(); i != e; ++i) {
      Write32(RelocInfos[i].Word0);
      Write32(RelocInfos[i].Word1);
    }

    // Write the symbol table data, if used.
    if (NumSymbols) {
      // Write the indirect symbol entries.
      for (MCAssembler::indirect_symbol_iterator
             it = Asm.indirect_symbol_begin(),
             ie = Asm.indirect_symbol_end(); it != ie; ++it) {
        // Indirect symbols in the non lazy symbol pointer section have some
        // special handling.
        const MCSectionMachO &Section =
          static_cast<const MCSectionMachO&>(it->SectionData->getSection());
        unsigned Type =
          Section.getTypeAndAttributes() & MCSectionMachO::SECTION_TYPE;
        if (Type == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
          // If this symbol is defined and internal, mark it as such.
          if (it->Symbol->isDefined() &&
              !SymbolMap.lookup(it->Symbol)->isExternal()) {
            uint32_t Flags = ISF_Local;
            if (it->Symbol->isAbsolute())
              Flags |= ISF_Absolute;
            Write32(Flags);
            continue;
          }
        }

        Write32(SymbolMap[it->Symbol]->getIndex());
      }

      // FIXME: Check that offsets match computed ones.

      // Write the symbol table entries.
      for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
        WriteNlist32(LocalSymbolData[i]);
      for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
        WriteNlist32(ExternalSymbolData[i]);
      for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
        WriteNlist32(UndefinedSymbolData[i]);

      // Write the string table.
      OS << StringTable.str();
    }
  }
};

/* *** */

MCFragment::MCFragment() : Kind(FragmentType(~0)) {
}

MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
  : Kind(_Kind),
    Parent(_Parent),
    FileSize(~UINT64_C(0))
{
  if (Parent)
    Parent->getFragmentList().push_back(this);
}

MCFragment::~MCFragment() {
}

uint64_t MCFragment::getAddress() const {
  assert(getParent() && "Missing Section!");
  return getParent()->getAddress() + Offset;
}

/* *** */

MCSectionData::MCSectionData() : Section(0) {}

MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
  : Section(&_Section),
    Alignment(1),
    Address(~UINT64_C(0)),
    Size(~UINT64_C(0)),
    FileSize(~UINT64_C(0)),
    LastFixupLookup(~0)
{
  if (A)
    A->getSectionList().push_back(this);
}

const MCSectionData::Fixup *
MCSectionData::LookupFixup(const MCFragment *Fragment, uint64_t Offset) const {
  // Use a one level cache to turn the common case of accessing the fixups in
  // order into O(1) instead of O(N).
  unsigned i = LastFixupLookup, Count = Fixups.size(), End = Fixups.size();
  if (i >= End)
    i = 0;
  while (Count--) {
    const Fixup &F = Fixups[i];
    if (F.Fragment == Fragment && F.Offset == Offset) {
      LastFixupLookup = i;
      return &F;
    }

    ++i;
    if (i == End)
      i = 0;
  }

  return 0;
}
                                                       
/* *** */

MCSymbolData::MCSymbolData() : Symbol(0) {}

MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
                           uint64_t _Offset, MCAssembler *A)
  : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
    IsExternal(false), IsPrivateExtern(false),
    CommonSize(0), CommonAlign(0), Flags(0), Index(0)
{
  if (A)
    A->getSymbolList().push_back(this);
}

/* *** */

MCAssembler::MCAssembler(MCContext &_Context, raw_ostream &_OS)
  : Context(_Context), OS(_OS), SubsectionsViaSymbols(false)
{
}

MCAssembler::~MCAssembler() {
}

void MCAssembler::LayoutSection(MCSectionData &SD) {
  uint64_t Address = SD.getAddress();

  for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) {
    MCFragment &F = *it;

    F.setOffset(Address - SD.getAddress());

    // Evaluate fragment size.
    switch (F.getKind()) {
    case MCFragment::FT_Align: {
      MCAlignFragment &AF = cast<MCAlignFragment>(F);
      
      uint64_t Size = OffsetToAlignment(Address, AF.getAlignment());
      if (Size > AF.getMaxBytesToEmit())
        AF.setFileSize(0);
      else
        AF.setFileSize(Size);
      break;
    }

    case MCFragment::FT_Data:
      F.setFileSize(F.getMaxFileSize());
      break;

    case MCFragment::FT_Fill: {
      MCFillFragment &FF = cast<MCFillFragment>(F);

      F.setFileSize(F.getMaxFileSize());

      // If the fill value is constant, thats it.
      if (FF.getValue().isAbsolute())
        break;

      // Otherwise, add fixups for the values.
      for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
        MCSectionData::Fixup Fix(F, i * FF.getValueSize(),
                                 FF.getValue(),FF.getValueSize());
        SD.getFixups().push_back(Fix);
      }
      break;
    }

    case MCFragment::FT_Org: {
      MCOrgFragment &OF = cast<MCOrgFragment>(F);

      if (!OF.getOffset().isAbsolute())
        llvm_unreachable("FIXME: Not yet implemented!");
      uint64_t OrgOffset = OF.getOffset().getConstant();
      uint64_t Offset = Address - SD.getAddress();

      // FIXME: We need a way to communicate this error.
      if (OrgOffset < Offset)
        llvm_report_error("invalid .org offset '" + Twine(OrgOffset) + 
                          "' (at offset '" + Twine(Offset) + "'");
        
      F.setFileSize(OrgOffset - Offset);
      break;
    }      

    case MCFragment::FT_ZeroFill: {
      MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F);

      // Align the fragment offset; it is safe to adjust the offset freely since
      // this is only in virtual sections.
      uint64_t Aligned = RoundUpToAlignment(Address, ZFF.getAlignment());
      F.setOffset(Aligned - SD.getAddress());

      // FIXME: This is misnamed.
      F.setFileSize(ZFF.getSize());
      break;
    }
    }

    Address += F.getFileSize();
  }

  // Set the section sizes.
  SD.setSize(Address - SD.getAddress());
  if (isVirtualSection(SD.getSection()))
    SD.setFileSize(0);
  else
    SD.setFileSize(Address - SD.getAddress());
}

/// WriteFileData - Write the \arg F data to the output file.
static void WriteFileData(raw_ostream &OS, const MCFragment &F,
                          MachObjectWriter &MOW) {
  uint64_t Start = OS.tell();
  (void) Start;
    
  ++EmittedFragments;

  // FIXME: Embed in fragments instead?
  switch (F.getKind()) {
  case MCFragment::FT_Align: {
    MCAlignFragment &AF = cast<MCAlignFragment>(F);
    uint64_t Count = AF.getFileSize() / AF.getValueSize();

    // FIXME: This error shouldn't actually occur (the front end should emit
    // multiple .align directives to enforce the semantics it wants), but is
    // severe enough that we want to report it. How to handle this?
    if (Count * AF.getValueSize() != AF.getFileSize())
      llvm_report_error("undefined .align directive, value size '" + 
                        Twine(AF.getValueSize()) + 
                        "' is not a divisor of padding size '" +
                        Twine(AF.getFileSize()) + "'");

    for (uint64_t i = 0; i != Count; ++i) {
      switch (AF.getValueSize()) {
      default:
        assert(0 && "Invalid size!");
      case 1: MOW.Write8 (uint8_t (AF.getValue())); break;
      case 2: MOW.Write16(uint16_t(AF.getValue())); break;
      case 4: MOW.Write32(uint32_t(AF.getValue())); break;
      case 8: MOW.Write64(uint64_t(AF.getValue())); break;
      }
    }
    break;
  }

  case MCFragment::FT_Data:
    OS << cast<MCDataFragment>(F).getContents().str();
    break;

  case MCFragment::FT_Fill: {
    MCFillFragment &FF = cast<MCFillFragment>(F);

    int64_t Value = 0;
    if (FF.getValue().isAbsolute())
      Value = FF.getValue().getConstant();
    for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
      if (!FF.getValue().isAbsolute()) {
        // Find the fixup.
        //
        // FIXME: Find a better way to write in the fixes.
        const MCSectionData::Fixup *Fixup =
          F.getParent()->LookupFixup(&F, i * FF.getValueSize());
        assert(Fixup && "Missing fixup for fill value!");
        Value = Fixup->FixedValue;
      }

      switch (FF.getValueSize()) {
      default:
        assert(0 && "Invalid size!");
      case 1: MOW.Write8 (uint8_t (Value)); break;
      case 2: MOW.Write16(uint16_t(Value)); break;
      case 4: MOW.Write32(uint32_t(Value)); break;
      case 8: MOW.Write64(uint64_t(Value)); break;
      }
    }
    break;
  }
    
  case MCFragment::FT_Org: {
    MCOrgFragment &OF = cast<MCOrgFragment>(F);

    for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i)
      MOW.Write8(uint8_t(OF.getValue()));

    break;
  }

  case MCFragment::FT_ZeroFill: {
    assert(0 && "Invalid zero fill fragment in concrete section!");
    break;
  }
  }

  assert(OS.tell() - Start == F.getFileSize());
}

/// WriteFileData - Write the \arg SD data to the output file.
static void WriteFileData(raw_ostream &OS, const MCSectionData &SD,
                          MachObjectWriter &MOW) {
  // Ignore virtual sections.
  if (isVirtualSection(SD.getSection())) {
    assert(SD.getFileSize() == 0);
    return;
  }

  uint64_t Start = OS.tell();
  (void) Start;
      
  for (MCSectionData::const_iterator it = SD.begin(),
         ie = SD.end(); it != ie; ++it)
    WriteFileData(OS, *it, MOW);

  // Add section padding.
  assert(SD.getFileSize() >= SD.getSize() && "Invalid section sizes!");
  MOW.WriteZeros(SD.getFileSize() - SD.getSize());

  assert(OS.tell() - Start == SD.getFileSize());
}

void MCAssembler::Finish() {
  // Layout the concrete sections and fragments.
  uint64_t Address = 0;
  MCSectionData *Prev = 0;
  for (iterator it = begin(), ie = end(); it != ie; ++it) {
    MCSectionData &SD = *it;

    // Skip virtual sections.
    if (isVirtualSection(SD.getSection()))
      continue;

    // Align this section if necessary by adding padding bytes to the previous
    // section.
    if (uint64_t Pad = OffsetToAlignment(Address, it->getAlignment())) {
      assert(Prev && "Missing prev section!");
      Prev->setFileSize(Prev->getFileSize() + Pad);
      Address += Pad;
    }

    // Layout the section fragments and its size.
    SD.setAddress(Address);
    LayoutSection(SD);
    Address += SD.getFileSize();

    Prev = &SD;
  }

  // Layout the virtual sections.
  for (iterator it = begin(), ie = end(); it != ie; ++it) {
    MCSectionData &SD = *it;

    if (!isVirtualSection(SD.getSection()))
      continue;

    SD.setAddress(Address);
    LayoutSection(SD);
    Address += SD.getSize();
  }

  // Write the object file.
  MachObjectWriter MOW(OS);
  MOW.WriteObject(*this);

  OS.flush();
}
OpenPOWER on IntegriCloud