summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/MachineVerifier.cpp
blob: 18a3ead3bc1801a4ae269ebfc60259e1cc904140 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Pass to verify generated machine code. The following is checked:
//
// Operand counts: All explicit operands must be present.
//
// Register classes: All physical and virtual register operands must be
// compatible with the register class required by the instruction descriptor.
//
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
// command-line option -verify-machineinstrs, or by defining the environment
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
// the verifier errors.
//===----------------------------------------------------------------------===//

#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

namespace {
  struct VISIBILITY_HIDDEN MachineVerifier : public MachineFunctionPass {
    static char ID; // Pass ID, replacement for typeid

    MachineVerifier(bool allowDoubleDefs = false) :
      MachineFunctionPass(&ID),
      allowVirtDoubleDefs(allowDoubleDefs),
      allowPhysDoubleDefs(allowDoubleDefs),
      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
        {}

    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF);

    const bool allowVirtDoubleDefs;
    const bool allowPhysDoubleDefs;

    const char *const OutFileName;
    raw_ostream *OS;
    const MachineFunction *MF;
    const TargetMachine *TM;
    const TargetRegisterInfo *TRI;
    const MachineRegisterInfo *MRI;

    unsigned foundErrors;

    typedef SmallVector<unsigned, 16> RegVector;
    typedef DenseSet<unsigned> RegSet;
    typedef DenseMap<unsigned, const MachineInstr*> RegMap;

    BitVector regsReserved;
    RegSet regsLive;
    RegVector regsDefined, regsDead, regsKilled;
    RegSet regsLiveInButUnused;

    // Add Reg and any sub-registers to RV
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
      RV.push_back(Reg);
      if (TargetRegisterInfo::isPhysicalRegister(Reg))
        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
          RV.push_back(*R);
    }

    struct BBInfo {
      // Is this MBB reachable from the MF entry point?
      bool reachable;

      // Vregs that must be live in because they are used without being
      // defined. Map value is the user.
      RegMap vregsLiveIn;

      // Vregs that must be dead in because they are defined without being
      // killed first. Map value is the defining instruction.
      RegMap vregsDeadIn;

      // Regs killed in MBB. They may be defined again, and will then be in both
      // regsKilled and regsLiveOut.
      RegSet regsKilled;

      // Regs defined in MBB and live out. Note that vregs passing through may
      // be live out without being mentioned here.
      RegSet regsLiveOut;

      // Vregs that pass through MBB untouched. This set is disjoint from
      // regsKilled and regsLiveOut.
      RegSet vregsPassed;

      BBInfo() : reachable(false) {}

      // Add register to vregsPassed if it belongs there. Return true if
      // anything changed.
      bool addPassed(unsigned Reg) {
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
          return false;
        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
          return false;
        return vregsPassed.insert(Reg).second;
      }

      // Same for a full set.
      bool addPassed(const RegSet &RS) {
        bool changed = false;
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
          if (addPassed(*I))
            changed = true;
        return changed;
      }

      // Live-out registers are either in regsLiveOut or vregsPassed.
      bool isLiveOut(unsigned Reg) const {
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
      }
    };

    // Extra register info per MBB.
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;

    bool isReserved(unsigned Reg) {
      return Reg < regsReserved.size() && regsReserved.test(Reg);
    }

    void visitMachineFunctionBefore();
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    void visitMachineInstrBefore(const MachineInstr *MI);
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    void visitMachineInstrAfter(const MachineInstr *MI);
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    void visitMachineFunctionAfter();

    void report(const char *msg, const MachineFunction *MF);
    void report(const char *msg, const MachineBasicBlock *MBB);
    void report(const char *msg, const MachineInstr *MI);
    void report(const char *msg, const MachineOperand *MO, unsigned MONum);

    void markReachable(const MachineBasicBlock *MBB);
    void calcMaxRegsPassed();
    void calcMinRegsPassed();
    void checkPHIOps(const MachineBasicBlock *MBB);
  };
}

char MachineVerifier::ID = 0;
static RegisterPass<MachineVerifier>
MachineVer("machineverifier", "Verify generated machine code");
static const PassInfo *const MachineVerifyID = &MachineVer;

FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
  return new MachineVerifier(allowPhysDoubleDefs);
}

bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
  raw_ostream *OutFile = 0;
  if (OutFileName) {
    std::string ErrorInfo;
    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
                                 raw_fd_ostream::F_Append);
    if (!ErrorInfo.empty()) {
      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
      exit(1);
    }

    OS = OutFile;
  } else {
    OS = &errs();
  }

  foundErrors = 0;

  this->MF = &MF;
  TM = &MF.getTarget();
  TRI = TM->getRegisterInfo();
  MRI = &MF.getRegInfo();

  visitMachineFunctionBefore();
  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
       MFI!=MFE; ++MFI) {
    visitMachineBasicBlockBefore(MFI);
    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
      visitMachineInstrBefore(MBBI);
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
        visitMachineOperand(&MBBI->getOperand(I), I);
      visitMachineInstrAfter(MBBI);
    }
    visitMachineBasicBlockAfter(MFI);
  }
  visitMachineFunctionAfter();

  if (OutFile)
    delete OutFile;
  else if (foundErrors)
    llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");

  // Clean up.
  regsLive.clear();
  regsDefined.clear();
  regsDead.clear();
  regsKilled.clear();
  regsLiveInButUnused.clear();
  MBBInfoMap.clear();

  return false;                 // no changes
}

void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
  assert(MF);
  *OS << '\n';
  if (!foundErrors++)
    MF->print(*OS);
  *OS << "*** Bad machine code: " << msg << " ***\n"
      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
}

void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
  assert(MBB);
  report(msg, MBB->getParent());
  *OS << "- basic block: " << MBB->getBasicBlock()->getNameStr()
      << " " << (void*)MBB
      << " (#" << MBB->getNumber() << ")\n";
}

void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
  assert(MI);
  report(msg, MI->getParent());
  *OS << "- instruction: ";
  MI->print(*OS, TM);
}

void MachineVerifier::report(const char *msg,
                             const MachineOperand *MO, unsigned MONum) {
  assert(MO);
  report(msg, MO->getParent());
  *OS << "- operand " << MONum << ":   ";
  MO->print(*OS, TM);
  *OS << "\n";
}

void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
  BBInfo &MInfo = MBBInfoMap[MBB];
  if (!MInfo.reachable) {
    MInfo.reachable = true;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
      markReachable(*SuI);
  }
}

void MachineVerifier::visitMachineFunctionBefore() {
  regsReserved = TRI->getReservedRegs(*MF);

  // A sub-register of a reserved register is also reserved
  for (int Reg = regsReserved.find_first(); Reg>=0;
       Reg = regsReserved.find_next(Reg)) {
    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
      // FIXME: This should probably be:
      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
      regsReserved.set(*Sub);
    }
  }
  markReachable(&MF->front());
}

void MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();

  // Start with minimal CFG sanity checks.
  MachineFunction::const_iterator MBBI = MBB;
  ++MBBI;
  if (MBBI != MF->end()) {
    // Block is not last in function.
    if (!MBB->isSuccessor(MBBI)) {
      // Block does not fall through.
      if (MBB->empty()) {
        report("MBB doesn't fall through but is empty!", MBB);
      }
    }
    if (TII->BlockHasNoFallThrough(*MBB)) {
      if (MBB->empty()) {
        report("TargetInstrInfo says the block has no fall through, but the "
               "block is empty!", MBB);
      } else if (!MBB->back().getDesc().isBarrier()) {
        report("TargetInstrInfo says the block has no fall through, but the "
               "block does not end in a barrier!", MBB);
      }
    }
  } else {
    // Block is last in function.
    if (MBB->empty()) {
      report("MBB is last in function but is empty!", MBB);
    }
  }

  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
  MachineBasicBlock *TBB = 0, *FBB = 0;
  SmallVector<MachineOperand, 4> Cond;
  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
                          TBB, FBB, Cond)) {
    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
    // check whether its answers match up with reality.
    if (!TBB && !FBB) {
      // Block falls through to its successor.
      MachineFunction::const_iterator MBBI = MBB;
      ++MBBI;
      if (MBBI == MF->end()) {
        // It's possible that the block legitimately ends with a noreturn
        // call or an unreachable, in which case it won't actually fall
        // out the bottom of the function.
      } else if (MBB->succ_empty()) {
        // It's possible that the block legitimately ends with a noreturn
        // call or an unreachable, in which case it won't actuall fall
        // out of the block.
      } else if (MBB->succ_size() != 1) {
        report("MBB exits via unconditional fall-through but doesn't have "
               "exactly one CFG successor!", MBB);
      } else if (MBB->succ_begin()[0] != MBBI) {
        report("MBB exits via unconditional fall-through but its successor "
               "differs from its CFG successor!", MBB);
      }
      if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
        report("MBB exits via unconditional fall-through but ends with a "
               "barrier instruction!", MBB);
      }
      if (!Cond.empty()) {
        report("MBB exits via unconditional fall-through but has a condition!",
               MBB);
      }
    } else if (TBB && !FBB && Cond.empty()) {
      // Block unconditionally branches somewhere.
      if (MBB->succ_size() != 1) {
        report("MBB exits via unconditional branch but doesn't have "
               "exactly one CFG successor!", MBB);
      } else if (MBB->succ_begin()[0] != TBB) {
        report("MBB exits via unconditional branch but the CFG "
               "successor doesn't match the actual successor!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via unconditional branch but doesn't contain "
               "any instructions!", MBB);
      } else if (!MBB->back().getDesc().isBarrier()) {
        report("MBB exits via unconditional branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().getDesc().isTerminator()) {
        report("MBB exits via unconditional branch but the branch isn't a "
               "terminator instruction!", MBB);
      }
    } else if (TBB && !FBB && !Cond.empty()) {
      // Block conditionally branches somewhere, otherwise falls through.
      MachineFunction::const_iterator MBBI = MBB;
      ++MBBI;
      if (MBBI == MF->end()) {
        report("MBB conditionally falls through out of function!", MBB);
      } if (MBB->succ_size() != 2) {
        report("MBB exits via conditional branch/fall-through but doesn't have "
               "exactly two CFG successors!", MBB);
      } else if ((MBB->succ_begin()[0] == TBB && MBB->succ_end()[1] == MBBI) ||
                 (MBB->succ_begin()[1] == TBB && MBB->succ_end()[0] == MBBI)) {
        report("MBB exits via conditional branch/fall-through but the CFG "
               "successors don't match the actual successors!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via conditional branch/fall-through but doesn't "
               "contain any instructions!", MBB);
      } else if (MBB->back().getDesc().isBarrier()) {
        report("MBB exits via conditional branch/fall-through but ends with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().getDesc().isTerminator()) {
        report("MBB exits via conditional branch/fall-through but the branch "
               "isn't a terminator instruction!", MBB);
      }
    } else if (TBB && FBB) {
      // Block conditionally branches somewhere, otherwise branches
      // somewhere else.
      if (MBB->succ_size() != 2) {
        report("MBB exits via conditional branch/branch but doesn't have "
               "exactly two CFG successors!", MBB);
      } else if ((MBB->succ_begin()[0] == TBB && MBB->succ_end()[1] == FBB) ||
                 (MBB->succ_begin()[1] == TBB && MBB->succ_end()[0] == FBB)) {
        report("MBB exits via conditional branch/branch but the CFG "
               "successors don't match the actual successors!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via conditional branch/branch but doesn't "
               "contain any instructions!", MBB);
      } else if (!MBB->back().getDesc().isBarrier()) {
        report("MBB exits via conditional branch/branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().getDesc().isTerminator()) {
        report("MBB exits via conditional branch/branch but the branch "
               "isn't a terminator instruction!", MBB);
      }
      if (Cond.empty()) {
        report("MBB exits via conditinal branch/branch but there's no "
               "condition!", MBB);
      }
    } else {
      report("AnalyzeBranch returned invalid data!", MBB);
    }
  }

  regsLive.clear();
  for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
         E = MBB->livein_end(); I != E; ++I) {
    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
      report("MBB live-in list contains non-physical register", MBB);
      continue;
    }
    regsLive.insert(*I);
    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
      regsLive.insert(*R);
  }
  regsLiveInButUnused = regsLive;

  const MachineFrameInfo *MFI = MF->getFrameInfo();
  assert(MFI && "Function has no frame info");
  BitVector PR = MFI->getPristineRegs(MBB);
  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
    regsLive.insert(I);
    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
      regsLive.insert(*R);
  }

  regsKilled.clear();
  regsDefined.clear();
}

void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
  const TargetInstrDesc &TI = MI->getDesc();
  if (MI->getNumOperands() < TI.getNumOperands()) {
    report("Too few operands", MI);
    *OS << TI.getNumOperands() << " operands expected, but "
        << MI->getNumExplicitOperands() << " given.\n";
  }

  // Check the MachineMemOperands for basic consistency.
  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
       E = MI->memoperands_end(); I != E; ++I) {
    if ((*I)->isLoad() && !TI.mayLoad())
      report("Missing mayLoad flag", MI);
    if ((*I)->isStore() && !TI.mayStore())
      report("Missing mayStore flag", MI);
  }
}

void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const TargetInstrDesc &TI = MI->getDesc();

  // The first TI.NumDefs operands must be explicit register defines
  if (MONum < TI.getNumDefs()) {
    if (!MO->isReg())
      report("Explicit definition must be a register", MO, MONum);
    else if (!MO->isDef())
      report("Explicit definition marked as use", MO, MONum);
    else if (MO->isImplicit())
      report("Explicit definition marked as implicit", MO, MONum);
  } else if (MONum < TI.getNumOperands()) {
    if (MO->isReg()) {
      if (MO->isDef())
        report("Explicit operand marked as def", MO, MONum);
      if (MO->isImplicit())
        report("Explicit operand marked as implicit", MO, MONum);
    }
  } else {
    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic())
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
  }

  switch (MO->getType()) {
  case MachineOperand::MO_Register: {
    const unsigned Reg = MO->getReg();
    if (!Reg)
      return;

    // Check Live Variables.
    if (MO->isUndef()) {
      // An <undef> doesn't refer to any register, so just skip it.
    } else if (MO->isUse()) {
      regsLiveInButUnused.erase(Reg);

      if (MO->isKill()) {
        addRegWithSubRegs(regsKilled, Reg);
        // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
        if (MI->isRegTiedToDefOperand(MONum))
            report("Illegal kill flag on two-address instruction operand",
                   MO, MONum);
      } else {
        // TwoAddress instr modifying a reg is treated as kill+def.
        unsigned defIdx;
        if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
            MI->getOperand(defIdx).getReg() == Reg)
          addRegWithSubRegs(regsKilled, Reg);
      }
      // Use of a dead register.
      if (!regsLive.count(Reg)) {
        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
          // Reserved registers may be used even when 'dead'.
          if (!isReserved(Reg))
            report("Using an undefined physical register", MO, MONum);
        } else {
          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
          // We don't know which virtual registers are live in, so only complain
          // if vreg was killed in this MBB. Otherwise keep track of vregs that
          // must be live in. PHI instructions are handled separately.
          if (MInfo.regsKilled.count(Reg))
            report("Using a killed virtual register", MO, MONum);
          else if (MI->getOpcode() != TargetInstrInfo::PHI)
            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
        }
      }
    } else {
      assert(MO->isDef());
      // Register defined.
      // TODO: verify that earlyclobber ops are not used.
      if (MO->isDead())
        addRegWithSubRegs(regsDead, Reg);
      else
        addRegWithSubRegs(regsDefined, Reg);
    }

    // Check register classes.
    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
      unsigned SubIdx = MO->getSubReg();

      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        unsigned sr = Reg;
        if (SubIdx) {
          unsigned s = TRI->getSubReg(Reg, SubIdx);
          if (!s) {
            report("Invalid subregister index for physical register",
                   MO, MONum);
            return;
          }
          sr = s;
        }
        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
          if (!DRC->contains(sr)) {
            report("Illegal physical register for instruction", MO, MONum);
            *OS << TRI->getName(sr) << " is not a "
                << DRC->getName() << " register.\n";
          }
        }
      } else {
        // Virtual register.
        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
        if (SubIdx) {
          if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
            report("Invalid subregister index for virtual register", MO, MONum);
            return;
          }
          RC = *(RC->subregclasses_begin()+SubIdx);
        }
        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
          if (RC != DRC && !RC->hasSuperClass(DRC)) {
            report("Illegal virtual register for instruction", MO, MONum);
            *OS << "Expected a " << DRC->getName() << " register, but got a "
                << RC->getName() << " register\n";
          }
        }
      }
    }
    break;
  }

  case MachineOperand::MO_MachineBasicBlock:
    if (MI->getOpcode() == TargetInstrInfo::PHI) {
      if (!MO->getMBB()->isSuccessor(MI->getParent()))
        report("PHI operand is not in the CFG", MO, MONum);
    }
    break;

  default:
    break;
  }
}

void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
  set_union(MInfo.regsKilled, regsKilled);
  set_subtract(regsLive, regsKilled);
  regsKilled.clear();

  // Verify that both <def> and <def,dead> operands refer to dead registers.
  RegVector defs(regsDefined);
  defs.append(regsDead.begin(), regsDead.end());

  for (RegVector::const_iterator I = defs.begin(), E = defs.end();
       I != E; ++I) {
    if (regsLive.count(*I)) {
      if (TargetRegisterInfo::isPhysicalRegister(*I)) {
        if (!allowPhysDoubleDefs && !isReserved(*I) &&
            !regsLiveInButUnused.count(*I)) {
          report("Redefining a live physical register", MI);
          *OS << "Register " << TRI->getName(*I)
              << " was defined but already live.\n";
        }
      } else {
        if (!allowVirtDoubleDefs) {
          report("Redefining a live virtual register", MI);
          *OS << "Virtual register %reg" << *I
              << " was defined but already live.\n";
        }
      }
    } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
               !MInfo.regsKilled.count(*I)) {
      // Virtual register defined without being killed first must be dead on
      // entry.
      MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
    }
  }

  set_subtract(regsLive, regsDead); regsDead.clear();
  set_union(regsLive, regsDefined); regsDefined.clear();
}

void
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
  MBBInfoMap[MBB].regsLiveOut = regsLive;
  regsLive.clear();
}

// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void MachineVerifier::calcMaxRegsPassed() {
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
  // have any vregsPassed.
  DenseSet<const MachineBasicBlock*> todo;
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    const MachineBasicBlock &MBB(*MFI);
    BBInfo &MInfo = MBBInfoMap[&MBB];
    if (!MInfo.reachable)
      continue;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.regsLiveOut))
        todo.insert(*SuI);
    }
  }

  // Iteratively push vregsPassed to successors. This will converge to the same
  // final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
      if (*SuI == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.vregsPassed))
        todo.insert(*SuI);
    }
  }
}

// Calculate the minimum vregsPassed set. These are the registers that always
// pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
// been called earlier.
void MachineVerifier::calcMinRegsPassed() {
  DenseSet<const MachineBasicBlock*> todo;
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI)
    todo.insert(MFI);

  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];

    // Remove entries from vRegsPassed that are not live out from all
    // reachable predecessors.
    RegSet dead;
    for (RegSet::iterator I = MInfo.vregsPassed.begin(),
           E = MInfo.vregsPassed.end(); I != E; ++I) {
      for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
             PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
        BBInfo &PrInfo = MBBInfoMap[*PrI];
        if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) {
          dead.insert(*I);
          break;
        }
      }
    }
    // If any regs removed, we need to recheck successors.
    if (!dead.empty()) {
      set_subtract(MInfo.vregsPassed, dead);
      todo.insert(MBB->succ_begin(), MBB->succ_end());
    }
  }
}

// Check PHI instructions at the beginning of MBB. It is assumed that
// calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
    DenseSet<const MachineBasicBlock*> seen;

    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
      unsigned Reg = BBI->getOperand(i).getReg();
      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
      if (!Pre->isSuccessor(MBB))
        continue;
      seen.insert(Pre);
      BBInfo &PrInfo = MBBInfoMap[Pre];
      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
        report("PHI operand is not live-out from predecessor",
               &BBI->getOperand(i), i);
    }

    // Did we see all predecessors?
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
      if (!seen.count(*PrI)) {
        report("Missing PHI operand", BBI);
        *OS << "MBB #" << (*PrI)->getNumber()
            << " is a predecessor according to the CFG.\n";
      }
    }
  }
}

void MachineVerifier::visitMachineFunctionAfter() {
  calcMaxRegsPassed();

  // With the maximal set of vregsPassed we can verify dead-in registers.
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    BBInfo &MInfo = MBBInfoMap[MFI];

    // Skip unreachable MBBs.
    if (!MInfo.reachable)
      continue;

    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
      BBInfo &PrInfo = MBBInfoMap[*PrI];
      if (!PrInfo.reachable)
        continue;

      // Verify physical live-ins. EH landing pads have magic live-ins so we
      // ignore them.
      if (!MFI->isLandingPad()) {
        for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(),
               E = MFI->livein_end(); I != E; ++I) {
          if (TargetRegisterInfo::isPhysicalRegister(*I) &&
              !isReserved (*I) && !PrInfo.isLiveOut(*I)) {
            report("Live-in physical register is not live-out from predecessor",
                   MFI);
            *OS << "Register " << TRI->getName(*I)
                << " is not live-out from MBB #" << (*PrI)->getNumber()
                << ".\n";
          }
        }
      }


      // Verify dead-in virtual registers.
      if (!allowVirtDoubleDefs) {
        for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
               E = MInfo.vregsDeadIn.end(); I != E; ++I) {
          // DeadIn register must be in neither regsLiveOut or vregsPassed of
          // any predecessor.
          if (PrInfo.isLiveOut(I->first)) {
            report("Live-in virtual register redefined", I->second);
            *OS << "Register %reg" << I->first
                << " was live-out from predecessor MBB #"
                << (*PrI)->getNumber() << ".\n";
          }
        }
      }
    }
  }

  calcMinRegsPassed();

  // With the minimal set of vregsPassed we can verify live-in virtual
  // registers, including PHI instructions.
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    BBInfo &MInfo = MBBInfoMap[MFI];

    // Skip unreachable MBBs.
    if (!MInfo.reachable)
      continue;

    checkPHIOps(MFI);

    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
      BBInfo &PrInfo = MBBInfoMap[*PrI];
      if (!PrInfo.reachable)
        continue;

      for (RegMap::iterator I = MInfo.vregsLiveIn.begin(),
             E = MInfo.vregsLiveIn.end(); I != E; ++I) {
        if (!PrInfo.isLiveOut(I->first)) {
          report("Used virtual register is not live-in", I->second);
          *OS << "Register %reg" << I->first
              << " is not live-out from predecessor MBB #"
              << (*PrI)->getNumber()
              << ".\n";
        }
      }
    }
  }
}
OpenPOWER on IntegriCloud