summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/MachineCSE.cpp
blob: b376e3d05fee9257a96b1eee9c4638f85ff1e393 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs global common subexpression elimination on machine
// instructions using a scoped hash table based value numbering scheme. It
// must be run while the machine function is still in SSA form.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "machine-cse"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

STATISTIC(NumCoalesces, "Number of copies coalesced");
STATISTIC(NumCSEs,      "Number of common subexpression eliminated");

namespace {
  class MachineCSE : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    MachineRegisterInfo  *MRI;
    MachineDominatorTree *DT;
    AliasAnalysis *AA;
  public:
    static char ID; // Pass identification
    MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
    }

  private:
    unsigned CurrVN;
    ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
    SmallVector<MachineInstr*, 64> Exps;

    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
    bool isPhysDefTriviallyDead(unsigned Reg,
                                MachineBasicBlock::const_iterator I,
                                MachineBasicBlock::const_iterator E);
    bool hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB);
    bool isCSECandidate(MachineInstr *MI);
    bool ProcessBlock(MachineDomTreeNode *Node);
  };
} // end anonymous namespace

char MachineCSE::ID = 0;
static RegisterPass<MachineCSE>
X("machine-cse", "Machine Common Subexpression Elimination");

FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }

bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
                                          MachineBasicBlock *MBB) {
  bool Changed = false;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isUse())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;
    if (!MRI->hasOneUse(Reg))
      // Only coalesce single use copies. This ensure the copy will be
      // deleted.
      continue;
    MachineInstr *DefMI = MRI->getVRegDef(Reg);
    if (DefMI->getParent() != MBB)
      continue;
    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
    if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
        TargetRegisterInfo::isVirtualRegister(SrcReg) &&
        !SrcSubIdx && !DstSubIdx) {
      MO.setReg(SrcReg);
      DefMI->eraseFromParent();
      ++NumCoalesces;
      Changed = true;
    }
  }

  return Changed;
}

bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
                                        MachineBasicBlock::const_iterator I,
                                        MachineBasicBlock::const_iterator E) {
  unsigned LookAheadLeft = 5;
  while (LookAheadLeft--) {
    if (I == E)
      // Reached end of block, register is obviously dead.
      return true;

    if (I->isDebugValue())
      continue;
    bool SeenDef = false;
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = I->getOperand(i);
      if (!MO.isReg() || !MO.getReg())
        continue;
      if (!TRI->regsOverlap(MO.getReg(), Reg))
        continue;
      if (MO.isUse())
        return false;
      SeenDef = true;
    }
    if (SeenDef)
      // See a def of Reg (or an alias) before encountering any use, it's 
      // trivially dead.
      return true;
    ++I;
  }
  return false;
}

bool MachineCSE::hasLivePhysRegDefUse(MachineInstr *MI, MachineBasicBlock *MBB){
  unsigned PhysDef = 0;
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse())
        // Can't touch anything to read a physical register.
        return true;
      if (MO.isDead())
        // If the def is dead, it's ok.
        continue;
      // Ok, this is a physical register def that's not marked "dead". That's
      // common since this pass is run before livevariables. We can scan
      // forward a few instructions and check if it is obviously dead.
      if (PhysDef)
        // Multiple physical register defs. These are rare, forget about it.
        return true;
      PhysDef = Reg;
    }
  }

  if (PhysDef) {
    MachineBasicBlock::iterator I = MI; I = llvm::next(I);
    if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
      return true;
  }
  return false;
}

bool MachineCSE::isCSECandidate(MachineInstr *MI) {
  // Ignore copies or instructions that read / write physical registers
  // (except for dead defs of physical registers).
  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
  if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
      MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg())
    return false;

  // Ignore stuff that we obviously can't move.
  const TargetInstrDesc &TID = MI->getDesc();  
  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
      TID.hasUnmodeledSideEffects())
    return false;

  if (TID.mayLoad()) {
    // Okay, this instruction does a load. As a refinement, we allow the target
    // to decide whether the loaded value is actually a constant. If so, we can
    // actually use it as a load.
    if (!MI->isInvariantLoad(AA))
      // FIXME: we should be able to hoist loads with no other side effects if
      // there are no other instructions which can change memory in this loop.
      // This is a trivial form of alias analysis.
      return false;
  }
  return true;
}

bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) {
  bool Changed = false;

  ScopedHashTableScope<MachineInstr*, unsigned,
    MachineInstrExpressionTrait> VNTS(VNT);
  MachineBasicBlock *MBB = Node->getBlock();
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    MachineInstr *MI = &*I;
    ++I;

    if (!isCSECandidate(MI))
      continue;

    bool FoundCSE = VNT.count(MI);
    if (!FoundCSE) {
      // Look for trivial copy coalescing opportunities.
      if (PerformTrivialCoalescing(MI, MBB))
        FoundCSE = VNT.count(MI);
    }
    // FIXME: commute commutable instructions?

    // If the instruction defines a physical register and the value *may* be
    // used, then it's not safe to replace it with a common subexpression.
    if (FoundCSE && hasLivePhysRegDefUse(MI, MBB))
      FoundCSE = false;

    if (!FoundCSE) {
      VNT.insert(MI, CurrVN++);
      Exps.push_back(MI);
      continue;
    }

    // Found a common subexpression, eliminate it.
    unsigned CSVN = VNT.lookup(MI);
    MachineInstr *CSMI = Exps[CSVN];
    DEBUG(dbgs() << "Examining: " << *MI);
    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
    unsigned NumDefs = MI->getDesc().getNumDefs();
    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned OldReg = MO.getReg();
      unsigned NewReg = CSMI->getOperand(i).getReg();
      if (OldReg == NewReg)
        continue;
      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
             TargetRegisterInfo::isVirtualRegister(NewReg) &&
             "Do not CSE physical register defs!");
      MRI->replaceRegWith(OldReg, NewReg);
      --NumDefs;
    }
    MI->eraseFromParent();
    ++NumCSEs;
  }

  // Recursively call ProcessBlock with childred.
  const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
  for (unsigned i = 0, e = Children.size(); i != e; ++i)
    Changed |= ProcessBlock(Children[i]);

  return Changed;
}

bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
  TII = MF.getTarget().getInstrInfo();
  TRI = MF.getTarget().getRegisterInfo();
  MRI = &MF.getRegInfo();
  DT = &getAnalysis<MachineDominatorTree>();
  AA = &getAnalysis<AliasAnalysis>();
  return ProcessBlock(DT->getRootNode());
}
OpenPOWER on IntegriCloud