summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CodeGenTypes.cpp
blob: af791f63186ccef36d2889288b6a6edb6a19c9eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering. 
//
//===----------------------------------------------------------------------===//

#include "CodeGenTypes.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"

#include "CGCall.h"

using namespace clang;
using namespace CodeGen;

namespace {
  /// RecordOrganizer - This helper class, used by CGRecordLayout, layouts 
  /// structs and unions. It manages transient information used during layout.
  /// FIXME : Handle field aligments. Handle packed structs.
  class RecordOrganizer {
  public:
    explicit RecordOrganizer(CodeGenTypes &Types, const RecordDecl& Record) : 
      CGT(Types), RD(Record), STy(NULL) {}

    /// layoutStructFields - Do the actual work and lay out all fields. Create
    /// corresponding llvm struct type.  This should be invoked only after
    /// all fields are added.
    void layoutStructFields(const ASTRecordLayout &RL);

    /// layoutUnionFields - Do the actual work and lay out all fields. Create
    /// corresponding llvm struct type.  This should be invoked only after
    /// all fields are added.
    void layoutUnionFields(const ASTRecordLayout &RL);

    /// getLLVMType - Return associated llvm struct type. This may be NULL
    /// if fields are not laid out.
    llvm::Type *getLLVMType() const {
      return STy;
    }

    llvm::SmallSet<unsigned, 8> &getPaddingFields() {
      return PaddingFields;
    }

  private:
    CodeGenTypes &CGT;
    const RecordDecl& RD;
    llvm::Type *STy;
    llvm::SmallSet<unsigned, 8> PaddingFields;
  };
}

CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
                           const llvm::TargetData &TD)
  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
    TheABIInfo(0) {
}

CodeGenTypes::~CodeGenTypes() {
  for(llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
        I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
      I != E; ++I)
    delete I->second;
  CGRecordLayouts.clear();
}

/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
  llvm::PATypeHolder Result = ConvertTypeRecursive(T);

  // Any pointers that were converted defered evaluation of their pointee type,
  // creating an opaque type instead.  This is in order to avoid problems with
  // circular types.  Loop through all these defered pointees, if any, and
  // resolve them now.
  while (!PointersToResolve.empty()) {
    std::pair<QualType, llvm::OpaqueType*> P =
      PointersToResolve.back();
    PointersToResolve.pop_back();
    // We can handle bare pointers here because we know that the only pointers
    // to the Opaque type are P.second and from other types.  Refining the
    // opqaue type away will invalidate P.second, but we don't mind :).
    const llvm::Type *NT = ConvertTypeForMemRecursive(P.first);
    P.second->refineAbstractTypeTo(NT);
  }

  return Result;
}

const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
  T = Context.getCanonicalType(T);
  
  // See if type is already cached.
  llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
    I = TypeCache.find(T.getTypePtr());
  // If type is found in map and this is not a definition for a opaque
  // place holder type then use it. Otherwise, convert type T.
  if (I != TypeCache.end())
    return I->second.get();

  const llvm::Type *ResultType = ConvertNewType(T);
  TypeCache.insert(std::make_pair(T.getTypePtr(), 
                                  llvm::PATypeHolder(ResultType)));
  return ResultType;
}

const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) {
  const llvm::Type *ResultType = ConvertTypeRecursive(T);
  if (ResultType == llvm::Type::Int1Ty)
    return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
  return ResultType;
}

/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type.  For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
  const llvm::Type *R = ConvertType(T);
  
  // If this is a non-bool type, don't map it.
  if (R != llvm::Type::Int1Ty)
    return R;
    
  // Otherwise, return an integer of the target-specified size.
  return llvm::IntegerType::get((unsigned)Context.getTypeSize(T));
  
}

// Code to verify a given function type is complete, i.e. the return type
// and all of the argument types are complete.
static const TagType *VerifyFuncTypeComplete(const Type* T) {
  const FunctionType *FT = cast<FunctionType>(T);
  if (const TagType* TT = FT->getResultType()->getAsTagType())
    if (!TT->getDecl()->isDefinition())
      return TT;
  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
    for (unsigned i = 0; i < FPT->getNumArgs(); i++)
      if (const TagType* TT = FPT->getArgType(i)->getAsTagType())
        if (!TT->getDecl()->isDefinition())
          return TT;
  return 0;
}

/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
  const Type *Key = 
    Context.getTagDeclType(const_cast<TagDecl*>(TD)).getTypePtr();
  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI = 
    TagDeclTypes.find(Key);
  if (TDTI == TagDeclTypes.end()) return;
  
  // Remember the opaque LLVM type for this tagdecl.
  llvm::PATypeHolder OpaqueHolder = TDTI->second;
  assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
         "Updating compilation of an already non-opaque type?");
  
  // Remove it from TagDeclTypes so that it will be regenerated.
  TagDeclTypes.erase(TDTI);

  // Generate the new type.
  const llvm::Type *NT = ConvertTagDeclType(TD);

  // Refine the old opaque type to its new definition.
  cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);

  // Since we just completed a tag type, check to see if any function types
  // were completed along with the tag type.
  // FIXME: This is very inefficient; if we track which function types depend
  // on which tag types, though, it should be reasonably efficient.
  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i;
  for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) {
    if (const TagType* TT = VerifyFuncTypeComplete(i->first)) {
      // This function type still depends on an incomplete tag type; make sure
      // that tag type has an associated opaque type.
      ConvertTagDeclType(TT->getDecl());
    } else {
      // This function no longer depends on an incomplete tag type; create the
      // function type, and refine the opaque type to the new function type.
      llvm::PATypeHolder OpaqueHolder = i->second;
      const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0));
      cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT);
      FunctionTypes.erase(i);
    }
  }
}

static const llvm::Type* getTypeForFormat(const llvm::fltSemantics &format) {
  if (&format == &llvm::APFloat::IEEEsingle)
    return llvm::Type::FloatTy;
  if (&format == &llvm::APFloat::IEEEdouble)
    return llvm::Type::DoubleTy;
  if (&format == &llvm::APFloat::IEEEquad)
    return llvm::Type::FP128Ty;
  if (&format == &llvm::APFloat::PPCDoubleDouble)
    return llvm::Type::PPC_FP128Ty;
  if (&format == &llvm::APFloat::x87DoubleExtended)
    return llvm::Type::X86_FP80Ty;
  assert(0 && "Unknown float format!");
  return 0;
}

const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
  const clang::Type &Ty = *Context.getCanonicalType(T);
  
  switch (Ty.getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
    assert(false && "Non-canonical or dependent types aren't possible.");
    break;

  case Type::Builtin: {
    switch (cast<BuiltinType>(Ty).getKind()) {
    default: assert(0 && "Unknown builtin type!");
    case BuiltinType::Void:
      // LLVM void type can only be used as the result of a function call.  Just
      // map to the same as char.
      return llvm::IntegerType::get(8);

    case BuiltinType::Bool:
      // Note that we always return bool as i1 for use as a scalar type.
      return llvm::Type::Int1Ty;
      
    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::SChar:
    case BuiltinType::UChar:
    case BuiltinType::Short:
    case BuiltinType::UShort:
    case BuiltinType::Int:
    case BuiltinType::UInt:
    case BuiltinType::Long:
    case BuiltinType::ULong:
    case BuiltinType::LongLong:
    case BuiltinType::ULongLong:
    case BuiltinType::WChar:
      return llvm::IntegerType::get(
        static_cast<unsigned>(Context.getTypeSize(T)));
      
    case BuiltinType::Float:
    case BuiltinType::Double:
    case BuiltinType::LongDouble:
      return getTypeForFormat(Context.getFloatTypeSemantics(T));
          
    case BuiltinType::UInt128:
    case BuiltinType::Int128:
      return llvm::IntegerType::get(128);
    }
    break;
  }
  case Type::FixedWidthInt:
    return llvm::IntegerType::get(cast<FixedWidthIntType>(T)->getWidth());
  case Type::Complex: {
    const llvm::Type *EltTy = 
      ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
    return llvm::StructType::get(EltTy, EltTy, NULL);
  }
  case Type::LValueReference:
  case Type::RValueReference: {
    const ReferenceType &RTy = cast<ReferenceType>(Ty);
    QualType ETy = RTy.getPointeeType();
    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
  }
  case Type::Pointer: {
    const PointerType &PTy = cast<PointerType>(Ty);
    QualType ETy = PTy.getPointeeType();
    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
    PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
    return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
  }
    
  case Type::VariableArray: {
    const VariableArrayType &A = cast<VariableArrayType>(Ty);
    assert(A.getIndexTypeQualifier() == 0 &&
           "FIXME: We only handle trivial array types so far!");
    // VLAs resolve to the innermost element type; this matches
    // the return of alloca, and there isn't any obviously better choice.
    return ConvertTypeForMemRecursive(A.getElementType());
  }
  case Type::IncompleteArray: {
    const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
    assert(A.getIndexTypeQualifier() == 0 &&
           "FIXME: We only handle trivial array types so far!");
    // int X[] -> [0 x int]
    return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0);
  }
  case Type::ConstantArray: {
    const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
    const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType());
    return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
  }
  case Type::ExtVector:
  case Type::Vector: {
    const VectorType &VT = cast<VectorType>(Ty);
    return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
                                 VT.getNumElements());
  }
  case Type::FunctionNoProto:
  case Type::FunctionProto: {
    // First, check whether we can build the full function type.
    if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) {
      // This function's type depends on an incomplete tag type; make sure
      // we have an opaque type corresponding to the tag type.
      ConvertTagDeclType(TT->getDecl());
      // Create an opaque type for this function type, save it, and return it.
      llvm::Type *ResultType = llvm::OpaqueType::get();
      FunctionTypes.insert(std::make_pair(&Ty, ResultType));
      return ResultType;
    }
    // The function type can be built; call the appropriate routines to
    // build it.
    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty))
      return GetFunctionType(getFunctionInfo(FPT), FPT->isVariadic());

    const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
    return GetFunctionType(getFunctionInfo(FNPT), true);
  }
  
  case Type::ExtQual:
    return
      ConvertTypeRecursive(QualType(cast<ExtQualType>(Ty).getBaseType(), 0));

  case Type::ObjCQualifiedInterface: {
    // Lower foo<P1,P2> just like foo.
    ObjCInterfaceDecl *ID = cast<ObjCQualifiedInterfaceType>(Ty).getDecl();
    return ConvertTypeRecursive(Context.getObjCInterfaceType(ID));
  }
      
  case Type::ObjCInterface: {
    // Objective-C interfaces are always opaque (outside of the
    // runtime, which can do whatever it likes); we never refine
    // these.
    const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)];
    if (!T)
        T = llvm::OpaqueType::get();
    return T;
  }
      
  case Type::ObjCQualifiedId:
    // Protocols don't influence the LLVM type.
    return ConvertTypeRecursive(Context.getObjCIdType());

  case Type::Record:
  case Type::Enum: {
    const TagDecl *TD = cast<TagType>(Ty).getDecl();
    const llvm::Type *Res = ConvertTagDeclType(TD);
    
    std::string TypeName(TD->getKindName());
    TypeName += '.';
    
    // Name the codegen type after the typedef name
    // if there is no tag type name available
    if (TD->getIdentifier())
      TypeName += TD->getNameAsString();
    else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
      TypeName += TdT->getDecl()->getNameAsString();
    else
      TypeName += "anon";
    
    TheModule.addTypeName(TypeName, Res);  
    return Res;
  }

  case Type::BlockPointer: {
    const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType();
    llvm::OpaqueType *PointeeType = llvm::OpaqueType::get();
    PointersToResolve.push_back(std::make_pair(FTy, PointeeType));
    return llvm::PointerType::get(PointeeType, FTy.getAddressSpace());
  }

  case Type::MemberPointer: {
    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
    // If we ever want to support other ABIs this needs to be abstracted.

    QualType ETy = cast<MemberPointerType>(Ty).getPointeeType();
    if (ETy->isFunctionType()) {
      return llvm::StructType::get(ConvertType(Context.getPointerDiffType()), 
                                   ConvertType(Context.getPointerDiffType()),
                                   NULL);
    } else
      return ConvertType(Context.getPointerDiffType());
  }

  case Type::TemplateSpecialization:
    assert(false && "Dependent types can't get here");
  }
  
  // FIXME: implement.
  return llvm::OpaqueType::get();
}

/// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
/// enum.
const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
  // TagDecl's are not necessarily unique, instead use the (clang)
  // type connected to the decl.
  const Type *Key = 
    Context.getTagDeclType(const_cast<TagDecl*>(TD)).getTypePtr();
  llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI = 
    TagDeclTypes.find(Key);
  
  // If we've already compiled this tag type, use the previous definition.
  if (TDTI != TagDeclTypes.end())
    return TDTI->second;
  
  // If this is still a forward definition, just define an opaque type to use
  // for this tagged decl.
  if (!TD->isDefinition()) {
    llvm::Type *ResultType = llvm::OpaqueType::get();  
    TagDeclTypes.insert(std::make_pair(Key, ResultType));
    return ResultType;
  }
  
  // Okay, this is a definition of a type.  Compile the implementation now.
  
  if (TD->isEnum()) {
    // Don't bother storing enums in TagDeclTypes.
    return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
  }
  
  // This decl could well be recursive.  In this case, insert an opaque
  // definition of this type, which the recursive uses will get.  We will then
  // refine this opaque version later.

  // Create new OpaqueType now for later use in case this is a recursive
  // type.  This will later be refined to the actual type.
  llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get();
  TagDeclTypes.insert(std::make_pair(Key, ResultHolder));
  
  const llvm::Type *ResultType;
  const RecordDecl *RD = cast<const RecordDecl>(TD);

  // There isn't any extra information for empty structures/unions.
  if (RD->field_empty(getContext())) {
    ResultType = llvm::StructType::get(std::vector<const llvm::Type*>());
  } else {
    // Layout fields.
    RecordOrganizer RO(*this, *RD);
    
    if (TD->isStruct() || TD->isClass())
      RO.layoutStructFields(Context.getASTRecordLayout(RD));
    else {
      assert(TD->isUnion() && "unknown tag decl kind!");
      RO.layoutUnionFields(Context.getASTRecordLayout(RD));
    }
    
    // Get llvm::StructType.
    const Type *Key = 
      Context.getTagDeclType(const_cast<TagDecl*>(TD)).getTypePtr();
    CGRecordLayouts[Key] = new CGRecordLayout(RO.getLLVMType(), 
                                              RO.getPaddingFields());
    ResultType = RO.getLLVMType();
  }
  
  // Refine our Opaque type to ResultType.  This can invalidate ResultType, so
  // make sure to read the result out of the holder.
  cast<llvm::OpaqueType>(ResultHolder.get())
    ->refineAbstractTypeTo(ResultType);
  
  return ResultHolder.get();
}  

/// getLLVMFieldNo - Return llvm::StructType element number
/// that corresponds to the field FD.
unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) {
  llvm::DenseMap<const FieldDecl*, unsigned>::iterator I = FieldInfo.find(FD);
  assert (I != FieldInfo.end()  && "Unable to find field info");
  return I->second;
}

/// addFieldInfo - Assign field number to field FD.
void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) {
  FieldInfo[FD] = No;
}

/// getBitFieldInfo - Return the BitFieldInfo  that corresponds to the field FD.
CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) {
  llvm::DenseMap<const FieldDecl *, BitFieldInfo>::iterator
    I = BitFields.find(FD);
  assert (I != BitFields.end()  && "Unable to find bitfield info");
  return I->second;
}

/// addBitFieldInfo - Assign a start bit and a size to field FD.
void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned Begin,
                                   unsigned Size) {
  BitFields.insert(std::make_pair(FD, BitFieldInfo(Begin, Size)));
}

/// getCGRecordLayout - Return record layout info for the given llvm::Type.
const CGRecordLayout *
CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const {
  const Type *Key = 
    Context.getTagDeclType(const_cast<TagDecl*>(TD)).getTypePtr();
  llvm::DenseMap<const Type*, CGRecordLayout *>::iterator I
    = CGRecordLayouts.find(Key);
  assert (I != CGRecordLayouts.end() 
          && "Unable to find record layout information for type");
  return I->second;
}

/// layoutStructFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type.
/// Note that this doesn't actually try to do struct layout; it depends on
/// the layout built by the AST.  (We have to do struct layout to do Sema,
/// and there's no point to duplicating the work.)
void RecordOrganizer::layoutStructFields(const ASTRecordLayout &RL) {
  // FIXME: This code currently always generates packed structures.
  // Unpacked structures are more readable, and sometimes more efficient!
  // (But note that any changes here are likely to impact CGExprConstant,
  // which makes some messy assumptions.)
  uint64_t llvmSize = 0;
  // FIXME: Make this a SmallVector
  std::vector<const llvm::Type*> LLVMFields;

  unsigned curField = 0;
  for (RecordDecl::field_iterator Field = RD.field_begin(CGT.getContext()),
                               FieldEnd = RD.field_end(CGT.getContext());
       Field != FieldEnd; ++Field) {
    uint64_t offset = RL.getFieldOffset(curField);
    const llvm::Type *Ty = CGT.ConvertTypeForMemRecursive(Field->getType());
    uint64_t size = CGT.getTargetData().getTypeAllocSizeInBits(Ty);

    if (Field->isBitField()) {
      uint64_t BitFieldSize =
          Field->getBitWidth()->EvaluateAsInt(CGT.getContext()).getZExtValue();

      // Bitfield field info is different from other field info;
      // it actually ignores the underlying LLVM struct because
      // there isn't any convenient mapping.
      CGT.addFieldInfo(*Field, offset / size);
      CGT.addBitFieldInfo(*Field, offset % size, BitFieldSize);
    } else {
      // Put the element into the struct. This would be simpler
      // if we didn't bother, but it seems a bit too strange to
      // allocate all structs as i8 arrays.
      while (llvmSize < offset) {
        LLVMFields.push_back(llvm::Type::Int8Ty);
        llvmSize += 8;
      }

      llvmSize += size;
      CGT.addFieldInfo(*Field, LLVMFields.size());
      LLVMFields.push_back(Ty);
    }
    ++curField;
  }

  while (llvmSize < RL.getSize()) {
    LLVMFields.push_back(llvm::Type::Int8Ty);
    llvmSize += 8;
  }

  STy = llvm::StructType::get(LLVMFields, true);
  assert(CGT.getTargetData().getTypeAllocSizeInBits(STy) == RL.getSize());
}

/// layoutUnionFields - Do the actual work and lay out all fields. Create
/// corresponding llvm struct type.  This should be invoked only after
/// all fields are added.
void RecordOrganizer::layoutUnionFields(const ASTRecordLayout &RL) {
  unsigned curField = 0;
  for (RecordDecl::field_iterator Field = RD.field_begin(CGT.getContext()),
                               FieldEnd = RD.field_end(CGT.getContext());
       Field != FieldEnd; ++Field) {
    // The offset should usually be zero, but bitfields could be strange
    uint64_t offset = RL.getFieldOffset(curField);
    CGT.ConvertTypeRecursive(Field->getType());

    if (Field->isBitField()) {
      Expr *BitWidth = Field->getBitWidth();
      uint64_t BitFieldSize =  
        BitWidth->EvaluateAsInt(CGT.getContext()).getZExtValue();

      CGT.addFieldInfo(*Field, 0);
      CGT.addBitFieldInfo(*Field, offset, BitFieldSize);
    } else {
      CGT.addFieldInfo(*Field, 0);
    }
    ++curField;
  }

  // This looks stupid, but it is correct in the sense that
  // it works no matter how complicated the sizes and alignments
  // of the union elements are. The natural alignment
  // of the result doesn't matter because anyone allocating
  // structures should be aligning them appropriately anyway.
  // FIXME: We can be a bit more intuitive in a lot of cases.
  // FIXME: Make this a struct type to work around PR2399; the
  // C backend doesn't like structs using array types.
  std::vector<const llvm::Type*> LLVMFields;
  LLVMFields.push_back(llvm::ArrayType::get(llvm::Type::Int8Ty,
                                            RL.getSize() / 8));
  STy = llvm::StructType::get(LLVMFields, true);
  assert(CGT.getTargetData().getTypeAllocSizeInBits(STy) == RL.getSize());
}
OpenPOWER on IntegriCloud