summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGRecordLayoutBuilder.cpp
blob: 0d72f854ba3e0e5e8387c50c014fa13f82047937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Builder implementation for CGRecordLayout objects.
//
//===----------------------------------------------------------------------===//

#include "CGRecordLayout.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "CodeGenTypes.h"
#include "CGCXXABI.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;

namespace {

class CGRecordLayoutBuilder {
public:
  /// FieldTypes - Holds the LLVM types that the struct is created from.
  /// 
  llvm::SmallVector<const llvm::Type *, 16> FieldTypes;

  /// BaseSubobjectType - Holds the LLVM type for the non-virtual part
  /// of the struct. For example, consider:
  ///
  /// struct A { int i; };
  /// struct B { void *v; };
  /// struct C : virtual A, B { };
  ///
  /// The LLVM type of C will be
  /// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
  ///
  /// And the LLVM type of the non-virtual base struct will be
  /// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
  ///
  /// This only gets initialized if the base subobject type is
  /// different from the complete-object type.
  const llvm::StructType *BaseSubobjectType;

  /// FieldInfo - Holds a field and its corresponding LLVM field number.
  llvm::DenseMap<const FieldDecl *, unsigned> Fields;

  /// BitFieldInfo - Holds location and size information about a bit field.
  llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;

  llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
  llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;

  /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
  /// primary base classes for some other direct or indirect base class.
  CXXIndirectPrimaryBaseSet IndirectPrimaryBases;

  /// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
  /// avoid laying out virtual bases more than once.
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
  
  /// IsZeroInitializable - Whether this struct can be C++
  /// zero-initialized with an LLVM zeroinitializer.
  bool IsZeroInitializable;
  bool IsZeroInitializableAsBase;

  /// Packed - Whether the resulting LLVM struct will be packed or not.
  bool Packed;
  
  /// IsMsStruct - Whether ms_struct is in effect or not
  bool IsMsStruct;

private:
  CodeGenTypes &Types;

  /// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the
  /// last base laid out. Used so that we can replace the last laid out base
  /// type with an i8 array if needed.
  struct LastLaidOutBaseInfo {
    CharUnits Offset;
    CharUnits NonVirtualSize;

    bool isValid() const { return !NonVirtualSize.isZero(); }
    void invalidate() { NonVirtualSize = CharUnits::Zero(); }
  
  } LastLaidOutBase;

  /// Alignment - Contains the alignment of the RecordDecl.
  CharUnits Alignment;

  /// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
  /// this will have the number of bits still available in the field.
  char BitsAvailableInLastField;

  /// NextFieldOffset - Holds the next field offset.
  CharUnits NextFieldOffset;

  /// LayoutUnionField - Will layout a field in an union and return the type
  /// that the field will have.
  const llvm::Type *LayoutUnionField(const FieldDecl *Field,
                                     const ASTRecordLayout &Layout);
  
  /// LayoutUnion - Will layout a union RecordDecl.
  void LayoutUnion(const RecordDecl *D);

  /// LayoutField - try to layout all fields in the record decl.
  /// Returns false if the operation failed because the struct is not packed.
  bool LayoutFields(const RecordDecl *D);

  /// Layout a single base, virtual or non-virtual
  void LayoutBase(const CXXRecordDecl *base,
                  const CGRecordLayout &baseLayout,
                  CharUnits baseOffset);

  /// LayoutVirtualBase - layout a single virtual base.
  void LayoutVirtualBase(const CXXRecordDecl *base,
                         CharUnits baseOffset);

  /// LayoutVirtualBases - layout the virtual bases of a record decl.
  void LayoutVirtualBases(const CXXRecordDecl *RD,
                          const ASTRecordLayout &Layout);
  
  /// LayoutNonVirtualBase - layout a single non-virtual base.
  void LayoutNonVirtualBase(const CXXRecordDecl *base,
                            CharUnits baseOffset);
  
  /// LayoutNonVirtualBases - layout the virtual bases of a record decl.
  void LayoutNonVirtualBases(const CXXRecordDecl *RD, 
                             const ASTRecordLayout &Layout);

  /// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
  bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
  
  /// LayoutField - layout a single field. Returns false if the operation failed
  /// because the current struct is not packed.
  bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);

  /// LayoutBitField - layout a single bit field.
  void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);

  /// AppendField - Appends a field with the given offset and type.
  void AppendField(CharUnits fieldOffset, const llvm::Type *FieldTy);

  /// AppendPadding - Appends enough padding bytes so that the total
  /// struct size is a multiple of the field alignment.
  void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment);

  /// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the
  /// tail padding of a previous base. If this happens, the type of the previous
  /// base needs to be changed to an array of i8. Returns true if the last
  /// laid out base was resized.
  bool ResizeLastBaseFieldIfNecessary(CharUnits offset);

  /// getByteArrayType - Returns a byte array type with the given number of
  /// elements.
  const llvm::Type *getByteArrayType(CharUnits NumBytes);
  
  /// AppendBytes - Append a given number of bytes to the record.
  void AppendBytes(CharUnits numBytes);

  /// AppendTailPadding - Append enough tail padding so that the type will have
  /// the passed size.
  void AppendTailPadding(CharUnits RecordSize);

  CharUnits getTypeAlignment(const llvm::Type *Ty) const;

  /// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
  /// LLVM element types.
  CharUnits getAlignmentAsLLVMStruct() const;

  /// CheckZeroInitializable - Check if the given type contains a pointer
  /// to data member.
  void CheckZeroInitializable(QualType T);

public:
  CGRecordLayoutBuilder(CodeGenTypes &Types)
    : BaseSubobjectType(0),
      IsZeroInitializable(true), IsZeroInitializableAsBase(true),
      Packed(false), IsMsStruct(false),
      Types(Types), BitsAvailableInLastField(0) { }

  /// Layout - Will layout a RecordDecl.
  void Layout(const RecordDecl *D);
};

}

void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
  Alignment = Types.getContext().getASTRecordLayout(D).getAlignment();
  Packed = D->hasAttr<PackedAttr>();
  
  IsMsStruct = D->hasAttr<MsStructAttr>();

  if (D->isUnion()) {
    LayoutUnion(D);
    return;
  }

  if (LayoutFields(D))
    return;

  // We weren't able to layout the struct. Try again with a packed struct
  Packed = true;
  LastLaidOutBase.invalidate();
  NextFieldOffset = CharUnits::Zero();
  FieldTypes.clear();
  Fields.clear();
  BitFields.clear();
  NonVirtualBases.clear();
  VirtualBases.clear();

  LayoutFields(D);
}

CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
                               const FieldDecl *FD,
                               uint64_t FieldOffset,
                               uint64_t FieldSize,
                               uint64_t ContainingTypeSizeInBits,
                               unsigned ContainingTypeAlign) {
  const llvm::Type *Ty = Types.ConvertTypeForMemRecursive(FD->getType());
  CharUnits TypeSizeInBytes =
    CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(Ty));
  uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);

  bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();

  if (FieldSize > TypeSizeInBits) {
    // We have a wide bit-field. The extra bits are only used for padding, so
    // if we have a bitfield of type T, with size N:
    //
    // T t : N;
    //
    // We can just assume that it's:
    //
    // T t : sizeof(T);
    //
    FieldSize = TypeSizeInBits;
  }

  // in big-endian machines the first fields are in higher bit positions,
  // so revert the offset. The byte offsets are reversed(back) later.
  if (Types.getTargetData().isBigEndian()) {
    FieldOffset = ((ContainingTypeSizeInBits)-FieldOffset-FieldSize);
  }

  // Compute the access components. The policy we use is to start by attempting
  // to access using the width of the bit-field type itself and to always access
  // at aligned indices of that type. If such an access would fail because it
  // extends past the bound of the type, then we reduce size to the next smaller
  // power of two and retry. The current algorithm assumes pow2 sized types,
  // although this is easy to fix.
  //
  assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
  CGBitFieldInfo::AccessInfo Components[3];
  unsigned NumComponents = 0;
  unsigned AccessedTargetBits = 0;       // The number of target bits accessed.
  unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.

  // Round down from the field offset to find the first access position that is
  // at an aligned offset of the initial access type.
  uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);

  // Adjust initial access size to fit within record.
  while (AccessWidth > Types.getTarget().getCharWidth() &&
         AccessStart + AccessWidth > ContainingTypeSizeInBits) {
    AccessWidth >>= 1;
    AccessStart = FieldOffset - (FieldOffset % AccessWidth);
  }

  while (AccessedTargetBits < FieldSize) {
    // Check that we can access using a type of this size, without reading off
    // the end of the structure. This can occur with packed structures and
    // -fno-bitfield-type-align, for example.
    if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
      // If so, reduce access size to the next smaller power-of-two and retry.
      AccessWidth >>= 1;
      assert(AccessWidth >= Types.getTarget().getCharWidth()
             && "Cannot access under byte size!");
      continue;
    }

    // Otherwise, add an access component.

    // First, compute the bits inside this access which are part of the
    // target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
    // intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
    // in the target that we are reading.
    assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
    assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
    uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
    uint64_t AccessBitsInFieldSize =
      std::min(AccessWidth + AccessStart,
               FieldOffset + FieldSize) - AccessBitsInFieldStart;

    assert(NumComponents < 3 && "Unexpected number of components!");
    CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
    AI.FieldIndex = 0;
    // FIXME: We still follow the old access pattern of only using the field
    // byte offset. We should switch this once we fix the struct layout to be
    // pretty.

    // on big-endian machines we reverted the bit offset because first fields are
    // in higher bits. But this also reverts the bytes, so fix this here by reverting
    // the byte offset on big-endian machines.
    if (Types.getTargetData().isBigEndian()) {
      AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(
          ContainingTypeSizeInBits - AccessStart - AccessWidth);
    } else {
      AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(AccessStart);
    }
    AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
    AI.AccessWidth = AccessWidth;
    AI.AccessAlignment = Types.getContext().toCharUnitsFromBits(
        llvm::MinAlign(ContainingTypeAlign, AccessStart));
    AI.TargetBitOffset = AccessedTargetBits;
    AI.TargetBitWidth = AccessBitsInFieldSize;

    AccessStart += AccessWidth;
    AccessedTargetBits += AI.TargetBitWidth;
  }

  assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
  return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
}

CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
                                        const FieldDecl *FD,
                                        uint64_t FieldOffset,
                                        uint64_t FieldSize) {
  const RecordDecl *RD = FD->getParent();
  const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
  uint64_t ContainingTypeSizeInBits = Types.getContext().toBits(RL.getSize());
  unsigned ContainingTypeAlign = Types.getContext().toBits(RL.getAlignment());

  return MakeInfo(Types, FD, FieldOffset, FieldSize, ContainingTypeSizeInBits,
                  ContainingTypeAlign);
}

void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
                                           uint64_t fieldOffset) {
  uint64_t fieldSize =
    D->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();

  if (fieldSize == 0)
    return;

  uint64_t nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
  CharUnits numBytesToAppend;
  unsigned charAlign = Types.getContext().Target.getCharAlign();

  if (fieldOffset < nextFieldOffsetInBits && !BitsAvailableInLastField) {
    assert(fieldOffset % charAlign == 0 && 
           "Field offset not aligned correctly");

    CharUnits fieldOffsetInCharUnits = 
      Types.getContext().toCharUnitsFromBits(fieldOffset);

    // Try to resize the last base field.
    if (ResizeLastBaseFieldIfNecessary(fieldOffsetInCharUnits))
      nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
  }

  if (fieldOffset < nextFieldOffsetInBits) {
    assert(BitsAvailableInLastField && "Bitfield size mismatch!");
    assert(!NextFieldOffset.isZero() && "Must have laid out at least one byte");

    // The bitfield begins in the previous bit-field.
    numBytesToAppend = Types.getContext().toCharUnitsFromBits(
      llvm::RoundUpToAlignment(fieldSize - BitsAvailableInLastField, 
                               charAlign));
  } else {
    assert(fieldOffset % charAlign == 0 && 
           "Field offset not aligned correctly");

    // Append padding if necessary.
    AppendPadding(Types.getContext().toCharUnitsFromBits(fieldOffset), 
                  CharUnits::One());

    numBytesToAppend = Types.getContext().toCharUnitsFromBits(
        llvm::RoundUpToAlignment(fieldSize, charAlign));

    assert(!numBytesToAppend.isZero() && "No bytes to append!");
  }

  // Add the bit field info.
  BitFields.insert(std::make_pair(D,
                   CGBitFieldInfo::MakeInfo(Types, D, fieldOffset, fieldSize)));

  AppendBytes(numBytesToAppend);

  BitsAvailableInLastField =
    Types.getContext().toBits(NextFieldOffset) - (fieldOffset + fieldSize);
}

bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
                                        uint64_t fieldOffset) {
  // If the field is packed, then we need a packed struct.
  if (!Packed && D->hasAttr<PackedAttr>())
    return false;

  if (D->isBitField()) {
    // We must use packed structs for unnamed bit fields since they
    // don't affect the struct alignment.
    if (!Packed && !D->getDeclName())
      return false;

    LayoutBitField(D, fieldOffset);
    return true;
  }

  CheckZeroInitializable(D->getType());

  assert(fieldOffset % Types.getTarget().getCharWidth() == 0
         && "field offset is not on a byte boundary!");
  CharUnits fieldOffsetInBytes
    = Types.getContext().toCharUnitsFromBits(fieldOffset);

  const llvm::Type *Ty = Types.ConvertTypeForMemRecursive(D->getType());
  CharUnits typeAlignment = getTypeAlignment(Ty);

  // If the type alignment is larger then the struct alignment, we must use
  // a packed struct.
  if (typeAlignment > Alignment) {
    assert(!Packed && "Alignment is wrong even with packed struct!");
    return false;
  }

  if (!Packed) {
    if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
      if (const MaxFieldAlignmentAttr *MFAA =
            RD->getAttr<MaxFieldAlignmentAttr>()) {
        if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment))
          return false;
      }
    }
  }

  // Round up the field offset to the alignment of the field type.
  CharUnits alignedNextFieldOffsetInBytes =
    NextFieldOffset.RoundUpToAlignment(typeAlignment);

  if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    // Try to resize the last base field.
    if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) {
      alignedNextFieldOffsetInBytes = 
        NextFieldOffset.RoundUpToAlignment(typeAlignment);
    }
  }

  if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    assert(!Packed && "Could not place field even with packed struct!");
    return false;
  }

  AppendPadding(fieldOffsetInBytes, typeAlignment);

  // Now append the field.
  Fields[D] = FieldTypes.size();
  AppendField(fieldOffsetInBytes, Ty);

  LastLaidOutBase.invalidate();
  return true;
}

const llvm::Type *
CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
                                        const ASTRecordLayout &Layout) {
  if (Field->isBitField()) {
    uint64_t FieldSize =
      Field->getBitWidth()->EvaluateAsInt(Types.getContext()).getZExtValue();

    // Ignore zero sized bit fields.
    if (FieldSize == 0)
      return 0;

    const llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
    CharUnits NumBytesToAppend = Types.getContext().toCharUnitsFromBits(
      llvm::RoundUpToAlignment(FieldSize, 
                               Types.getContext().Target.getCharAlign()));

    if (NumBytesToAppend > CharUnits::One())
      FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity());

    // Add the bit field info.
    BitFields.insert(std::make_pair(Field,
                         CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize)));
    return FieldTy;
  }

  // This is a regular union field.
  Fields[Field] = 0;
  return Types.ConvertTypeForMemRecursive(Field->getType());
}

void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
  assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");

  const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D);

  const llvm::Type *unionType = 0;
  CharUnits unionSize = CharUnits::Zero();
  CharUnits unionAlign = CharUnits::Zero();

  bool hasOnlyZeroSizedBitFields = true;

  unsigned fieldNo = 0;
  for (RecordDecl::field_iterator field = D->field_begin(),
       fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) {
    assert(layout.getFieldOffset(fieldNo) == 0 &&
          "Union field offset did not start at the beginning of record!");
    const llvm::Type *fieldType = LayoutUnionField(*field, layout);

    if (!fieldType)
      continue;

    hasOnlyZeroSizedBitFields = false;

    CharUnits fieldAlign = CharUnits::fromQuantity(
                          Types.getTargetData().getABITypeAlignment(fieldType));
    CharUnits fieldSize = CharUnits::fromQuantity(
                             Types.getTargetData().getTypeAllocSize(fieldType));

    if (fieldAlign < unionAlign)
      continue;

    if (fieldAlign > unionAlign || fieldSize > unionSize) {
      unionType = fieldType;
      unionAlign = fieldAlign;
      unionSize = fieldSize;
    }
  }

  // Now add our field.
  if (unionType) {
    AppendField(CharUnits::Zero(), unionType);

    if (getTypeAlignment(unionType) > layout.getAlignment()) {
      // We need a packed struct.
      Packed = true;
      unionAlign = CharUnits::One();
    }
  }
  if (unionAlign.isZero()) {
    assert(hasOnlyZeroSizedBitFields &&
           "0-align record did not have all zero-sized bit-fields!");
    unionAlign = CharUnits::One();
  }

  // Append tail padding.
  CharUnits recordSize = layout.getSize();
  if (recordSize > unionSize)
    AppendPadding(recordSize, unionAlign);
}

void CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base,
                                       const CGRecordLayout &baseLayout,
                                       CharUnits baseOffset) {
  ResizeLastBaseFieldIfNecessary(baseOffset);

  AppendPadding(baseOffset, CharUnits::One());

  const ASTRecordLayout &baseASTLayout
    = Types.getContext().getASTRecordLayout(base);

  LastLaidOutBase.Offset = NextFieldOffset;
  LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize();

  // Fields and bases can be laid out in the tail padding of previous
  // bases.  If this happens, we need to allocate the base as an i8
  // array; otherwise, we can use the subobject type.  However,
  // actually doing that would require knowledge of what immediately
  // follows this base in the layout, so instead we do a conservative
  // approximation, which is to use the base subobject type if it
  // has the same LLVM storage size as the nvsize.

  const llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType();
  AppendField(baseOffset, subobjectType);

  Types.addBaseSubobjectTypeName(base, baseLayout);
}

void CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base,
                                                 CharUnits baseOffset) {
  // Ignore empty bases.
  if (base->isEmpty()) return;

  const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
  if (IsZeroInitializableAsBase) {
    assert(IsZeroInitializable &&
           "class zero-initializable as base but not as complete object");

    IsZeroInitializable = IsZeroInitializableAsBase =
      baseLayout.isZeroInitializableAsBase();
  }

  LayoutBase(base, baseLayout, baseOffset);
  NonVirtualBases[base] = (FieldTypes.size() - 1);
}

void
CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base,
                                         CharUnits baseOffset) {
  // Ignore empty bases.
  if (base->isEmpty()) return;

  const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
  if (IsZeroInitializable)
    IsZeroInitializable = baseLayout.isZeroInitializableAsBase();

  LayoutBase(base, baseLayout, baseOffset);
  VirtualBases[base] = (FieldTypes.size() - 1);
}

/// LayoutVirtualBases - layout the non-virtual bases of a record decl.
void
CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
                                          const ASTRecordLayout &Layout) {
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
       E = RD->bases_end(); I != E; ++I) {
    const CXXRecordDecl *BaseDecl = 
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    // We only want to lay out virtual bases that aren't indirect primary bases
    // of some other base.
    if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
      // Only lay out the base once.
      if (!LaidOutVirtualBases.insert(BaseDecl))
        continue;

      CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
      LayoutVirtualBase(BaseDecl, vbaseOffset);
    }

    if (!BaseDecl->getNumVBases()) {
      // This base isn't interesting since it doesn't have any virtual bases.
      continue;
    }
    
    LayoutVirtualBases(BaseDecl, Layout);
  }
}

void
CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
                                             const ASTRecordLayout &Layout) {
  const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();

  // Check if we need to add a vtable pointer.
  if (RD->isDynamicClass()) {
    if (!PrimaryBase) {
      const llvm::Type *FunctionType =
        llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
                                /*isVarArg=*/true);
      const llvm::Type *VTableTy = FunctionType->getPointerTo();

      assert(NextFieldOffset.isZero() &&
             "VTable pointer must come first!");
      AppendField(CharUnits::Zero(), VTableTy->getPointerTo());
    } else {
      if (!Layout.isPrimaryBaseVirtual())
        LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero());
      else
        LayoutVirtualBase(PrimaryBase, CharUnits::Zero());
    }
  }

  // Layout the non-virtual bases.
  for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
       E = RD->bases_end(); I != E; ++I) {
    if (I->isVirtual())
      continue;

    const CXXRecordDecl *BaseDecl = 
      cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());

    // We've already laid out the primary base.
    if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
      continue;

    LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl));
  }
}

bool
CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
  const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);

  CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
  CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
  CharUnits AlignedNonVirtualTypeSize =
    NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
  
  // First check if we can use the same fields as for the complete class.
  CharUnits RecordSize = Layout.getSize();
  if (AlignedNonVirtualTypeSize == RecordSize)
    return true;

  // Check if we need padding.
  CharUnits AlignedNextFieldOffset =
    NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());

  if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) {
    assert(!Packed && "cannot layout even as packed struct");
    return false; // Needs packing.
  }

  bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset);
  if (needsPadding) {
    CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
    FieldTypes.push_back(getByteArrayType(NumBytes));
  }

  BaseSubobjectType = llvm::StructType::get(Types.getLLVMContext(),
                                            FieldTypes, Packed);

  if (needsPadding) {
    // Pull the padding back off.
    FieldTypes.pop_back();
  }

  return true;
}

bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
  assert(!D->isUnion() && "Can't call LayoutFields on a union!");
  assert(!Alignment.isZero() && "Did not set alignment!");

  const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);

  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
  if (RD)
    LayoutNonVirtualBases(RD, Layout);

  unsigned FieldNo = 0;
  const FieldDecl *LastFD = 0;
  
  for (RecordDecl::field_iterator Field = D->field_begin(),
       FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
    if (IsMsStruct) {
      // Zero-length bitfields following non-bitfield members are
      // ignored:
      const FieldDecl *FD =  (*Field);
      if (Types.getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
        --FieldNo;
        continue;
      }
      LastFD = FD;
    }
    
    if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
      assert(!Packed &&
             "Could not layout fields even with a packed LLVM struct!");
      return false;
    }
  }

  if (RD) {
    // We've laid out the non-virtual bases and the fields, now compute the
    // non-virtual base field types.
    if (!ComputeNonVirtualBaseType(RD)) {
      assert(!Packed && "Could not layout even with a packed LLVM struct!");
      return false;
    }

    // And lay out the virtual bases.
    RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    if (Layout.isPrimaryBaseVirtual())
      IndirectPrimaryBases.insert(Layout.getPrimaryBase());
    LayoutVirtualBases(RD, Layout);
  }
  
  // Append tail padding if necessary.
  AppendTailPadding(Layout.getSize());

  return true;
}

void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) {
  ResizeLastBaseFieldIfNecessary(RecordSize);

  assert(NextFieldOffset <= RecordSize && "Size mismatch!");

  CharUnits AlignedNextFieldOffset =
    NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());

  if (AlignedNextFieldOffset == RecordSize) {
    // We don't need any padding.
    return;
  }

  CharUnits NumPadBytes = RecordSize - NextFieldOffset;
  AppendBytes(NumPadBytes);
}

void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset,
                                        const llvm::Type *fieldType) {
  CharUnits fieldSize =
    CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(fieldType));

  FieldTypes.push_back(fieldType);

  NextFieldOffset = fieldOffset + fieldSize;
  BitsAvailableInLastField = 0;
}

void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset,
                                          CharUnits fieldAlignment) {
  assert(NextFieldOffset <= fieldOffset &&
         "Incorrect field layout!");

  // Round up the field offset to the alignment of the field type.
  CharUnits alignedNextFieldOffset =
    NextFieldOffset.RoundUpToAlignment(fieldAlignment);

  if (alignedNextFieldOffset < fieldOffset) {
    // Even with alignment, the field offset is not at the right place,
    // insert padding.
    CharUnits padding = fieldOffset - NextFieldOffset;

    AppendBytes(padding);
  }
}

bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) {
  // Check if we have a base to resize.
  if (!LastLaidOutBase.isValid())
    return false;

  // This offset does not overlap with the tail padding.
  if (offset >= NextFieldOffset)
    return false;

  // Restore the field offset and append an i8 array instead.
  FieldTypes.pop_back();
  NextFieldOffset = LastLaidOutBase.Offset;
  AppendBytes(LastLaidOutBase.NonVirtualSize);
  LastLaidOutBase.invalidate();

  return true;
}

const llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) {
  assert(!numBytes.isZero() && "Empty byte arrays aren't allowed.");

  const llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
  if (numBytes > CharUnits::One())
    Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity());

  return Ty;
}

void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) {
  if (numBytes.isZero())
    return;

  // Append the padding field
  AppendField(NextFieldOffset, getByteArrayType(numBytes));
}

CharUnits CGRecordLayoutBuilder::getTypeAlignment(const llvm::Type *Ty) const {
  if (Packed)
    return CharUnits::One();

  return CharUnits::fromQuantity(Types.getTargetData().getABITypeAlignment(Ty));
}

CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
  if (Packed)
    return CharUnits::One();

  CharUnits maxAlignment = CharUnits::One();
  for (size_t i = 0; i != FieldTypes.size(); ++i)
    maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i]));

  return maxAlignment;
}

/// Merge in whether a field of the given type is zero-initializable.
void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
  // This record already contains a member pointer.
  if (!IsZeroInitializableAsBase)
    return;

  // Can only have member pointers if we're compiling C++.
  if (!Types.getContext().getLangOptions().CPlusPlus)
    return;

  const Type *elementType = T->getBaseElementTypeUnsafe();

  if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) {
    if (!Types.getCXXABI().isZeroInitializable(MPT))
      IsZeroInitializable = IsZeroInitializableAsBase = false;
  } else if (const RecordType *RT = elementType->getAs<RecordType>()) {
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
    if (!Layout.isZeroInitializable())
      IsZeroInitializable = IsZeroInitializableAsBase = false;
  }
}

CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D) {
  CGRecordLayoutBuilder Builder(*this);

  Builder.Layout(D);

  const llvm::StructType *Ty = llvm::StructType::get(getLLVMContext(),
                                                     Builder.FieldTypes,
                                                     Builder.Packed);

  // If we're in C++, compute the base subobject type.
  const llvm::StructType *BaseTy = 0;
  if (isa<CXXRecordDecl>(D)) {
    BaseTy = Builder.BaseSubobjectType;
    if (!BaseTy) BaseTy = Ty;
  }

  CGRecordLayout *RL =
    new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
                       Builder.IsZeroInitializableAsBase);

  RL->NonVirtualBases.swap(Builder.NonVirtualBases);
  RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);

  // Add all the field numbers.
  RL->FieldInfo.swap(Builder.Fields);

  // Add bitfield info.
  RL->BitFields.swap(Builder.BitFields);

  // Dump the layout, if requested.
  if (getContext().getLangOptions().DumpRecordLayouts) {
    llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
    llvm::errs() << "Record: ";
    D->dump();
    llvm::errs() << "\nLayout: ";
    RL->dump();
  }

#ifndef NDEBUG
  // Verify that the computed LLVM struct size matches the AST layout size.
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);

  uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
  assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
         "Type size mismatch!");

  if (BaseTy) {
    CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
    CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
    CharUnits AlignedNonVirtualTypeSize = 
      NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);

    uint64_t AlignedNonVirtualTypeSizeInBits = 
      getContext().toBits(AlignedNonVirtualTypeSize);

    assert(AlignedNonVirtualTypeSizeInBits == 
           getTargetData().getTypeAllocSizeInBits(BaseTy) &&
           "Type size mismatch!");
  }
                                     
  // Verify that the LLVM and AST field offsets agree.
  const llvm::StructType *ST =
    dyn_cast<llvm::StructType>(RL->getLLVMType());
  const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);

  const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
  RecordDecl::field_iterator it = D->field_begin();
  const FieldDecl *LastFD = 0;
  bool IsMsStruct = D->hasAttr<MsStructAttr>();
  for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
    const FieldDecl *FD = *it;

    // For non-bit-fields, just check that the LLVM struct offset matches the
    // AST offset.
    if (!FD->isBitField()) {
      unsigned FieldNo = RL->getLLVMFieldNo(FD);
      assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
             "Invalid field offset!");
      LastFD = FD;
      continue;
    }

    if (IsMsStruct) {
      // Zero-length bitfields following non-bitfield members are
      // ignored:
      if (getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
        --i;
        continue;
      }
      LastFD = FD;
    }
    
    // Ignore unnamed bit-fields.
    if (!FD->getDeclName()) {
      LastFD = FD;
      continue;
    }
    
    const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
    for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
      const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);

      // Verify that every component access is within the structure.
      uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
      uint64_t AccessBitOffset = FieldOffset +
        getContext().toBits(AI.FieldByteOffset);
      assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
             "Invalid bit-field access (out of range)!");
    }
  }
#endif

  return RL;
}

void CGRecordLayout::print(llvm::raw_ostream &OS) const {
  OS << "<CGRecordLayout\n";
  OS << "  LLVMType:" << *CompleteObjectType << "\n";
  if (BaseSubobjectType)
    OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; 
  OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
  OS << "  BitFields:[\n";

  // Print bit-field infos in declaration order.
  std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
  for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
         it = BitFields.begin(), ie = BitFields.end();
       it != ie; ++it) {
    const RecordDecl *RD = it->first->getParent();
    unsigned Index = 0;
    for (RecordDecl::field_iterator
           it2 = RD->field_begin(); *it2 != it->first; ++it2)
      ++Index;
    BFIs.push_back(std::make_pair(Index, &it->second));
  }
  llvm::array_pod_sort(BFIs.begin(), BFIs.end());
  for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
    OS.indent(4);
    BFIs[i].second->print(OS);
    OS << "\n";
  }

  OS << "]>\n";
}

void CGRecordLayout::dump() const {
  print(llvm::errs());
}

void CGBitFieldInfo::print(llvm::raw_ostream &OS) const {
  OS << "<CGBitFieldInfo";
  OS << " Size:" << Size;
  OS << " IsSigned:" << IsSigned << "\n";

  OS.indent(4 + strlen("<CGBitFieldInfo"));
  OS << " NumComponents:" << getNumComponents();
  OS << " Components: [";
  if (getNumComponents()) {
    OS << "\n";
    for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
      const AccessInfo &AI = getComponent(i);
      OS.indent(8);
      OS << "<AccessInfo"
         << " FieldIndex:" << AI.FieldIndex
         << " FieldByteOffset:" << AI.FieldByteOffset.getQuantity()
         << " FieldBitStart:" << AI.FieldBitStart
         << " AccessWidth:" << AI.AccessWidth << "\n";
      OS.indent(8 + strlen("<AccessInfo"));
      OS << " AccessAlignment:" << AI.AccessAlignment.getQuantity()
         << " TargetBitOffset:" << AI.TargetBitOffset
         << " TargetBitWidth:" << AI.TargetBitWidth
         << ">\n";
    }
    OS.indent(4);
  }
  OS << "]>";
}

void CGBitFieldInfo::dump() const {
  print(llvm::errs());
}
OpenPOWER on IntegriCloud