summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGExprAgg.cpp
blob: d8da642a6b38c912c810f49021735aa5ecf6fa52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Aggregate Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGObjCRuntime.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                        Aggregate Expression Emitter
//===----------------------------------------------------------------------===//

namespace  {
class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
  CodeGenFunction &CGF;
  CGBuilderTy &Builder;
  AggValueSlot Dest;
  bool IgnoreResult;

  ReturnValueSlot getReturnValueSlot() const {
    // If the destination slot requires garbage collection, we can't
    // use the real return value slot, because we have to use the GC
    // API.
    if (Dest.requiresGCollection()) return ReturnValueSlot();

    return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
  }

  AggValueSlot EnsureSlot(QualType T) {
    if (!Dest.isIgnored()) return Dest;
    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
  }

public:
  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
                 bool ignore)
    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
      IgnoreResult(ignore) {
  }

  //===--------------------------------------------------------------------===//
  //                               Utilities
  //===--------------------------------------------------------------------===//

  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
  /// represents a value lvalue, this method emits the address of the lvalue,
  /// then loads the result into DestPtr.
  void EmitAggLoadOfLValue(const Expr *E);

  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
  void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
  void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);

  void EmitGCMove(const Expr *E, RValue Src);

  bool TypeRequiresGCollection(QualType T);

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  void VisitStmt(Stmt *S) {
    CGF.ErrorUnsupported(S, "aggregate expression");
  }
  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    Visit(GE->getResultExpr());
  }
  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }

  // l-values.
  void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    EmitAggLoadOfLValue(E);
  }
  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    EmitAggLoadOfLValue(E);
  }
  void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
    EmitAggLoadOfLValue(E);
  }
  void VisitPredefinedExpr(const PredefinedExpr *E) {
    EmitAggLoadOfLValue(E);
  }

  // Operators.
  void VisitCastExpr(CastExpr *E);
  void VisitCallExpr(const CallExpr *E);
  void VisitStmtExpr(const StmtExpr *E);
  void VisitBinaryOperator(const BinaryOperator *BO);
  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
  void VisitBinAssign(const BinaryOperator *E);
  void VisitBinComma(const BinaryOperator *E);

  void VisitObjCMessageExpr(ObjCMessageExpr *E);
  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    EmitAggLoadOfLValue(E);
  }
  void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);

  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
  void VisitChooseExpr(const ChooseExpr *CE);
  void VisitInitListExpr(InitListExpr *E);
  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    Visit(DAE->getExpr());
  }
  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
  void VisitCXXConstructExpr(const CXXConstructExpr *E);
  void VisitExprWithCleanups(ExprWithCleanups *E);
  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }

  void VisitOpaqueValueExpr(OpaqueValueExpr *E);

  void VisitVAArgExpr(VAArgExpr *E);

  void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
  void EmitNullInitializationToLValue(LValue Address, QualType T);
  //  case Expr::ChooseExprClass:
  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
};
}  // end anonymous namespace.

//===----------------------------------------------------------------------===//
//                                Utilities
//===----------------------------------------------------------------------===//

/// EmitAggLoadOfLValue - Given an expression with aggregate type that
/// represents a value lvalue, this method emits the address of the lvalue,
/// then loads the result into DestPtr.
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
  LValue LV = CGF.EmitLValue(E);
  EmitFinalDestCopy(E, LV);
}

/// \brief True if the given aggregate type requires special GC API calls.
bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
  // Only record types have members that might require garbage collection.
  const RecordType *RecordTy = T->getAs<RecordType>();
  if (!RecordTy) return false;

  // Don't mess with non-trivial C++ types.
  RecordDecl *Record = RecordTy->getDecl();
  if (isa<CXXRecordDecl>(Record) &&
      (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    return false;

  // Check whether the type has an object member.
  return Record->hasObjectMember();
}

/// \brief Perform the final move to DestPtr if RequiresGCollection is set.
///
/// The idea is that you do something like this:
///   RValue Result = EmitSomething(..., getReturnValueSlot());
///   EmitGCMove(E, Result);
/// If GC doesn't interfere, this will cause the result to be emitted
/// directly into the return value slot.  If GC does interfere, a final
/// move will be performed.
void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
  if (Dest.requiresGCollection()) {
    CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
                                                    Src.getAggregateAddr(),
                                                    SizeVal);
  }
}

/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
  assert(Src.isAggregate() && "value must be aggregate value!");

  // If Dest is ignored, then we're evaluating an aggregate expression
  // in a context (like an expression statement) that doesn't care
  // about the result.  C says that an lvalue-to-rvalue conversion is
  // performed in these cases; C++ says that it is not.  In either
  // case, we don't actually need to do anything unless the value is
  // volatile.
  if (Dest.isIgnored()) {
    if (!Src.isVolatileQualified() ||
        CGF.CGM.getLangOptions().CPlusPlus ||
        (IgnoreResult && Ignore))
      return;

    // If the source is volatile, we must read from it; to do that, we need
    // some place to put it.
    Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
  }

  if (Dest.requiresGCollection()) {
    CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
                                                      Dest.getAddr(),
                                                      Src.getAggregateAddr(),
                                                      SizeVal);
    return;
  }
  // If the result of the assignment is used, copy the LHS there also.
  // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
  // from the source as well, as we can't eliminate it if either operand
  // is volatile, unless copy has volatile for both source and destination..
  CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
                        Dest.isVolatile()|Src.isVolatileQualified());
}

/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
  assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");

  EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
                                            Src.isVolatileQualified()),
                    Ignore);
}

//===----------------------------------------------------------------------===//
//                            Visitor Methods
//===----------------------------------------------------------------------===//

void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
  EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
}

void AggExprEmitter::VisitCastExpr(CastExpr *E) {
  switch (E->getCastKind()) {
  case CK_Dynamic: {
    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
    // FIXME: Do we also need to handle property references here?
    if (LV.isSimple())
      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    else
      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    
    if (!Dest.isIgnored())
      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    break;
  }
      
  case CK_ToUnion: {
    if (Dest.isIgnored()) break;

    // GCC union extension
    QualType Ty = E->getSubExpr()->getType();
    QualType PtrTy = CGF.getContext().getPointerType(Ty);
    llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
                                                 CGF.ConvertType(PtrTy));
    EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
                               Ty);
    break;
  }

  case CK_DerivedToBase:
  case CK_BaseToDerived:
  case CK_UncheckedDerivedToBase: {
    assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
                "should have been unpacked before we got here");
    break;
  }

  case CK_GetObjCProperty: {
    LValue LV = CGF.EmitLValue(E->getSubExpr());
    assert(LV.isPropertyRef());
    RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
    EmitGCMove(E, RV);
    break;
  }

  case CK_LValueToRValue: // hope for downstream optimization
  case CK_NoOp:
  case CK_UserDefinedConversion:
  case CK_ConstructorConversion:
    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
                                                   E->getType()) &&
           "Implicit cast types must be compatible");
    Visit(E->getSubExpr());
    break;
      
  case CK_LValueBitCast:
    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
    break;

  case CK_Dependent:
  case CK_BitCast:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToPointer:
  case CK_NullToMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer:
  case CK_MemberPointerToBoolean:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_PointerToBoolean:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_IntegralToBoolean:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingToBoolean:
  case CK_FloatingCast:
  case CK_AnyPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingRealToComplex:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexToBoolean:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexToBoolean:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
    llvm_unreachable("cast kind invalid for aggregate types");
  }
}

void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
  if (E->getCallReturnType()->isReferenceType()) {
    EmitAggLoadOfLValue(E);
    return;
  }

  RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
  EmitGCMove(E, RV);
}

void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
  RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
  EmitGCMove(E, RV);
}

void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
  llvm_unreachable("direct property access not surrounded by "
                   "lvalue-to-rvalue cast");
}

void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
  CGF.EmitIgnoredExpr(E->getLHS());
  Visit(E->getRHS());
}

void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  CodeGenFunction::StmtExprEvaluation eval(CGF);
  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
}

void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    VisitPointerToDataMemberBinaryOperator(E);
  else
    CGF.ErrorUnsupported(E, "aggregate binary expression");
}

void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
                                                    const BinaryOperator *E) {
  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
  EmitFinalDestCopy(E, LV);
}

void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  // For an assignment to work, the value on the right has
  // to be compatible with the value on the left.
  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
                                                 E->getRHS()->getType())
         && "Invalid assignment");

  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
      if (VD->hasAttr<BlocksAttr>() &&
          E->getRHS()->HasSideEffects(CGF.getContext())) {
        // When __block variable on LHS, the RHS must be evaluated first 
        // as it may change the 'forwarding' field via call to Block_copy.
        LValue RHS = CGF.EmitLValue(E->getRHS());
        LValue LHS = CGF.EmitLValue(E->getLHS());
        bool GCollection = false;
        if (CGF.getContext().getLangOptions().getGCMode())
          GCollection = TypeRequiresGCollection(E->getLHS()->getType());
        Dest = AggValueSlot::forLValue(LHS, true, GCollection);
        EmitFinalDestCopy(E, RHS, true);
        return;
      }
  
  LValue LHS = CGF.EmitLValue(E->getLHS());

  // We have to special case property setters, otherwise we must have
  // a simple lvalue (no aggregates inside vectors, bitfields).
  if (LHS.isPropertyRef()) {
    const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
    QualType ArgType = RE->getSetterArgType();
    RValue Src;
    if (ArgType->isReferenceType())
      Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
    else {
      AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
      CGF.EmitAggExpr(E->getRHS(), Slot);
      Src = Slot.asRValue();
    }
    CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
  } else {
    bool GCollection = false;
    if (CGF.getContext().getLangOptions().getGCMode())
      GCollection = TypeRequiresGCollection(E->getLHS()->getType());

    // Codegen the RHS so that it stores directly into the LHS.
    AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 
                                                   GCollection);
    CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
    EmitFinalDestCopy(E, LHS, true);
  }
}

void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");

  // Bind the common expression if necessary.
  CodeGenFunction::OpaqueValueMapping binding(CGF, E);

  CodeGenFunction::ConditionalEvaluation eval(CGF);
  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);

  // Save whether the destination's lifetime is externally managed.
  bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();

  eval.begin(CGF);
  CGF.EmitBlock(LHSBlock);
  Visit(E->getTrueExpr());
  eval.end(CGF);

  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
  CGF.Builder.CreateBr(ContBlock);

  // If the result of an agg expression is unused, then the emission
  // of the LHS might need to create a destination slot.  That's fine
  // with us, and we can safely emit the RHS into the same slot, but
  // we shouldn't claim that its lifetime is externally managed.
  Dest.setLifetimeExternallyManaged(DestLifetimeManaged);

  eval.begin(CGF);
  CGF.EmitBlock(RHSBlock);
  Visit(E->getFalseExpr());
  eval.end(CGF);

  CGF.EmitBlock(ContBlock);
}

void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
  Visit(CE->getChosenSubExpr(CGF.getContext()));
}

void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());

  if (!ArgPtr) {
    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    return;
  }

  EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
}

void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
  // Ensure that we have a slot, but if we already do, remember
  // whether its lifetime was externally managed.
  bool WasManaged = Dest.isLifetimeExternallyManaged();
  Dest = EnsureSlot(E->getType());
  Dest.setLifetimeExternallyManaged();

  Visit(E->getSubExpr());

  // Set up the temporary's destructor if its lifetime wasn't already
  // being managed.
  if (!WasManaged)
    CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
}

void
AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
  AggValueSlot Slot = EnsureSlot(E->getType());
  CGF.EmitCXXConstructExpr(E, Slot);
}

void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
  CGF.EmitExprWithCleanups(E, Dest);
}

void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
  QualType T = E->getType();
  AggValueSlot Slot = EnsureSlot(T);
  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
}

void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
  QualType T = E->getType();
  AggValueSlot Slot = EnsureSlot(T);
  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
}

/// isSimpleZero - If emitting this value will obviously just cause a store of
/// zero to memory, return true.  This can return false if uncertain, so it just
/// handles simple cases.
static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
  E = E->IgnoreParens();

  // 0
  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
    return IL->getValue() == 0;
  // +0.0
  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
    return FL->getValue().isPosZero();
  // int()
  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
      CGF.getTypes().isZeroInitializable(E->getType()))
    return true;
  // (int*)0 - Null pointer expressions.
  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
    return ICE->getCastKind() == CK_NullToPointer;
  // '\0'
  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
    return CL->getValue() == 0;
  
  // Otherwise, hard case: conservatively return false.
  return false;
}


void 
AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
  // FIXME: Ignore result?
  // FIXME: Are initializers affected by volatile?
  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
    // Storing "i32 0" to a zero'd memory location is a noop.
  } else if (isa<ImplicitValueInitExpr>(E)) {
    EmitNullInitializationToLValue(LV, T);
  } else if (T->isReferenceType()) {
    RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
    CGF.EmitStoreThroughLValue(RV, LV, T);
  } else if (T->isAnyComplexType()) {
    CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
  } else if (CGF.hasAggregateLLVMType(T)) {
    CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
                                             false, Dest.isZeroed()));
  } else {
    CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
  }
}

void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
  // If the destination slot is already zeroed out before the aggregate is
  // copied into it, we don't have to emit any zeros here.
  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
    return;
  
  if (!CGF.hasAggregateLLVMType(T)) {
    // For non-aggregates, we can store zero
    llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
    CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
  } else {
    // There's a potential optimization opportunity in combining
    // memsets; that would be easy for arrays, but relatively
    // difficult for structures with the current code.
    CGF.EmitNullInitialization(LV.getAddress(), T);
  }
}

void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
#if 0
  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
  // (Length of globals? Chunks of zeroed-out space?).
  //
  // If we can, prefer a copy from a global; this is a lot less code for long
  // globals, and it's easier for the current optimizers to analyze.
  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    llvm::GlobalVariable* GV =
    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
                             llvm::GlobalValue::InternalLinkage, C, "");
    EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
    return;
  }
#endif
  if (E->hadArrayRangeDesignator())
    CGF.ErrorUnsupported(E, "GNU array range designator extension");

  llvm::Value *DestPtr = Dest.getAddr();

  // Handle initialization of an array.
  if (E->getType()->isArrayType()) {
    const llvm::PointerType *APType =
      cast<llvm::PointerType>(DestPtr->getType());
    const llvm::ArrayType *AType =
      cast<llvm::ArrayType>(APType->getElementType());

    uint64_t NumInitElements = E->getNumInits();

    if (E->getNumInits() > 0) {
      QualType T1 = E->getType();
      QualType T2 = E->getInit(0)->getType();
      if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
        EmitAggLoadOfLValue(E->getInit(0));
        return;
      }
    }

    uint64_t NumArrayElements = AType->getNumElements();
    QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
    ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();

    bool hasNonTrivialCXXConstructor = false;
    if (CGF.getContext().getLangOptions().CPlusPlus)
      if (const RecordType *RT = CGF.getContext()
                        .getBaseElementType(ElementType)->getAs<RecordType>()) {
        const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
        hasNonTrivialCXXConstructor = !RD->hasTrivialDefaultConstructor();
      }

    // FIXME: were we intentionally ignoring address spaces and GC attributes?

    for (uint64_t i = 0; i != NumArrayElements; ++i) {
      // If we're done emitting initializers and the destination is known-zeroed
      // then we're done.
      if (i == NumInitElements &&
          Dest.isZeroed() &&
          CGF.getTypes().isZeroInitializable(ElementType) &&
          !hasNonTrivialCXXConstructor)
        break;

      llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
      LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
      
      if (i < NumInitElements)
        EmitInitializationToLValue(E->getInit(i), LV, ElementType);
      else if (Expr *filler = E->getArrayFiller())
        EmitInitializationToLValue(filler, LV, ElementType);
      else
        EmitNullInitializationToLValue(LV, ElementType);
      
      // If the GEP didn't get used because of a dead zero init or something
      // else, clean it up for -O0 builds and general tidiness.
      if (llvm::GetElementPtrInst *GEP =
            dyn_cast<llvm::GetElementPtrInst>(NextVal))
        if (GEP->use_empty())
          GEP->eraseFromParent();
    }
    return;
  }

  assert(E->getType()->isRecordType() && "Only support structs/unions here!");

  // Do struct initialization; this code just sets each individual member
  // to the approprate value.  This makes bitfield support automatic;
  // the disadvantage is that the generated code is more difficult for
  // the optimizer, especially with bitfields.
  unsigned NumInitElements = E->getNumInits();
  RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
  
  if (E->getType()->isUnionType()) {
    // Only initialize one field of a union. The field itself is
    // specified by the initializer list.
    if (!E->getInitializedFieldInUnion()) {
      // Empty union; we have nothing to do.

#ifndef NDEBUG
      // Make sure that it's really an empty and not a failure of
      // semantic analysis.
      for (RecordDecl::field_iterator Field = SD->field_begin(),
                                   FieldEnd = SD->field_end();
           Field != FieldEnd; ++Field)
        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
#endif
      return;
    }

    // FIXME: volatility
    FieldDecl *Field = E->getInitializedFieldInUnion();

    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
    if (NumInitElements) {
      // Store the initializer into the field
      EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
    } else {
      // Default-initialize to null.
      EmitNullInitializationToLValue(FieldLoc, Field->getType());
    }

    return;
  }

  // Here we iterate over the fields; this makes it simpler to both
  // default-initialize fields and skip over unnamed fields.
  unsigned CurInitVal = 0;
  for (RecordDecl::field_iterator Field = SD->field_begin(),
                               FieldEnd = SD->field_end();
       Field != FieldEnd; ++Field) {
    // We're done once we hit the flexible array member
    if (Field->getType()->isIncompleteArrayType())
      break;

    if (Field->isUnnamedBitfield())
      continue;

    // Don't emit GEP before a noop store of zero.
    if (CurInitVal == NumInitElements && Dest.isZeroed() &&
        CGF.getTypes().isZeroInitializable(E->getType()))
      break;
    
    // FIXME: volatility
    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
    // We never generate write-barries for initialized fields.
    FieldLoc.setNonGC(true);
    
    if (CurInitVal < NumInitElements) {
      // Store the initializer into the field.
      EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
                                 Field->getType());
    } else {
      // We're out of initalizers; default-initialize to null
      EmitNullInitializationToLValue(FieldLoc, Field->getType());
    }
    
    // If the GEP didn't get used because of a dead zero init or something
    // else, clean it up for -O0 builds and general tidiness.
    if (FieldLoc.isSimple())
      if (llvm::GetElementPtrInst *GEP =
            dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
        if (GEP->use_empty())
          GEP->eraseFromParent();
  }
}

//===----------------------------------------------------------------------===//
//                        Entry Points into this File
//===----------------------------------------------------------------------===//

/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
/// non-zero bytes that will be stored when outputting the initializer for the
/// specified initializer expression.
static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
  E = E->IgnoreParens();

  // 0 and 0.0 won't require any non-zero stores!
  if (isSimpleZero(E, CGF)) return CharUnits::Zero();

  // If this is an initlist expr, sum up the size of sizes of the (present)
  // elements.  If this is something weird, assume the whole thing is non-zero.
  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
  if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
    return CGF.getContext().getTypeSizeInChars(E->getType());
  
  // InitListExprs for structs have to be handled carefully.  If there are
  // reference members, we need to consider the size of the reference, not the
  // referencee.  InitListExprs for unions and arrays can't have references.
  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
    if (!RT->isUnionType()) {
      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
      CharUnits NumNonZeroBytes = CharUnits::Zero();
      
      unsigned ILEElement = 0;
      for (RecordDecl::field_iterator Field = SD->field_begin(),
           FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
        // We're done once we hit the flexible array member or run out of
        // InitListExpr elements.
        if (Field->getType()->isIncompleteArrayType() ||
            ILEElement == ILE->getNumInits())
          break;
        if (Field->isUnnamedBitfield())
          continue;

        const Expr *E = ILE->getInit(ILEElement++);
        
        // Reference values are always non-null and have the width of a pointer.
        if (Field->getType()->isReferenceType())
          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
              CGF.getContext().Target.getPointerWidth(0));
        else
          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
      }
      
      return NumNonZeroBytes;
    }
  }
  
  
  CharUnits NumNonZeroBytes = CharUnits::Zero();
  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
  return NumNonZeroBytes;
}

/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
/// zeros in it, emit a memset and avoid storing the individual zeros.
///
static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
                                     CodeGenFunction &CGF) {
  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
  // volatile stores.
  if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;

  // C++ objects with a user-declared constructor don't need zero'ing.
  if (CGF.getContext().getLangOptions().CPlusPlus)
    if (const RecordType *RT = CGF.getContext()
                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
      if (RD->hasUserDeclaredConstructor())
        return;
    }

  // If the type is 16-bytes or smaller, prefer individual stores over memset.
  std::pair<CharUnits, CharUnits> TypeInfo =
    CGF.getContext().getTypeInfoInChars(E->getType());
  if (TypeInfo.first <= CharUnits::fromQuantity(16))
    return;

  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
  // we prefer to emit memset + individual stores for the rest.
  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
  if (NumNonZeroBytes*4 > TypeInfo.first)
    return;
  
  // Okay, it seems like a good idea to use an initial memset, emit the call.
  llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
  CharUnits Align = TypeInfo.second;

  llvm::Value *Loc = Slot.getAddr();
  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
  
  Loc = CGF.Builder.CreateBitCast(Loc, BP);
  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 
                           Align.getQuantity(), false);
  
  // Tell the AggExprEmitter that the slot is known zero.
  Slot.setZeroed();
}




/// EmitAggExpr - Emit the computation of the specified expression of aggregate
/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
/// the value of the aggregate expression is not needed.  If VolatileDest is
/// true, DestPtr cannot be 0.
///
/// \param IsInitializer - true if this evaluation is initializing an
/// object whose lifetime is already being managed.
//
// FIXME: Take Qualifiers object.
void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
                                  bool IgnoreResult) {
  assert(E && hasAggregateLLVMType(E->getType()) &&
         "Invalid aggregate expression to emit");
  assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
         "slot has bits but no address");

  // Optimize the slot if possible.
  CheckAggExprForMemSetUse(Slot, E, *this);
 
  AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
}

LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
  assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
  llvm::Value *Temp = CreateMemTemp(E->getType());
  LValue LV = MakeAddrLValue(Temp, E->getType());
  EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
  return LV;
}

void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
                                        llvm::Value *SrcPtr, QualType Ty,
                                        bool isVolatile) {
  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");

  if (getContext().getLangOptions().CPlusPlus) {
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
      assert((Record->hasTrivialCopyConstructor() || 
              Record->hasTrivialCopyAssignment()) &&
             "Trying to aggregate-copy a type without a trivial copy "
             "constructor or assignment operator");
      // Ignore empty classes in C++.
      if (Record->isEmpty())
        return;
    }
  }
  
  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
  // C99 6.5.16.1p3, which states "If the value being stored in an object is
  // read from another object that overlaps in anyway the storage of the first
  // object, then the overlap shall be exact and the two objects shall have
  // qualified or unqualified versions of a compatible type."
  //
  // memcpy is not defined if the source and destination pointers are exactly
  // equal, but other compilers do this optimization, and almost every memcpy
  // implementation handles this case safely.  If there is a libc that does not
  // safely handle this, we can add a target hook.

  // Get size and alignment info for this aggregate.
  std::pair<CharUnits, CharUnits> TypeInfo = 
    getContext().getTypeInfoInChars(Ty);

  // FIXME: Handle variable sized types.

  // FIXME: If we have a volatile struct, the optimizer can remove what might
  // appear to be `extra' memory ops:
  //
  // volatile struct { int i; } a, b;
  //
  // int main() {
  //   a = b;
  //   a = b;
  // }
  //
  // we need to use a different call here.  We use isVolatile to indicate when
  // either the source or the destination is volatile.

  const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
  const llvm::Type *DBP =
    llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
  DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");

  const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
  const llvm::Type *SBP =
    llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
  SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");

  if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
    RecordDecl *Record = RecordTy->getDecl();
    if (Record->hasObjectMember()) {
      CharUnits size = TypeInfo.first;
      const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
      llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
                                                    SizeVal);
      return;
    }
  } else if (getContext().getAsArrayType(Ty)) {
    QualType BaseType = getContext().getBaseElementType(Ty);
    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
      if (RecordTy->getDecl()->hasObjectMember()) {
        CharUnits size = TypeInfo.first;
        const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
        llvm::Value *SizeVal = 
          llvm::ConstantInt::get(SizeTy, size.getQuantity());
        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
                                                      SizeVal);
        return;
      }
    }
  }
  
  Builder.CreateMemCpy(DestPtr, SrcPtr,
                       llvm::ConstantInt::get(IntPtrTy, 
                                              TypeInfo.first.getQuantity()),
                       TypeInfo.second.getQuantity(), isVolatile);
}
OpenPOWER on IntegriCloud