summaryrefslogtreecommitdiffstats
path: root/lib/Checker/RegionStore.cpp
blob: 307ef788038892b78bf84846ecd0c549d491fbf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a basic region store model. In this model, we do have field
// sensitivity. But we assume nothing about the heap shape. So recursive data
// structures are largely ignored. Basically we do 1-limiting analysis.
// Parameter pointers are assumed with no aliasing. Pointee objects of
// parameters are created lazily.
//
//===----------------------------------------------------------------------===//
#include "clang/Checker/PathSensitive/MemRegion.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Checker/PathSensitive/GRState.h"
#include "clang/Checker/PathSensitive/GRStateTrait.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/Support/Optional.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"

#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/ImmutableList.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;

//===----------------------------------------------------------------------===//
// Representation of binding keys.
//===----------------------------------------------------------------------===//

namespace {
class BindingKey {
public:
  enum Kind { Direct = 0x0, Default = 0x1 };
private:
  llvm ::PointerIntPair<const MemRegion*, 1> P;
  uint64_t Offset;

  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
    : P(r, (unsigned) k), Offset(offset) { assert(r); }
public:

  bool isDefault() const { return P.getInt() == Default; }
  bool isDirect() const { return P.getInt() == Direct; }

  const MemRegion *getRegion() const { return P.getPointer(); }
  uint64_t getOffset() const { return Offset; }

  void Profile(llvm::FoldingSetNodeID& ID) const {
    ID.AddPointer(P.getOpaqueValue());
    ID.AddInteger(Offset);
  }

  static BindingKey Make(const MemRegion *R, Kind k);

  bool operator<(const BindingKey &X) const {
    if (P.getOpaqueValue() < X.P.getOpaqueValue())
      return true;
    if (P.getOpaqueValue() > X.P.getOpaqueValue())
      return false;
    return Offset < X.Offset;
  }

  bool operator==(const BindingKey &X) const {
    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
           Offset == X.Offset;
  }
};
} // end anonymous namespace

namespace llvm {
  static inline
  llvm::raw_ostream& operator<<(llvm::raw_ostream& os, BindingKey K) {
    os << '(' << K.getRegion() << ',' << K.getOffset()
       << ',' << (K.isDirect() ? "direct" : "default")
       << ')';
    return os;
  }
} // end llvm namespace

//===----------------------------------------------------------------------===//
// Actual Store type.
//===----------------------------------------------------------------------===//

typedef llvm::ImmutableMap<BindingKey, SVal> RegionBindings;

//===----------------------------------------------------------------------===//
// Fine-grained control of RegionStoreManager.
//===----------------------------------------------------------------------===//

namespace {
struct minimal_features_tag {};
struct maximal_features_tag {};

class RegionStoreFeatures {
  bool SupportsFields;
  bool SupportsRemaining;

public:
  RegionStoreFeatures(minimal_features_tag) :
    SupportsFields(false), SupportsRemaining(false) {}

  RegionStoreFeatures(maximal_features_tag) :
    SupportsFields(true), SupportsRemaining(false) {}

  void enableFields(bool t) { SupportsFields = t; }

  bool supportsFields() const { return SupportsFields; }
  bool supportsRemaining() const { return SupportsRemaining; }
};
}

//===----------------------------------------------------------------------===//
// Region "Extents"
//===----------------------------------------------------------------------===//
//
//  MemRegions represent chunks of memory with a size (their "extent").  This
//  GDM entry tracks the extents for regions.  Extents are in bytes.
//
namespace { class RegionExtents {}; }
static int RegionExtentsIndex = 0;
namespace clang {
  template<> struct GRStateTrait<RegionExtents>
    : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > {
    static void* GDMIndex() { return &RegionExtentsIndex; }
  };
}

//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//

static bool IsAnyPointerOrIntptr(QualType ty, ASTContext &Ctx) {
  if (ty->isAnyPointerType())
    return true;

  return ty->isIntegerType() && ty->isScalarType() &&
         Ctx.getTypeSize(ty) == Ctx.getTypeSize(Ctx.VoidPtrTy);
}

//===----------------------------------------------------------------------===//
// Main RegionStore logic.
//===----------------------------------------------------------------------===//

namespace {

class RegionStoreSubRegionMap : public SubRegionMap {
public:
  typedef llvm::ImmutableSet<const MemRegion*> Set;
  typedef llvm::DenseMap<const MemRegion*, Set> Map;
private:
  Set::Factory F;
  Map M;
public:
  bool add(const MemRegion* Parent, const MemRegion* SubRegion) {
    Map::iterator I = M.find(Parent);

    if (I == M.end()) {
      M.insert(std::make_pair(Parent, F.Add(F.GetEmptySet(), SubRegion)));
      return true;
    }

    I->second = F.Add(I->second, SubRegion);
    return false;
  }

  void process(llvm::SmallVectorImpl<const SubRegion*> &WL, const SubRegion *R);

  ~RegionStoreSubRegionMap() {}

  const Set *getSubRegions(const MemRegion *Parent) const {
    Map::const_iterator I = M.find(Parent);
    return I == M.end() ? NULL : &I->second;
  }

  bool iterSubRegions(const MemRegion* Parent, Visitor& V) const {
    Map::const_iterator I = M.find(Parent);

    if (I == M.end())
      return true;

    Set S = I->second;
    for (Set::iterator SI=S.begin(),SE=S.end(); SI != SE; ++SI) {
      if (!V.Visit(Parent, *SI))
        return false;
    }

    return true;
  }
};


class RegionStoreManager : public StoreManager {
  const RegionStoreFeatures Features;
  RegionBindings::Factory RBFactory;

public:
  RegionStoreManager(GRStateManager& mgr, const RegionStoreFeatures &f)
    : StoreManager(mgr),
      Features(f),
      RBFactory(mgr.getAllocator()) {}

  SubRegionMap *getSubRegionMap(Store store) {
    return getRegionStoreSubRegionMap(store);
  }

  RegionStoreSubRegionMap *getRegionStoreSubRegionMap(Store store);

  Optional<SVal> getBinding(RegionBindings B, const MemRegion *R);
  Optional<SVal> getDirectBinding(RegionBindings B, const MemRegion *R);
  /// getDefaultBinding - Returns an SVal* representing an optional default
  ///  binding associated with a region and its subregions.
  Optional<SVal> getDefaultBinding(RegionBindings B, const MemRegion *R);

  /// setImplicitDefaultValue - Set the default binding for the provided
  ///  MemRegion to the value implicitly defined for compound literals when
  ///  the value is not specified.
  Store setImplicitDefaultValue(Store store, const MemRegion *R, QualType T);

  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
  ///  type.  'Array' represents the lvalue of the array being decayed
  ///  to a pointer, and the returned SVal represents the decayed
  ///  version of that lvalue (i.e., a pointer to the first element of
  ///  the array).  This is called by GRExprEngine when evaluating
  ///  casts from arrays to pointers.
  SVal ArrayToPointer(Loc Array);

  SVal EvalBinOp(BinaryOperator::Opcode Op,Loc L, NonLoc R, QualType resultTy);

  Store getInitialStore(const LocationContext *InitLoc) {
    return RBFactory.GetEmptyMap().getRoot();
  }

  //===-------------------------------------------------------------------===//
  // Binding values to regions.
  //===-------------------------------------------------------------------===//

  Store InvalidateRegion(Store store, const MemRegion *R, const Expr *E,
                         unsigned Count, InvalidatedSymbols *IS) {
    return RegionStoreManager::InvalidateRegions(store, &R, &R+1, E, Count, IS);
  }

  Store InvalidateRegions(Store store,
                          const MemRegion * const *Begin,
                          const MemRegion * const *End,
                          const Expr *E, unsigned Count,
                          InvalidatedSymbols *IS);

public:   // Made public for helper classes.

  void RemoveSubRegionBindings(RegionBindings &B, const MemRegion *R,
                               RegionStoreSubRegionMap &M);

  RegionBindings Add(RegionBindings B, BindingKey K, SVal V);

  RegionBindings Add(RegionBindings B, const MemRegion *R,
                     BindingKey::Kind k, SVal V);

  const SVal *Lookup(RegionBindings B, BindingKey K);
  const SVal *Lookup(RegionBindings B, const MemRegion *R, BindingKey::Kind k);

  RegionBindings Remove(RegionBindings B, BindingKey K);
  RegionBindings Remove(RegionBindings B, const MemRegion *R,
                        BindingKey::Kind k);

  RegionBindings Remove(RegionBindings B, const MemRegion *R) {
    return Remove(Remove(B, R, BindingKey::Direct), R, BindingKey::Default);
  }

  Store Remove(Store store, BindingKey K);

public: // Part of public interface to class.

  Store Bind(Store store, Loc LV, SVal V);

  Store BindCompoundLiteral(Store store, const CompoundLiteralExpr* CL,
                            const LocationContext *LC, SVal V);

  Store BindDecl(Store store, const VarRegion *VR, SVal InitVal);

  Store BindDeclWithNoInit(Store store, const VarRegion *) {
    return store;
  }

  /// BindStruct - Bind a compound value to a structure.
  Store BindStruct(Store store, const TypedRegion* R, SVal V);

  Store BindArray(Store store, const TypedRegion* R, SVal V);

  /// KillStruct - Set the entire struct to unknown.
  Store KillStruct(Store store, const TypedRegion* R);

  Store Remove(Store store, Loc LV);


  //===------------------------------------------------------------------===//
  // Loading values from regions.
  //===------------------------------------------------------------------===//

  /// The high level logic for this method is this:
  /// Retrieve (L)
  ///   if L has binding
  ///     return L's binding
  ///   else if L is in killset
  ///     return unknown
  ///   else
  ///     if L is on stack or heap
  ///       return undefined
  ///     else
  ///       return symbolic
  SVal Retrieve(Store store, Loc L, QualType T = QualType());

  SVal RetrieveElement(Store store, const ElementRegion *R);

  SVal RetrieveField(Store store, const FieldRegion *R);

  SVal RetrieveObjCIvar(Store store, const ObjCIvarRegion *R);

  SVal RetrieveVar(Store store, const VarRegion *R);

  SVal RetrieveLazySymbol(const TypedRegion *R);

  SVal RetrieveFieldOrElementCommon(Store store, const TypedRegion *R,
                                    QualType Ty, const MemRegion *superR);

  /// Retrieve the values in a struct and return a CompoundVal, used when doing
  /// struct copy:
  /// struct s x, y;
  /// x = y;
  /// y's value is retrieved by this method.
  SVal RetrieveStruct(Store store, const TypedRegion* R);

  SVal RetrieveArray(Store store, const TypedRegion* R);

  /// Get the state and region whose binding this region R corresponds to.
  std::pair<Store, const MemRegion*>
  GetLazyBinding(RegionBindings B, const MemRegion *R);

  Store CopyLazyBindings(nonloc::LazyCompoundVal V, Store store,
                         const TypedRegion *R);

  const ElementRegion *GetElementZeroRegion(const MemRegion *R, QualType T);

  //===------------------------------------------------------------------===//
  // State pruning.
  //===------------------------------------------------------------------===//

  /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values.
  ///  It returns a new Store with these values removed.
  Store RemoveDeadBindings(Store store, Stmt* Loc, SymbolReaper& SymReaper,
                          llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);

  const GRState *EnterStackFrame(const GRState *state,
                                 const StackFrameContext *frame);

  //===------------------------------------------------------------------===//
  // Region "extents".
  //===------------------------------------------------------------------===//

  const GRState *setExtent(const GRState *state,const MemRegion* R,SVal Extent);
  DefinedOrUnknownSVal getSizeInElements(const GRState *state,
                                         const MemRegion* R, QualType EleTy);

  //===------------------------------------------------------------------===//
  // Utility methods.
  //===------------------------------------------------------------------===//

  static inline RegionBindings GetRegionBindings(Store store) {
    return RegionBindings(static_cast<const RegionBindings::TreeTy*>(store));
  }

  void print(Store store, llvm::raw_ostream& Out, const char* nl,
             const char *sep);

  void iterBindings(Store store, BindingsHandler& f) {
    // FIXME: Implement.
  }

  // FIXME: Remove.
  BasicValueFactory& getBasicVals() {
      return StateMgr.getBasicVals();
  }

  // FIXME: Remove.
  ASTContext& getContext() { return StateMgr.getContext(); }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// RegionStore creation.
//===----------------------------------------------------------------------===//

StoreManager *clang::CreateRegionStoreManager(GRStateManager& StMgr) {
  RegionStoreFeatures F = maximal_features_tag();
  return new RegionStoreManager(StMgr, F);
}

StoreManager *clang::CreateFieldsOnlyRegionStoreManager(GRStateManager &StMgr) {
  RegionStoreFeatures F = minimal_features_tag();
  F.enableFields(true);
  return new RegionStoreManager(StMgr, F);
}

void
RegionStoreSubRegionMap::process(llvm::SmallVectorImpl<const SubRegion*> &WL,
                                 const SubRegion *R) {
  const MemRegion *superR = R->getSuperRegion();
  if (add(superR, R))
    if (const SubRegion *sr = dyn_cast<SubRegion>(superR))
      WL.push_back(sr);
}

RegionStoreSubRegionMap*
RegionStoreManager::getRegionStoreSubRegionMap(Store store) {
  RegionBindings B = GetRegionBindings(store);
  RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap();

  llvm::SmallVector<const SubRegion*, 10> WL;

  for (RegionBindings::iterator I=B.begin(), E=B.end(); I!=E; ++I)
    if (const SubRegion *R = dyn_cast<SubRegion>(I.getKey().getRegion()))
      M->process(WL, R);

  // We also need to record in the subregion map "intermediate" regions that
  // don't have direct bindings but are super regions of those that do.
  while (!WL.empty()) {
    const SubRegion *R = WL.back();
    WL.pop_back();
    M->process(WL, R);
  }

  return M;
}

//===----------------------------------------------------------------------===//
// Region Cluster analysis.
//===----------------------------------------------------------------------===//

namespace {
template <typename DERIVED>
class ClusterAnalysis  {
protected:
  typedef BumpVector<BindingKey> RegionCluster;
  typedef llvm::DenseMap<const MemRegion *, RegionCluster *> ClusterMap;
  llvm::DenseMap<const RegionCluster*, unsigned> Visited;
  typedef llvm::SmallVector<std::pair<const MemRegion *, RegionCluster*>, 10>
    WorkList;

  BumpVectorContext BVC;
  ClusterMap ClusterM;
  WorkList WL;

  RegionStoreManager &RM;
  ASTContext &Ctx;
  ValueManager &ValMgr;

  RegionBindings B;

public:
  ClusterAnalysis(RegionStoreManager &rm, GRStateManager &StateMgr,
                  RegionBindings b)
    : RM(rm), Ctx(StateMgr.getContext()), ValMgr(StateMgr.getValueManager()),
      B(b) {}

  RegionBindings getRegionBindings() const { return B; }

  void AddToCluster(BindingKey K) {
    const MemRegion *R = K.getRegion();
    const MemRegion *baseR = R->getBaseRegion();
    RegionCluster &C = getCluster(baseR);
    C.push_back(K, BVC);
    static_cast<DERIVED*>(this)->VisitAddedToCluster(baseR, C);
  }

  bool isVisited(const MemRegion *R) {
    return (bool) Visited[&getCluster(R->getBaseRegion())];
  }

  RegionCluster& getCluster(const MemRegion *R) {
    RegionCluster *&CRef = ClusterM[R];
    if (!CRef) {
      void *Mem = BVC.getAllocator().template Allocate<RegionCluster>();
      CRef = new (Mem) RegionCluster(BVC, 10);
    }
    return *CRef;
  }

  void GenerateClusters() {
      // Scan the entire set of bindings and make the region clusters.
    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
      AddToCluster(RI.getKey());
      if (const MemRegion *R = RI.getData().getAsRegion()) {
        // Generate a cluster, but don't add the region to the cluster
        // if there aren't any bindings.
        getCluster(R->getBaseRegion());
      }
    }
  }

  bool AddToWorkList(const MemRegion *R, RegionCluster &C) {
    if (unsigned &visited = Visited[&C])
      return false;
    else
      visited = 1;

    WL.push_back(std::make_pair(R, &C));
    return true;
  }

  bool AddToWorkList(BindingKey K) {
    return AddToWorkList(K.getRegion());
  }

  bool AddToWorkList(const MemRegion *R) {
    const MemRegion *baseR = R->getBaseRegion();
    return AddToWorkList(baseR, getCluster(baseR));
  }

  void RunWorkList() {
    while (!WL.empty()) {
      const MemRegion *baseR;
      RegionCluster *C;
      llvm::tie(baseR, C) = WL.back();
      WL.pop_back();

        // First visit the cluster.
      static_cast<DERIVED*>(this)->VisitCluster(baseR, C->begin(), C->end());

        // Next, visit the region.
      static_cast<DERIVED*>(this)->VisitRegion(baseR);
    }
  }

public:
  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C) {}
  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E) {}
  void VisitRegion(const MemRegion *baseR) {}
};
}

//===----------------------------------------------------------------------===//
// Binding invalidation.
//===----------------------------------------------------------------------===//

void RegionStoreManager::RemoveSubRegionBindings(RegionBindings &B,
                                                 const MemRegion *R,
                                                 RegionStoreSubRegionMap &M) {

  if (const RegionStoreSubRegionMap::Set *S = M.getSubRegions(R))
    for (RegionStoreSubRegionMap::Set::iterator I = S->begin(), E = S->end();
         I != E; ++I)
      RemoveSubRegionBindings(B, *I, M);

  B = Remove(B, R);
}

namespace {
class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
{
  const Expr *Ex;
  unsigned Count;
  StoreManager::InvalidatedSymbols *IS;
public:
  InvalidateRegionsWorker(RegionStoreManager &rm,
                          GRStateManager &stateMgr,
                          RegionBindings b,
                          const Expr *ex, unsigned count,
                          StoreManager::InvalidatedSymbols *is)
    : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
      Ex(ex), Count(count), IS(is) {}

  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
  void VisitRegion(const MemRegion *baseR);

private:
  void VisitBinding(SVal V);
};
}

void InvalidateRegionsWorker::VisitBinding(SVal V) {
  // A symbol?  Mark it touched by the invalidation.
  if (IS)
    if (SymbolRef Sym = V.getAsSymbol())
      IS->insert(Sym);

  if (const MemRegion *R = V.getAsRegion()) {
    AddToWorkList(R);
    return;
  }

  // Is it a LazyCompoundVal?  All references get invalidated as well.
  if (const nonloc::LazyCompoundVal *LCS =
        dyn_cast<nonloc::LazyCompoundVal>(&V)) {

    const MemRegion *LazyR = LCS->getRegion();
    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());

    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
      const MemRegion *baseR = RI.getKey().getRegion();
      if (cast<SubRegion>(baseR)->isSubRegionOf(LazyR))
        VisitBinding(RI.getData());
    }

    return;
  }
}

void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
                                           BindingKey *I, BindingKey *E) {
  for ( ; I != E; ++I) {
    // Get the old binding.  Is it a region?  If so, add it to the worklist.
    const BindingKey &K = *I;
    if (const SVal *V = RM.Lookup(B, K))
      VisitBinding(*V);

    B = RM.Remove(B, K);
  }
}

void InvalidateRegionsWorker::VisitRegion(const MemRegion *baseR) {
  if (IS) {
    // Symbolic region?  Mark that symbol touched by the invalidation.
    if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
      IS->insert(SR->getSymbol());
  }

  // BlockDataRegion?  If so, invalidate captured variables that are passed
  // by reference.
  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
    for (BlockDataRegion::referenced_vars_iterator
         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
         BI != BE; ++BI) {
      const VarRegion *VR = *BI;
      const VarDecl *VD = VR->getDecl();
      if (VD->getAttr<BlocksAttr>() || !VD->hasLocalStorage())
        AddToWorkList(VR);
    }
    return;
  }

  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
    // Invalidate the region by setting its default value to
    // conjured symbol. The type of the symbol is irrelavant.
    DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
                                                         Count);
    B = RM.Add(B, baseR, BindingKey::Default, V);
    return;
  }

  if (!baseR->isBoundable())
    return;

  const TypedRegion *TR = cast<TypedRegion>(baseR);
  QualType T = TR->getValueType(Ctx);

    // Invalidate the binding.
  if (const RecordType *RT = T->getAsStructureType()) {
    const RecordDecl *RD = RT->getDecl()->getDefinition();
      // No record definition.  There is nothing we can do.
    if (!RD) {
      B = RM.Remove(B, baseR);
      return;
    }

      // Invalidate the region by setting its default value to
      // conjured symbol. The type of the symbol is irrelavant.
    DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, Ctx.IntTy,
                                                         Count);
    B = RM.Add(B, baseR, BindingKey::Default, V);
    return;
  }

  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
      // Set the default value of the array to conjured symbol.
    DefinedOrUnknownSVal V =
    ValMgr.getConjuredSymbolVal(baseR, Ex, AT->getElementType(), Count);
    B = RM.Add(B, baseR, BindingKey::Default, V);
    return;
  }

  DefinedOrUnknownSVal V = ValMgr.getConjuredSymbolVal(baseR, Ex, T, Count);
  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
  B = RM.Add(B, baseR, BindingKey::Direct, V);
}

Store RegionStoreManager::InvalidateRegions(Store store,
                                            const MemRegion * const *I,
                                            const MemRegion * const *E,
                                            const Expr *Ex, unsigned Count,
                                            InvalidatedSymbols *IS) {
  InvalidateRegionsWorker W(*this, StateMgr,
                            RegionStoreManager::GetRegionBindings(store),
                            Ex, Count, IS);

  // Scan the bindings and generate the clusters.
  W.GenerateClusters();

  // Add I .. E to the worklist.
  for ( ; I != E; ++I)
    W.AddToWorkList(*I);

  W.RunWorkList();

  // Return the new bindings.
  return W.getRegionBindings().getRoot();
}

//===----------------------------------------------------------------------===//
// Extents for regions.
//===----------------------------------------------------------------------===//

DefinedOrUnknownSVal RegionStoreManager::getSizeInElements(const GRState *state,
                                                           const MemRegion *R,
                                                           QualType EleTy) {

  switch (R->getKind()) {
    case MemRegion::CXXThisRegionKind:
      assert(0 && "Cannot get size of 'this' region");
    case MemRegion::GenericMemSpaceRegionKind:
    case MemRegion::StackLocalsSpaceRegionKind:
    case MemRegion::StackArgumentsSpaceRegionKind:
    case MemRegion::HeapSpaceRegionKind:
    case MemRegion::GlobalsSpaceRegionKind:
    case MemRegion::UnknownSpaceRegionKind:
      assert(0 && "Cannot index into a MemSpace");
      return UnknownVal();

    case MemRegion::FunctionTextRegionKind:
    case MemRegion::BlockTextRegionKind:
    case MemRegion::BlockDataRegionKind:
      // Technically this can happen if people do funny things with casts.
      return UnknownVal();

      // Not yet handled.
    case MemRegion::AllocaRegionKind:
    case MemRegion::CompoundLiteralRegionKind:
    case MemRegion::ElementRegionKind:
    case MemRegion::FieldRegionKind:
    case MemRegion::ObjCIvarRegionKind:
    case MemRegion::CXXObjectRegionKind:
      return UnknownVal();

    case MemRegion::SymbolicRegionKind: {
      const SVal *Size = state->get<RegionExtents>(R);
      if (!Size)
        return UnknownVal();
      const nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(Size);
      if (!CI)
        return UnknownVal();

      CharUnits RegionSize =
        CharUnits::fromQuantity(CI->getValue().getSExtValue());
      CharUnits EleSize = getContext().getTypeSizeInChars(EleTy);
      assert(RegionSize % EleSize == 0);

      return ValMgr.makeIntVal(RegionSize / EleSize, false);
    }

    case MemRegion::StringRegionKind: {
      const StringLiteral* Str = cast<StringRegion>(R)->getStringLiteral();
      // We intentionally made the size value signed because it participates in
      // operations with signed indices.
      return ValMgr.makeIntVal(Str->getByteLength()+1, false);
    }

    case MemRegion::VarRegionKind: {
      const VarRegion* VR = cast<VarRegion>(R);
      // Get the type of the variable.
      QualType T = VR->getDesugaredValueType(getContext());

      // FIXME: Handle variable-length arrays.
      if (isa<VariableArrayType>(T))
        return UnknownVal();

      if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(T)) {
        // return the size as signed integer.
        return ValMgr.makeIntVal(CAT->getSize(), false);
      }

      // Clients can use ordinary variables as if they were arrays.  These
      // essentially are arrays of size 1.
      return ValMgr.makeIntVal(1, false);
    }
  }

  assert(0 && "Unreachable");
  return UnknownVal();
}

const GRState *RegionStoreManager::setExtent(const GRState *state,
                                             const MemRegion *region,
                                             SVal extent) {
  return state->set<RegionExtents>(region, extent);
}

//===----------------------------------------------------------------------===//
// Location and region casting.
//===----------------------------------------------------------------------===//

/// ArrayToPointer - Emulates the "decay" of an array to a pointer
///  type.  'Array' represents the lvalue of the array being decayed
///  to a pointer, and the returned SVal represents the decayed
///  version of that lvalue (i.e., a pointer to the first element of
///  the array).  This is called by GRExprEngine when evaluating casts
///  from arrays to pointers.
SVal RegionStoreManager::ArrayToPointer(Loc Array) {
  if (!isa<loc::MemRegionVal>(Array))
    return UnknownVal();

  const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion();
  const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R);

  if (!ArrayR)
    return UnknownVal();

  // Strip off typedefs from the ArrayRegion's ValueType.
  QualType T = ArrayR->getValueType(getContext()).getDesugaredType();
  ArrayType *AT = cast<ArrayType>(T);
  T = AT->getElementType();

  SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, ArrayR,
                                                  getContext()));
}

//===----------------------------------------------------------------------===//
// Pointer arithmetic.
//===----------------------------------------------------------------------===//

SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R,
                                   QualType resultTy) {
  // Assume the base location is MemRegionVal.
  if (!isa<loc::MemRegionVal>(L))
    return UnknownVal();

  const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion();
  const ElementRegion *ER = 0;

  switch (MR->getKind()) {
    case MemRegion::SymbolicRegionKind: {
      const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
      SymbolRef Sym = SR->getSymbol();
      QualType T = Sym->getType(getContext());
      QualType EleTy;

      if (const PointerType *PT = T->getAs<PointerType>())
        EleTy = PT->getPointeeType();
      else
        EleTy = T->getAs<ObjCObjectPointerType>()->getPointeeType();

      SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
      ER = MRMgr.getElementRegion(EleTy, ZeroIdx, SR, getContext());
      break;
    }
    case MemRegion::AllocaRegionKind: {
      const AllocaRegion *AR = cast<AllocaRegion>(MR);
      QualType T = getContext().CharTy; // Create an ElementRegion of bytes.
      QualType EleTy = T->getAs<PointerType>()->getPointeeType();
      SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
      ER = MRMgr.getElementRegion(EleTy, ZeroIdx, AR, getContext());
      break;
    }

    case MemRegion::ElementRegionKind: {
      ER = cast<ElementRegion>(MR);
      break;
    }

    // Not yet handled.
    case MemRegion::VarRegionKind:
    case MemRegion::StringRegionKind: {

    }
    // Fall-through.
    case MemRegion::CompoundLiteralRegionKind:
    case MemRegion::FieldRegionKind:
    case MemRegion::ObjCIvarRegionKind:
    case MemRegion::CXXObjectRegionKind:
      return UnknownVal();

    case MemRegion::FunctionTextRegionKind:
    case MemRegion::BlockTextRegionKind:
    case MemRegion::BlockDataRegionKind:
      // Technically this can happen if people do funny things with casts.
      return UnknownVal();

    case MemRegion::CXXThisRegionKind:
      assert(0 &&
             "Cannot perform pointer arithmetic on implicit argument 'this'");
    case MemRegion::GenericMemSpaceRegionKind:
    case MemRegion::StackLocalsSpaceRegionKind:
    case MemRegion::StackArgumentsSpaceRegionKind:
    case MemRegion::HeapSpaceRegionKind:
    case MemRegion::GlobalsSpaceRegionKind:
    case MemRegion::UnknownSpaceRegionKind:
      assert(0 && "Cannot perform pointer arithmetic on a MemSpace");
      return UnknownVal();
  }

  SVal Idx = ER->getIndex();
  nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx);

  // For now, only support:
  //  (a) concrete integer indices that can easily be resolved
  //  (b) 0 + symbolic index
  if (Base) {
    if (nonloc::ConcreteInt *Offset = dyn_cast<nonloc::ConcreteInt>(&R)) {
      // FIXME: Should use SValuator here.
      SVal NewIdx =
        Base->evalBinOp(ValMgr, Op,
                cast<nonloc::ConcreteInt>(ValMgr.convertToArrayIndex(*Offset)));
      const MemRegion* NewER =
        MRMgr.getElementRegion(ER->getElementType(), NewIdx,
                               ER->getSuperRegion(), getContext());
      return ValMgr.makeLoc(NewER);
    }
    if (0 == Base->getValue()) {
      const MemRegion* NewER =
        MRMgr.getElementRegion(ER->getElementType(), R,
                               ER->getSuperRegion(), getContext());
      return ValMgr.makeLoc(NewER);
    }
  }

  return UnknownVal();
}

//===----------------------------------------------------------------------===//
// Loading values from regions.
//===----------------------------------------------------------------------===//

Optional<SVal> RegionStoreManager::getDirectBinding(RegionBindings B,
                                                 const MemRegion *R) {
  if (const SVal *V = Lookup(B, R, BindingKey::Direct))
    return *V;

  return Optional<SVal>();
}

Optional<SVal> RegionStoreManager::getDefaultBinding(RegionBindings B,
                                                     const MemRegion *R) {
  if (R->isBoundable())
    if (const TypedRegion *TR = dyn_cast<TypedRegion>(R))
      if (TR->getValueType(getContext())->isUnionType())
        return UnknownVal();

  if (const SVal *V = Lookup(B, R, BindingKey::Default))
    return *V;

  return Optional<SVal>();
}

Optional<SVal> RegionStoreManager::getBinding(RegionBindings B,
                                              const MemRegion *R) {

  if (Optional<SVal> V = getDirectBinding(B, R))
    return V;

  return getDefaultBinding(B, R);
}

static bool IsReinterpreted(QualType RTy, QualType UsedTy, ASTContext &Ctx) {
  RTy = Ctx.getCanonicalType(RTy);
  UsedTy = Ctx.getCanonicalType(UsedTy);

  if (RTy == UsedTy)
    return false;


  // Recursively check the types.  We basically want to see if a pointer value
  // is ever reinterpreted as a non-pointer, e.g. void** and intptr_t*
  // represents a reinterpretation.
  if (Loc::IsLocType(RTy) && Loc::IsLocType(UsedTy)) {
    const PointerType *PRTy = RTy->getAs<PointerType>();
    const PointerType *PUsedTy = UsedTy->getAs<PointerType>();

    return PUsedTy && PRTy &&
           IsReinterpreted(PRTy->getPointeeType(),
                           PUsedTy->getPointeeType(), Ctx);
  }

  return true;
}

const ElementRegion *
RegionStoreManager::GetElementZeroRegion(const MemRegion *R, QualType T) {
  ASTContext &Ctx = getContext();
  SVal idx = ValMgr.makeZeroArrayIndex();
  assert(!T.isNull());
  return MRMgr.getElementRegion(T, idx, R, Ctx);
}

SVal RegionStoreManager::Retrieve(Store store, Loc L, QualType T) {
  assert(!isa<UnknownVal>(L) && "location unknown");
  assert(!isa<UndefinedVal>(L) && "location undefined");

  // FIXME: Is this even possible?  Shouldn't this be treated as a null
  //  dereference at a higher level?
  if (isa<loc::ConcreteInt>(L))
    return UndefinedVal();

  const MemRegion *MR = cast<loc::MemRegionVal>(L).getRegion();

  if (isa<AllocaRegion>(MR) || isa<SymbolicRegion>(MR))
    MR = GetElementZeroRegion(MR, T);

  if (isa<CodeTextRegion>(MR)) {
    assert(0 && "Why load from a code text region?");
    return UnknownVal();
  }

  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
  const TypedRegion *R = cast<TypedRegion>(MR);
  QualType RTy = R->getValueType(getContext());

  // FIXME: We should eventually handle funny addressing.  e.g.:
  //
  //   int x = ...;
  //   int *p = &x;
  //   char *q = (char*) p;
  //   char c = *q;  // returns the first byte of 'x'.
  //
  // Such funny addressing will occur due to layering of regions.

#if 0
  ASTContext &Ctx = getContext();
  if (!T.isNull() && IsReinterpreted(RTy, T, Ctx)) {
    SVal ZeroIdx = ValMgr.makeZeroArrayIndex();
    R = MRMgr.getElementRegion(T, ZeroIdx, R, Ctx);
    RTy = T;
    assert(Ctx.getCanonicalType(RTy) ==
           Ctx.getCanonicalType(R->getValueType(Ctx)));
  }
#endif

  if (RTy->isStructureType())
    return RetrieveStruct(store, R);

  // FIXME: Handle unions.
  if (RTy->isUnionType())
    return UnknownVal();

  if (RTy->isArrayType())
    return RetrieveArray(store, R);

  // FIXME: handle Vector types.
  if (RTy->isVectorType())
    return UnknownVal();

  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
    return CastRetrievedVal(RetrieveField(store, FR), FR, T, false);

  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
    // FIXME: Here we actually perform an implicit conversion from the loaded
    // value to the element type.  Eventually we want to compose these values
    // more intelligently.  For example, an 'element' can encompass multiple
    // bound regions (e.g., several bound bytes), or could be a subset of
    // a larger value.
    return CastRetrievedVal(RetrieveElement(store, ER), ER, T, false);
  }

  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
    // FIXME: Here we actually perform an implicit conversion from the loaded
    // value to the ivar type.  What we should model is stores to ivars
    // that blow past the extent of the ivar.  If the address of the ivar is
    // reinterpretted, it is possible we stored a different value that could
    // fit within the ivar.  Either we need to cast these when storing them
    // or reinterpret them lazily (as we do here).
    return CastRetrievedVal(RetrieveObjCIvar(store, IVR), IVR, T, false);
  }

  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
    // FIXME: Here we actually perform an implicit conversion from the loaded
    // value to the variable type.  What we should model is stores to variables
    // that blow past the extent of the variable.  If the address of the
    // variable is reinterpretted, it is possible we stored a different value
    // that could fit within the variable.  Either we need to cast these when
    // storing them or reinterpret them lazily (as we do here).
    return CastRetrievedVal(RetrieveVar(store, VR), VR, T, false);
  }

  RegionBindings B = GetRegionBindings(store);
  const SVal *V = Lookup(B, R, BindingKey::Direct);

  // Check if the region has a binding.
  if (V)
    return *V;

  // The location does not have a bound value.  This means that it has
  // the value it had upon its creation and/or entry to the analyzed
  // function/method.  These are either symbolic values or 'undefined'.
  if (R->hasStackNonParametersStorage()) {
    // All stack variables are considered to have undefined values
    // upon creation.  All heap allocated blocks are considered to
    // have undefined values as well unless they are explicitly bound
    // to specific values.
    return UndefinedVal();
  }

  // All other values are symbolic.
  return ValMgr.getRegionValueSymbolVal(R);
}

std::pair<Store, const MemRegion *>
RegionStoreManager::GetLazyBinding(RegionBindings B, const MemRegion *R) {
  if (Optional<SVal> OV = getDirectBinding(B, R))
    if (const nonloc::LazyCompoundVal *V =
        dyn_cast<nonloc::LazyCompoundVal>(OV.getPointer()))
      return std::make_pair(V->getStore(), V->getRegion());

  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
    const std::pair<Store, const MemRegion *> &X =
      GetLazyBinding(B, ER->getSuperRegion());

    if (X.second)
      return std::make_pair(X.first,
                            MRMgr.getElementRegionWithSuper(ER, X.second));
  }
  else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
    const std::pair<Store, const MemRegion *> &X =
      GetLazyBinding(B, FR->getSuperRegion());

    if (X.second)
      return std::make_pair(X.first,
                            MRMgr.getFieldRegionWithSuper(FR, X.second));
  }
  // The NULL MemRegion indicates an non-existent lazy binding. A NULL Store is
  // possible for a valid lazy binding.
  return std::make_pair((Store) 0, (const MemRegion *) 0);
}

SVal RegionStoreManager::RetrieveElement(Store store,
                                         const ElementRegion* R) {
  // Check if the region has a binding.
  RegionBindings B = GetRegionBindings(store);
  if (Optional<SVal> V = getDirectBinding(B, R))
    return *V;

  const MemRegion* superR = R->getSuperRegion();

  // Check if the region is an element region of a string literal.
  if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
    // FIXME: Handle loads from strings where the literal is treated as
    // an integer, e.g., *((unsigned int*)"hello")
    ASTContext &Ctx = getContext();
    QualType T = Ctx.getAsArrayType(StrR->getValueType(Ctx))->getElementType();
    if (T != Ctx.getCanonicalType(R->getElementType()))
      return UnknownVal();

    const StringLiteral *Str = StrR->getStringLiteral();
    SVal Idx = R->getIndex();
    if (nonloc::ConcreteInt *CI = dyn_cast<nonloc::ConcreteInt>(&Idx)) {
      int64_t i = CI->getValue().getSExtValue();
      int64_t byteLength = Str->getByteLength();
      if (i > byteLength) {
        // Buffer overflow checking in GRExprEngine should handle this case,
        // but we shouldn't rely on it to not overflow here if that checking
        // is disabled.
        return UnknownVal();
      }
      char c = (i == byteLength) ? '\0' : Str->getStrData()[i];
      return ValMgr.makeIntVal(c, T);
    }
  }

  // Check if the immediate super region has a direct binding.
  if (Optional<SVal> V = getDirectBinding(B, superR)) {
    if (SymbolRef parentSym = V->getAsSymbol())
      return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);

    if (V->isUnknownOrUndef())
      return *V;

    // Handle LazyCompoundVals for the immediate super region.  Other cases
    // are handled in 'RetrieveFieldOrElementCommon'.
    if (const nonloc::LazyCompoundVal *LCV =
        dyn_cast<nonloc::LazyCompoundVal>(V)) {

      R = MRMgr.getElementRegionWithSuper(R, LCV->getRegion());
      return RetrieveElement(LCV->getStore(), R);
    }

    // Other cases: give up.
    return UnknownVal();
  }

  return RetrieveFieldOrElementCommon(store, R, R->getElementType(), superR);
}

SVal RegionStoreManager::RetrieveField(Store store,
                                       const FieldRegion* R) {

  // Check if the region has a binding.
  RegionBindings B = GetRegionBindings(store);
  if (Optional<SVal> V = getDirectBinding(B, R))
    return *V;

  QualType Ty = R->getValueType(getContext());
  return RetrieveFieldOrElementCommon(store, R, Ty, R->getSuperRegion());
}

SVal RegionStoreManager::RetrieveFieldOrElementCommon(Store store,
                                                      const TypedRegion *R,
                                                      QualType Ty,
                                                      const MemRegion *superR) {

  // At this point we have already checked in either RetrieveElement or
  // RetrieveField if 'R' has a direct binding.

  RegionBindings B = GetRegionBindings(store);

  while (superR) {
    if (const Optional<SVal> &D = getDefaultBinding(B, superR)) {
      if (SymbolRef parentSym = D->getAsSymbol())
        return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);

      if (D->isZeroConstant())
        return ValMgr.makeZeroVal(Ty);

      if (D->isUnknown())
        return *D;

      assert(0 && "Unknown default value");
    }

    // If our super region is a field or element itself, walk up the region
    // hierarchy to see if there is a default value installed in an ancestor.
    if (isa<FieldRegion>(superR) || isa<ElementRegion>(superR)) {
      superR = cast<SubRegion>(superR)->getSuperRegion();
      continue;
    }

    break;
  }

  // Lazy binding?
  Store lazyBindingStore = NULL;
  const MemRegion *lazyBindingRegion = NULL;
  llvm::tie(lazyBindingStore, lazyBindingRegion) = GetLazyBinding(B, R);

  if (lazyBindingRegion) {
    if (const ElementRegion *ER = dyn_cast<ElementRegion>(lazyBindingRegion))
      return RetrieveElement(lazyBindingStore, ER);
    return RetrieveField(lazyBindingStore,
                         cast<FieldRegion>(lazyBindingRegion));
  }

  if (R->hasStackNonParametersStorage()) {
    if (isa<ElementRegion>(R)) {
      // Currently we don't reason specially about Clang-style vectors.  Check
      // if superR is a vector and if so return Unknown.
      if (const TypedRegion *typedSuperR = dyn_cast<TypedRegion>(superR)) {
        if (typedSuperR->getValueType(getContext())->isVectorType())
          return UnknownVal();
      }
    }

    return UndefinedVal();
  }

  // All other values are symbolic.
  return ValMgr.getRegionValueSymbolVal(R);
}

SVal RegionStoreManager::RetrieveObjCIvar(Store store, const ObjCIvarRegion* R){

    // Check if the region has a binding.
  RegionBindings B = GetRegionBindings(store);

  if (Optional<SVal> V = getDirectBinding(B, R))
    return *V;

  const MemRegion *superR = R->getSuperRegion();

  // Check if the super region has a default binding.
  if (Optional<SVal> V = getDefaultBinding(B, superR)) {
    if (SymbolRef parentSym = V->getAsSymbol())
      return ValMgr.getDerivedRegionValueSymbolVal(parentSym, R);

    // Other cases: give up.
    return UnknownVal();
  }

  return RetrieveLazySymbol(R);
}

SVal RegionStoreManager::RetrieveVar(Store store, const VarRegion *R) {

  // Check if the region has a binding.
  RegionBindings B = GetRegionBindings(store);

  if (Optional<SVal> V = getDirectBinding(B, R))
    return *V;

  // Lazily derive a value for the VarRegion.
  const VarDecl *VD = R->getDecl();
  QualType T = VD->getType();
  const MemSpaceRegion *MS = R->getMemorySpace();

  if (isa<UnknownSpaceRegion>(MS) ||
      isa<StackArgumentsSpaceRegion>(MS))
    return ValMgr.getRegionValueSymbolVal(R);

  if (isa<GlobalsSpaceRegion>(MS)) {
    if (VD->isFileVarDecl())
      return ValMgr.getRegionValueSymbolVal(R);

    if (T->isIntegerType())
      return ValMgr.makeIntVal(0, T);
    if (T->isPointerType())
      return ValMgr.makeNull();

    return UnknownVal();
  }

  return UndefinedVal();
}

SVal RegionStoreManager::RetrieveLazySymbol(const TypedRegion *R) {

  QualType valTy = R->getValueType(getContext());

  // All other values are symbolic.
  return ValMgr.getRegionValueSymbolVal(R);
}

SVal RegionStoreManager::RetrieveStruct(Store store, const TypedRegion* R) {
  QualType T = R->getValueType(getContext());
  assert(T->isStructureType());
  assert(T->getAsStructureType()->getDecl()->isDefinition());
  return ValMgr.makeLazyCompoundVal(store, R);
}

SVal RegionStoreManager::RetrieveArray(Store store, const TypedRegion * R) {
  assert(isa<ConstantArrayType>(R->getValueType(getContext())));
  return ValMgr.makeLazyCompoundVal(store, R);
}

//===----------------------------------------------------------------------===//
// Binding values to regions.
//===----------------------------------------------------------------------===//

Store RegionStoreManager::Remove(Store store, Loc L) {
  if (isa<loc::MemRegionVal>(L))
    if (const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion())
      return Remove(GetRegionBindings(store), R).getRoot();

  return store;
}

Store RegionStoreManager::Bind(Store store, Loc L, SVal V) {
  if (isa<loc::ConcreteInt>(L))
    return store;

  // If we get here, the location should be a region.
  const MemRegion *R = cast<loc::MemRegionVal>(L).getRegion();

  // Check if the region is a struct region.
  if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
    if (TR->getValueType(getContext())->isStructureType())
      return BindStruct(store, TR, V);

  // Special case: the current region represents a cast and it and the super
  // region both have pointer types or intptr_t types.  If so, perform the
  // bind to the super region.
  // This is needed to support OSAtomicCompareAndSwap and friends or other
  // loads that treat integers as pointers and vis versa.
  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
    if (ER->getIndex().isZeroConstant()) {
      if (const TypedRegion *superR =
            dyn_cast<TypedRegion>(ER->getSuperRegion())) {
        ASTContext &Ctx = getContext();
        QualType superTy = superR->getValueType(Ctx);
        QualType erTy = ER->getValueType(Ctx);

        if (IsAnyPointerOrIntptr(superTy, Ctx) &&
            IsAnyPointerOrIntptr(erTy, Ctx)) {
          V = ValMgr.getSValuator().EvalCast(V, superTy, erTy);
          return Bind(store, loc::MemRegionVal(superR), V);
        }
        // For now, just invalidate the fields of the struct/union/class.
        // FIXME: Precisely handle the fields of the record.
        if (superTy->isRecordType())
          return InvalidateRegion(store, superR, NULL, 0, NULL);
      }
    }
  }
  else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
    // Binding directly to a symbolic region should be treated as binding
    // to element 0.
    QualType T = SR->getSymbol()->getType(getContext());

    // FIXME: Is this the right way to handle symbols that are references?
    if (const PointerType *PT = T->getAs<PointerType>())
      T = PT->getPointeeType();
    else
      T = T->getAs<ReferenceType>()->getPointeeType();

    R = GetElementZeroRegion(SR, T);
  }

  // Perform the binding.
  RegionBindings B = GetRegionBindings(store);
  return Add(B, R, BindingKey::Direct, V).getRoot();
}

Store RegionStoreManager::BindDecl(Store store, const VarRegion *VR,
                                   SVal InitVal) {

  QualType T = VR->getDecl()->getType();

  if (T->isArrayType())
    return BindArray(store, VR, InitVal);
  if (T->isStructureType())
    return BindStruct(store, VR, InitVal);

  return Bind(store, ValMgr.makeLoc(VR), InitVal);
}

// FIXME: this method should be merged into Bind().
Store RegionStoreManager::BindCompoundLiteral(Store store,
                                              const CompoundLiteralExpr *CL,
                                              const LocationContext *LC,
                                              SVal V) {
  return Bind(store, loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL, LC)),
              V);
}

Store RegionStoreManager::setImplicitDefaultValue(Store store,
                                                  const MemRegion *R,
                                                  QualType T) {
  RegionBindings B = GetRegionBindings(store);
  SVal V;

  if (Loc::IsLocType(T))
    V = ValMgr.makeNull();
  else if (T->isIntegerType())
    V = ValMgr.makeZeroVal(T);
  else if (T->isStructureType() || T->isArrayType()) {
    // Set the default value to a zero constant when it is a structure
    // or array.  The type doesn't really matter.
    V = ValMgr.makeZeroVal(ValMgr.getContext().IntTy);
  }
  else {
    return store;
  }

  return Add(B, R, BindingKey::Default, V).getRoot();
}

Store RegionStoreManager::BindArray(Store store, const TypedRegion* R,
                                    SVal Init) {

  ASTContext &Ctx = getContext();
  const ArrayType *AT =
    cast<ArrayType>(Ctx.getCanonicalType(R->getValueType(Ctx)));
  QualType ElementTy = AT->getElementType();
  Optional<uint64_t> Size;

  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
    Size = CAT->getSize().getZExtValue();

  // Check if the init expr is a StringLiteral.
  if (isa<loc::MemRegionVal>(Init)) {
    const MemRegion* InitR = cast<loc::MemRegionVal>(Init).getRegion();
    const StringLiteral* S = cast<StringRegion>(InitR)->getStringLiteral();
    const char* str = S->getStrData();
    unsigned len = S->getByteLength();
    unsigned j = 0;

    // Copy bytes from the string literal into the target array. Trailing bytes
    // in the array that are not covered by the string literal are initialized
    // to zero.

    // We assume that string constants are bound to
    // constant arrays.
    uint64_t size = Size.getValue();

    for (uint64_t i = 0; i < size; ++i, ++j) {
      if (j >= len)
        break;

      SVal Idx = ValMgr.makeArrayIndex(i);
      const ElementRegion* ER = MRMgr.getElementRegion(ElementTy, Idx, R,
                                                       getContext());

      SVal V = ValMgr.makeIntVal(str[j], sizeof(char)*8, true);
      store = Bind(store, loc::MemRegionVal(ER), V);
    }

    return store;
  }

  // Handle lazy compound values.
  if (nonloc::LazyCompoundVal *LCV = dyn_cast<nonloc::LazyCompoundVal>(&Init))
    return CopyLazyBindings(*LCV, store, R);

  // Remaining case: explicit compound values.

  if (Init.isUnknown())
    return setImplicitDefaultValue(store, R, ElementTy);

  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init);
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
  uint64_t i = 0;

  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
    // The init list might be shorter than the array length.
    if (VI == VE)
      break;

    SVal Idx = ValMgr.makeArrayIndex(i);
    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, getContext());

    if (ElementTy->isStructureType())
      store = BindStruct(store, ER, *VI);
    else
      store = Bind(store, ValMgr.makeLoc(ER), *VI);
  }

  // If the init list is shorter than the array length, set the
  // array default value.
  if (Size.hasValue() && i < Size.getValue())
    store = setImplicitDefaultValue(store, R, ElementTy);

  return store;
}

Store RegionStoreManager::BindStruct(Store store, const TypedRegion* R,
                                     SVal V) {

  if (!Features.supportsFields())
    return store;

  QualType T = R->getValueType(getContext());
  assert(T->isStructureType());

  const RecordType* RT = T->getAs<RecordType>();
  RecordDecl* RD = RT->getDecl();

  if (!RD->isDefinition())
    return store;

  // Handle lazy compound values.
  if (const nonloc::LazyCompoundVal *LCV=dyn_cast<nonloc::LazyCompoundVal>(&V))
    return CopyLazyBindings(*LCV, store, R);

  // We may get non-CompoundVal accidentally due to imprecise cast logic.
  // Ignore them and kill the field values.
  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
    return KillStruct(store, R);

  nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V);
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();

  RecordDecl::field_iterator FI, FE;

  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI, ++VI) {

    if (VI == VE)
      break;

    QualType FTy = (*FI)->getType();
    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);

    if (FTy->isArrayType())
      store = BindArray(store, FR, *VI);
    else if (FTy->isStructureType())
      store = BindStruct(store, FR, *VI);
    else
      store = Bind(store, ValMgr.makeLoc(FR), *VI);
  }

  // There may be fewer values in the initialize list than the fields of struct.
  if (FI != FE) {
    RegionBindings B = GetRegionBindings(store);
    B = Add(B, R, BindingKey::Default, ValMgr.makeIntVal(0, false));
    store = B.getRoot();
  }

  return store;
}

Store RegionStoreManager::KillStruct(Store store, const TypedRegion* R) {
  RegionBindings B = GetRegionBindings(store);
  llvm::OwningPtr<RegionStoreSubRegionMap>
    SubRegions(getRegionStoreSubRegionMap(store));
  RemoveSubRegionBindings(B, R, *SubRegions);

  // Set the default value of the struct region to "unknown".
  return Add(B, R, BindingKey::Default, UnknownVal()).getRoot();
}

Store RegionStoreManager::CopyLazyBindings(nonloc::LazyCompoundVal V,
                                           Store store, const TypedRegion *R) {

  // Nuke the old bindings stemming from R.
  RegionBindings B = GetRegionBindings(store);

  llvm::OwningPtr<RegionStoreSubRegionMap>
    SubRegions(getRegionStoreSubRegionMap(store));

  // B and DVM are updated after the call to RemoveSubRegionBindings.
  RemoveSubRegionBindings(B, R, *SubRegions.get());

  // Now copy the bindings.  This amounts to just binding 'V' to 'R'.  This
  // results in a zero-copy algorithm.
  return Add(B, R, BindingKey::Direct, V).getRoot();
}

//===----------------------------------------------------------------------===//
// "Raw" retrievals and bindings.
//===----------------------------------------------------------------------===//

BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
    const RegionRawOffset &O = ER->getAsRawOffset();

    if (O.getRegion())
      return BindingKey(O.getRegion(), O.getByteOffset(), k);

    // FIXME: There are some ElementRegions for which we cannot compute
    // raw offsets yet, including regions with symbolic offsets.
  }

  return BindingKey(R, 0, k);
}

RegionBindings RegionStoreManager::Add(RegionBindings B, BindingKey K, SVal V) {
  return RBFactory.Add(B, K, V);
}

RegionBindings RegionStoreManager::Add(RegionBindings B, const MemRegion *R,
                                       BindingKey::Kind k, SVal V) {
  return Add(B, BindingKey::Make(R, k), V);
}

const SVal *RegionStoreManager::Lookup(RegionBindings B, BindingKey K) {
  return B.lookup(K);
}

const SVal *RegionStoreManager::Lookup(RegionBindings B,
                                       const MemRegion *R,
                                       BindingKey::Kind k) {
  return Lookup(B, BindingKey::Make(R, k));
}

RegionBindings RegionStoreManager::Remove(RegionBindings B, BindingKey K) {
  return RBFactory.Remove(B, K);
}

RegionBindings RegionStoreManager::Remove(RegionBindings B, const MemRegion *R,
                                          BindingKey::Kind k){
  return Remove(B, BindingKey::Make(R, k));
}

Store RegionStoreManager::Remove(Store store, BindingKey K) {
  RegionBindings B = GetRegionBindings(store);
  return Remove(B, K).getRoot();
}

//===----------------------------------------------------------------------===//
// State pruning.
//===----------------------------------------------------------------------===//

namespace {
class RemoveDeadBindingsWorker :
  public ClusterAnalysis<RemoveDeadBindingsWorker> {
  llvm::SmallVector<const SymbolicRegion*, 12> Postponed;
  SymbolReaper &SymReaper;
  Stmt *Loc;
public:
  RemoveDeadBindingsWorker(RegionStoreManager &rm, GRStateManager &stateMgr,
                           RegionBindings b, SymbolReaper &symReaper,
                           Stmt *loc)
    : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
      SymReaper(symReaper), Loc(loc) {}

  // Called by ClusterAnalysis.
  void VisitAddedToCluster(const MemRegion *baseR, RegionCluster &C);
  void VisitCluster(const MemRegion *baseR, BindingKey *I, BindingKey *E);
  void VisitRegion(const MemRegion *baseR);

  bool UpdatePostponed();
  void VisitBinding(SVal V);
};
}

void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
                                                   RegionCluster &C) {

  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
    if (SymReaper.isLive(Loc, VR))
      AddToWorkList(baseR, C);

    return;
  }

  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
    if (SymReaper.isLive(SR->getSymbol()))
      AddToWorkList(SR, C);
    else
      Postponed.push_back(SR);

    return;
  }
}

void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
                                            BindingKey *I, BindingKey *E) {
  for ( ; I != E; ++I) {
    const MemRegion *R = I->getRegion();
    if (R != baseR)
      VisitRegion(R);
  }
}

void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
  // Is it a LazyCompoundVal?  All referenced regions are live as well.
  if (const nonloc::LazyCompoundVal *LCS =
      dyn_cast<nonloc::LazyCompoundVal>(&V)) {

    const MemRegion *LazyR = LCS->getRegion();
    RegionBindings B = RegionStoreManager::GetRegionBindings(LCS->getStore());
    for (RegionBindings::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI){
      const MemRegion *baseR = RI.getKey().getRegion();
      if (cast<SubRegion>(baseR)->isSubRegionOf(LazyR))
        VisitBinding(RI.getData());
    }
    return;
  }

  // If V is a region, then add it to the worklist.
  if (const MemRegion *R = V.getAsRegion())
    AddToWorkList(R);

    // Update the set of live symbols.
  for (SVal::symbol_iterator SI=V.symbol_begin(), SE=V.symbol_end();
       SI!=SE;++SI)
    SymReaper.markLive(*SI);
}

void RemoveDeadBindingsWorker::VisitRegion(const MemRegion *R) {
  // Mark this region "live" by adding it to the worklist.  This will cause
  // use to visit all regions in the cluster (if we haven't visited them
  // already).
  AddToWorkList(R);

  // Mark the symbol for any live SymbolicRegion as "live".  This means we
  // should continue to track that symbol.
  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
    SymReaper.markLive(SymR->getSymbol());

  // For BlockDataRegions, enqueue the VarRegions for variables marked
  // with __block (passed-by-reference).
  // via BlockDeclRefExprs.
  if (const BlockDataRegion *BD = dyn_cast<BlockDataRegion>(R)) {
    for (BlockDataRegion::referenced_vars_iterator
         RI = BD->referenced_vars_begin(), RE = BD->referenced_vars_end();
         RI != RE; ++RI) {
      if ((*RI)->getDecl()->getAttr<BlocksAttr>())
        AddToWorkList(*RI);
    }

    // No possible data bindings on a BlockDataRegion.
    return;
  }

  // Get the data binding for R (if any).
  if (Optional<SVal> V = RM.getBinding(B, R))
    VisitBinding(*V);
}

bool RemoveDeadBindingsWorker::UpdatePostponed() {
  // See if any postponed SymbolicRegions are actually live now, after
  // having done a scan.
  bool changed = false;

  for (llvm::SmallVectorImpl<const SymbolicRegion*>::iterator
        I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
    if (const SymbolicRegion *SR = cast_or_null<SymbolicRegion>(*I)) {
      if (SymReaper.isLive(SR->getSymbol())) {
        changed |= AddToWorkList(SR);
        *I = NULL;
      }
    }
  }

  return changed;
}

Store RegionStoreManager::RemoveDeadBindings(Store store, Stmt* Loc,
                                             SymbolReaper& SymReaper,
                           llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
{
  RegionBindings B = GetRegionBindings(store);
  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, Loc);
  W.GenerateClusters();

  // Enqueue the region roots onto the worklist.
  for (llvm::SmallVectorImpl<const MemRegion*>::iterator I=RegionRoots.begin(),
       E=RegionRoots.end(); I!=E; ++I)
    W.AddToWorkList(*I);

  do W.RunWorkList(); while (W.UpdatePostponed());

  // We have now scanned the store, marking reachable regions and symbols
  // as live.  We now remove all the regions that are dead from the store
  // as well as update DSymbols with the set symbols that are now dead.
  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    const BindingKey &K = I.getKey();

    // If the cluster has been visited, we know the region has been marked.
    if (W.isVisited(K.getRegion()))
      continue;

    // Remove the dead entry.
    B = Remove(B, K);

    // Mark all non-live symbols that this binding references as dead.
    if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(K.getRegion()))
      SymReaper.maybeDead(SymR->getSymbol());

    SVal X = I.getData();
    SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
    for (; SI != SE; ++SI)
      SymReaper.maybeDead(*SI);
  }

  return B.getRoot();
}


GRState const *RegionStoreManager::EnterStackFrame(GRState const *state,
                                               StackFrameContext const *frame) {
  FunctionDecl const *FD = cast<FunctionDecl>(frame->getDecl());
  FunctionDecl::param_const_iterator PI = FD->param_begin();
  Store store = state->getStore();

  if (CallExpr const *CE = dyn_cast<CallExpr>(frame->getCallSite())) {
    CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();

    // Copy the arg expression value to the arg variables.
    for (; AI != AE; ++AI, ++PI) {
      SVal ArgVal = state->getSVal(*AI);
      store = Bind(store, ValMgr.makeLoc(MRMgr.getVarRegion(*PI,frame)),ArgVal);
    }
  } else if (const CXXConstructExpr *CE = 
               dyn_cast<CXXConstructExpr>(frame->getCallSite())) {
    CXXConstructExpr::const_arg_iterator AI = CE->arg_begin(), 
      AE = CE->arg_end();

    // Copy the arg expression value to the arg variables.
    for (; AI != AE; ++AI, ++PI) {
      SVal ArgVal = state->getSVal(*AI);
      store = Bind(store, ValMgr.makeLoc(MRMgr.getVarRegion(*PI,frame)),ArgVal);
    }
  } else
    assert(0 && "Unhandled call expression.");

  return state->makeWithStore(store);
}

//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//

void RegionStoreManager::print(Store store, llvm::raw_ostream& OS,
                               const char* nl, const char *sep) {
  RegionBindings B = GetRegionBindings(store);
  OS << "Store (direct and default bindings):" << nl;

  for (RegionBindings::iterator I = B.begin(), E = B.end(); I != E; ++I)
    OS << ' ' << I.getKey() << " : " << I.getData() << nl;
}
OpenPOWER on IntegriCloud