summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/UninitializedValuesV2.cpp
blob: 75eccbf7a3c80da33f8f4c911e931d46daa8f688 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
//==- UninitializedValuesV2.cpp - Find Uninitialized Values -----*- C++ --*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements uninitialized values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//

#include <utility>
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "clang/AST/Decl.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
#include "clang/Analysis/Analyses/UninitializedValuesV2.h"
#include "clang/Analysis/Support/SaveAndRestore.h"

using namespace clang;

static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
  return vd->isLocalVarDecl() && !vd->hasGlobalStorage() && 
         vd->getType()->isScalarType() &&
         vd->getDeclContext() == dc;
}

//------------------------------------------------------------------------====//
// DeclToBit: a mapping from Decls we track to bitvector indices.
//====------------------------------------------------------------------------//

namespace {
class DeclToBit {
  llvm::DenseMap<const VarDecl *, unsigned> map;
public:
  DeclToBit() {}
  
  /// Compute the actual mapping from declarations to bits.
  void computeMap(const DeclContext &dc);
  
  /// Return the number of declarations in the map.
  unsigned size() const { return map.size(); }
  
  /// Returns the bit vector index for a given declaration.
  llvm::Optional<unsigned> getBitVectorIndex(const VarDecl *d);
};
}

void DeclToBit::computeMap(const DeclContext &dc) {
  unsigned count = 0;
  DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
                                               E(dc.decls_end());
  for ( ; I != E; ++I) {
    const VarDecl *vd = *I;
    if (isTrackedVar(vd, &dc))
      map[vd] = count++;
  }
}

llvm::Optional<unsigned> DeclToBit::getBitVectorIndex(const VarDecl *d) {
  llvm::DenseMap<const VarDecl *, unsigned>::iterator I = map.find(d);
  if (I == map.end())
    return llvm::Optional<unsigned>();
  return I->second;
}

//------------------------------------------------------------------------====//
// CFGBlockValues: dataflow values for CFG blocks.
//====------------------------------------------------------------------------//

typedef std::pair<llvm::BitVector *, llvm::BitVector *> BVPair;

namespace {
class CFGBlockValues {
  const CFG &cfg;
  BVPair *vals;
  llvm::BitVector scratch;
  DeclToBit declToBit;
  
  llvm::BitVector &lazyCreate(llvm::BitVector *&bv);
public:
  CFGBlockValues(const CFG &cfg);
  ~CFGBlockValues();
  
  void computeSetOfDeclarations(const DeclContext &dc);  
  llvm::BitVector &getBitVector(const CFGBlock *block,
                                const CFGBlock *dstBlock);

  BVPair &getBitVectors(const CFGBlock *block, bool shouldLazyCreate);

  void mergeIntoScratch(llvm::BitVector const &source, bool isFirst);
  bool updateBitVectorWithScratch(const CFGBlock *block);
  bool updateBitVectors(const CFGBlock *block, const BVPair &newVals);
  
  bool hasNoDeclarations() const {
    return declToBit.size() == 0;
  }
  
  void resetScratch();
  llvm::BitVector &getScratch() { return scratch; }
  
  llvm::BitVector::reference operator[](const VarDecl *vd);
};  
}

CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {
  unsigned n = cfg.getNumBlockIDs();
  if (!n)
    return;
  vals = new std::pair<llvm::BitVector*, llvm::BitVector*>[n];
  memset(vals, 0, sizeof(*vals) * n);
}

CFGBlockValues::~CFGBlockValues() {
  unsigned n = cfg.getNumBlockIDs();
  if (n == 0)
    return;
  for (unsigned i = 0; i < n; ++i) {
    delete vals[i].first;
    delete vals[i].second;
  }
  delete [] vals;
}

void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
  declToBit.computeMap(dc);
  scratch.resize(declToBit.size());
}

llvm::BitVector &CFGBlockValues::lazyCreate(llvm::BitVector *&bv) {
  if (!bv)
    bv = new llvm::BitVector(declToBit.size());
  return *bv;
}

/// This function pattern matches for a '&&' or '||' that appears at
/// the beginning of a CFGBlock that also (1) has a terminator and 
/// (2) has no other elements.  If such an expression is found, it is returned.
static BinaryOperator *getLogicalOperatorInChain(const CFGBlock *block) {
  if (block->empty())
    return 0;

  CFGStmt cstmt = block->front().getAs<CFGStmt>();
  BinaryOperator *b = llvm::dyn_cast_or_null<BinaryOperator>(cstmt.getStmt());
  
  if (!b || !b->isLogicalOp())
    return 0;
  
  if (block->pred_size() == 2 &&
      ((block->succ_size() == 2 && block->getTerminatorCondition() == b) ||
       block->size() == 1))
    return b;
  
  return 0;
}

llvm::BitVector &CFGBlockValues::getBitVector(const CFGBlock *block,
                                              const CFGBlock *dstBlock) {
  unsigned idx = block->getBlockID();
  if (dstBlock && getLogicalOperatorInChain(block)) {
    if (*block->succ_begin() == dstBlock)
      return lazyCreate(vals[idx].first);
    assert(*(block->succ_begin()+1) == dstBlock);
    return lazyCreate(vals[idx].second);
  }

  assert(vals[idx].second == 0);
  return lazyCreate(vals[idx].first);
}

BVPair &CFGBlockValues::getBitVectors(const clang::CFGBlock *block,
                                      bool shouldLazyCreate) {
  unsigned idx = block->getBlockID();
  lazyCreate(vals[idx].first);
  if (shouldLazyCreate)
    lazyCreate(vals[idx].second);
  return vals[idx];
}

void CFGBlockValues::mergeIntoScratch(llvm::BitVector const &source,
                                      bool isFirst) {
  if (isFirst)
    scratch = source;
  else
    scratch |= source;  
}
#if 0
static void printVector(const CFGBlock *block, llvm::BitVector &bv,
                        unsigned num) {
  
  llvm::errs() << block->getBlockID() << " :";
  for (unsigned i = 0; i < bv.size(); ++i) {
    llvm::errs() << ' ' << bv[i];
  }
  llvm::errs() << " : " << num << '\n';
}
#endif

bool CFGBlockValues::updateBitVectorWithScratch(const CFGBlock *block) {
  llvm::BitVector &dst = getBitVector(block, 0);
  bool changed = (dst != scratch);
  if (changed)
    dst = scratch;
#if 0
  printVector(block, scratch, 0);
#endif
  return changed;
}

bool CFGBlockValues::updateBitVectors(const CFGBlock *block,
                                      const BVPair &newVals) {
  BVPair &vals = getBitVectors(block, true);
  bool changed = *newVals.first != *vals.first ||
                 *newVals.second != *vals.second;
  *vals.first = *newVals.first;
  *vals.second = *newVals.second;
#if 0
  printVector(block, *vals.first, 1);
  printVector(block, *vals.second, 2);
#endif
  return changed;
}

void CFGBlockValues::resetScratch() {
  scratch.reset();
}

llvm::BitVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
  const llvm::Optional<unsigned> &idx = declToBit.getBitVectorIndex(vd);
  assert(idx.hasValue());
  return scratch[idx.getValue()];
}

//------------------------------------------------------------------------====//
// Worklist: worklist for dataflow analysis.
//====------------------------------------------------------------------------//

namespace {
class DataflowWorklist {
  llvm::SmallVector<const CFGBlock *, 20> worklist;
  llvm::BitVector enqueuedBlocks;
public:
  DataflowWorklist(const CFG &cfg) : enqueuedBlocks(cfg.getNumBlockIDs()) {}
  
  void enqueue(const CFGBlock *block);
  void enqueueSuccessors(const CFGBlock *block);
  const CFGBlock *dequeue();
  
};
}

void DataflowWorklist::enqueue(const CFGBlock *block) {
  if (!block)
    return;
  unsigned idx = block->getBlockID();
  if (enqueuedBlocks[idx])
    return;
  worklist.push_back(block);
  enqueuedBlocks[idx] = true;
}

void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
  for (CFGBlock::const_succ_iterator I = block->succ_begin(),
       E = block->succ_end(); I != E; ++I) {
    enqueue(*I);
  }
}

const CFGBlock *DataflowWorklist::dequeue() {
  if (worklist.empty())
    return 0;
  const CFGBlock *b = worklist.back();
  worklist.pop_back();
  enqueuedBlocks[b->getBlockID()] = false;
  return b;
}

//------------------------------------------------------------------------====//
// Transfer function for uninitialized values analysis.
//====------------------------------------------------------------------------//

static const bool Initialized = false;
static const bool Uninitialized = true;

namespace {
class FindVarResult {
  const VarDecl *vd;
  const DeclRefExpr *dr;
public:
  FindVarResult(VarDecl *vd, DeclRefExpr *dr) : vd(vd), dr(dr) {}
  
  const DeclRefExpr *getDeclRefExpr() const { return dr; }
  const VarDecl *getDecl() const { return vd; }
};
  
class TransferFunctions : public CFGRecStmtVisitor<TransferFunctions> {
  CFGBlockValues &vals;
  const CFG &cfg;
  AnalysisContext &ac;
  UninitVariablesHandler *handler;
  const DeclRefExpr *currentDR;
  const Expr *currentVoidCast;
  const bool flagBlockUses;
public:
  TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
                    AnalysisContext &ac,
                    UninitVariablesHandler *handler,
                    bool flagBlockUses)
    : vals(vals), cfg(cfg), ac(ac), handler(handler), currentDR(0),
      currentVoidCast(0), flagBlockUses(flagBlockUses) {}
  
  const CFG &getCFG() { return cfg; }
  void reportUninit(const DeclRefExpr *ex, const VarDecl *vd);

  void VisitBlockExpr(BlockExpr *be);
  void VisitDeclStmt(DeclStmt *ds);
  void VisitDeclRefExpr(DeclRefExpr *dr);
  void VisitUnaryOperator(UnaryOperator *uo);
  void VisitBinaryOperator(BinaryOperator *bo);
  void VisitCastExpr(CastExpr *ce);
  void VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *se);
  void BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt *fs);
  
  bool isTrackedVar(const VarDecl *vd) {
    return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
  }
  
  FindVarResult findBlockVarDecl(Expr *ex);
};
}

void TransferFunctions::reportUninit(const DeclRefExpr *ex,
                                     const VarDecl *vd) {
  if (handler) handler->handleUseOfUninitVariable(ex, vd);
}

FindVarResult TransferFunctions::findBlockVarDecl(Expr* ex) {
  if (DeclRefExpr* dr = dyn_cast<DeclRefExpr>(ex->IgnoreParenCasts()))
    if (VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
      if (isTrackedVar(vd))
        return FindVarResult(vd, dr);  
  return FindVarResult(0, 0);
}

void TransferFunctions::BlockStmt_VisitObjCForCollectionStmt(
    ObjCForCollectionStmt *fs) {
  
  Visit(fs->getCollection());
  
  // This represents an initialization of the 'element' value.
  Stmt *element = fs->getElement();
  const VarDecl* vd = 0;
  
  if (DeclStmt* ds = dyn_cast<DeclStmt>(element)) {
    vd = cast<VarDecl>(ds->getSingleDecl());
    if (!isTrackedVar(vd))
      vd = 0;
  }
  else {
    // Initialize the value of the reference variable.
    const FindVarResult &res = findBlockVarDecl(cast<Expr>(element));
    vd = res.getDecl();
    if (!vd) {
      Visit(element);
      return;
    }
  }
  
  if (vd)
    vals[vd] = Initialized;
}

void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
  if (!flagBlockUses || !handler)
    return;
  AnalysisContext::referenced_decls_iterator i, e;
  llvm::tie(i, e) = ac.getReferencedBlockVars(be->getBlockDecl());
  for ( ; i != e; ++i) {
    const VarDecl *vd = *i;
    if (vd->getAttr<BlocksAttr>() || !vd->hasLocalStorage() || 
        !isTrackedVar(vd))
      continue;
    if (vals[vd] == Uninitialized)
      handler->handleUseOfUninitVariable(be, vd);
  }
}

void TransferFunctions::VisitDeclStmt(DeclStmt *ds) {
  for (DeclStmt::decl_iterator DI = ds->decl_begin(), DE = ds->decl_end();
       DI != DE; ++DI) {
    if (VarDecl *vd = dyn_cast<VarDecl>(*DI)) {
      if (isTrackedVar(vd)) {
        vals[vd] = Uninitialized;
        if (Stmt *init = vd->getInit()) {
          Visit(init);
          vals[vd] = Initialized;
        }
      }
      else if (Stmt *init = vd->getInit()) {
        Visit(init);
      }
    }
  }
}

void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
  // We assume that DeclRefExprs wrapped in an lvalue-to-rvalue cast
  // cannot be block-level expressions.  Therefore, we determine if
  // a DeclRefExpr is involved in a "load" by comparing it to the current
  // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
  // If a DeclRefExpr is not involved in a load, we are essentially computing
  // its address, either for assignment to a reference or via the '&' operator.
  // In such cases, treat the variable as being initialized, since this
  // analysis isn't powerful enough to do alias tracking.
  if (dr != currentDR)
    if (const VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
      if (isTrackedVar(vd))
        vals[vd] = Initialized;
}

void TransferFunctions::VisitBinaryOperator(clang::BinaryOperator *bo) {
  if (bo->isAssignmentOp()) {
    const FindVarResult &res = findBlockVarDecl(bo->getLHS());
    if (const VarDecl* vd = res.getDecl()) {
      // We assume that DeclRefExprs wrapped in a BinaryOperator "assignment"
      // cannot be block-level expressions.  Therefore, we determine if
      // a DeclRefExpr is involved in a "load" by comparing it to the current
      // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
      SaveAndRestore<const DeclRefExpr*> lastDR(currentDR, 
                                                res.getDeclRefExpr());
      Visit(bo->getRHS());
      Visit(bo->getLHS());

      llvm::BitVector::reference bit = vals[vd];
      if (bit == Uninitialized) {
        if (bo->getOpcode() != BO_Assign)
          reportUninit(res.getDeclRefExpr(), vd);
        bit = Initialized;
      }
      return;
    }
  }
  Visit(bo->getRHS());
  Visit(bo->getLHS());
}

void TransferFunctions::VisitUnaryOperator(clang::UnaryOperator *uo) {
  switch (uo->getOpcode()) {
    case clang::UO_PostDec:
    case clang::UO_PostInc:
    case clang::UO_PreDec:
    case clang::UO_PreInc: {
      const FindVarResult &res = findBlockVarDecl(uo->getSubExpr());
      if (const VarDecl *vd = res.getDecl()) {
        // We assume that DeclRefExprs wrapped in a unary operator ++/--
        // cannot be block-level expressions.  Therefore, we determine if
        // a DeclRefExpr is involved in a "load" by comparing it to the current
        // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
        SaveAndRestore<const DeclRefExpr*> lastDR(currentDR, 
                                                  res.getDeclRefExpr());
        Visit(uo->getSubExpr());

        llvm::BitVector::reference bit = vals[vd];
        if (bit == Uninitialized) {
          reportUninit(res.getDeclRefExpr(), vd);
          bit = Initialized;
        }
        return;
      }
      break;
    }
    default:
      break;
  }
  Visit(uo->getSubExpr());
}

void TransferFunctions::VisitCastExpr(clang::CastExpr *ce) {
  if (ce->getCastKind() == CK_LValueToRValue) {
    const FindVarResult &res = findBlockVarDecl(ce->getSubExpr());
    if (const VarDecl *vd = res.getDecl()) {
      // We assume that DeclRefExprs wrapped in an lvalue-to-rvalue cast
      // cannot be block-level expressions.  Therefore, we determine if
      // a DeclRefExpr is involved in a "load" by comparing it to the current
      // DeclRefExpr found when analyzing the last lvalue-to-rvalue CastExpr.
      // Here we update 'currentDR' to be the one associated with this
      // lvalue-to-rvalue cast.  Then, when we analyze the DeclRefExpr, we
      // will know that we are not computing its lvalue for other purposes
      // than to perform a load.
      SaveAndRestore<const DeclRefExpr*> lastDR(currentDR, 
                                                res.getDeclRefExpr());
      Visit(ce->getSubExpr());
      if (currentVoidCast != ce && vals[vd] == Uninitialized) {
        reportUninit(res.getDeclRefExpr(), vd);
        // Don't cascade warnings.
        vals[vd] = Initialized;
      }
      return;
    }
  }
  else if (CStyleCastExpr *cse = dyn_cast<CStyleCastExpr>(ce)) {
    if (cse->getType()->isVoidType()) {
      // e.g. (void) x;
      SaveAndRestore<const Expr *>
        lastVoidCast(currentVoidCast, cse->getSubExpr()->IgnoreParens());
      Visit(cse->getSubExpr());
      return;
    }
  }
  Visit(ce->getSubExpr());
}

void TransferFunctions::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *se) {
  if (se->isSizeOf()) {
    if (se->getType()->isConstantSizeType())
      return;
    // Handle VLAs.
    Visit(se->getArgumentExpr());
  }
}

//------------------------------------------------------------------------====//
// High-level "driver" logic for uninitialized values analysis.
//====------------------------------------------------------------------------//

static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
                       AnalysisContext &ac, CFGBlockValues &vals,
                       UninitVariablesHandler *handler = 0,
                       bool flagBlockUses = false) {
  
  if (const BinaryOperator *b = getLogicalOperatorInChain(block)) {
    CFGBlock::const_pred_iterator itr = block->pred_begin();
    BVPair vA = vals.getBitVectors(*itr, false);
    ++itr;
    BVPair vB = vals.getBitVectors(*itr, false);

    BVPair valsAB;
    
    if (b->getOpcode() == BO_LAnd) {
      // Merge the 'F' bits from the first and second.
      vals.mergeIntoScratch(*(vA.second ? vA.second : vA.first), true);
      vals.mergeIntoScratch(*(vB.second ? vB.second : vB.first), false);
      valsAB.first = vA.first;
      valsAB.second = &vals.getScratch();
    }
    else {
      // Merge the 'T' bits from the first and second.
      assert(b->getOpcode() == BO_LOr);
      vals.mergeIntoScratch(*vA.first, true);
      vals.mergeIntoScratch(*vB.first, false);
      valsAB.first = &vals.getScratch();
      valsAB.second = vA.second ? vA.second : vA.first;
    }
    return vals.updateBitVectors(block, valsAB);
  }

  // Default behavior: merge in values of predecessor blocks.
  vals.resetScratch();
  bool isFirst = true;
  for (CFGBlock::const_pred_iterator I = block->pred_begin(),
       E = block->pred_end(); I != E; ++I) {
    vals.mergeIntoScratch(vals.getBitVector(*I, block), isFirst);
    isFirst = false;
  }
  // Apply the transfer function.
  TransferFunctions tf(vals, cfg, ac, handler, flagBlockUses);
  for (CFGBlock::const_iterator I = block->begin(), E = block->end(); 
       I != E; ++I) {
    if (const CFGStmt *cs = dyn_cast<CFGStmt>(&*I)) {
      tf.BlockStmt_Visit(cs->getStmt());
    }
  }
  return vals.updateBitVectorWithScratch(block);
}

void clang::runUninitializedVariablesAnalysis(const DeclContext &dc,
                                              const CFG &cfg,
                                              AnalysisContext &ac,
                                              UninitVariablesHandler &handler) {
  CFGBlockValues vals(cfg);
  vals.computeSetOfDeclarations(dc);
  if (vals.hasNoDeclarations())
    return;
  DataflowWorklist worklist(cfg);
  llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
  
  worklist.enqueueSuccessors(&cfg.getEntry());

  while (const CFGBlock *block = worklist.dequeue()) {
    // Did the block change?
    bool changed = runOnBlock(block, cfg, ac, vals);    
    if (changed || !previouslyVisited[block->getBlockID()])
      worklist.enqueueSuccessors(block);    
    previouslyVisited[block->getBlockID()] = true;
  }
  
  // Run through the blocks one more time, and report uninitialized variabes.
  for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
    runOnBlock(*BI, cfg, ac, vals, &handler, /* flagBlockUses */ true);
  }
}

UninitVariablesHandler::~UninitVariablesHandler() {}

OpenPOWER on IntegriCloud