summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ScalarEvolutionExpander.cpp
blob: d674ee847f116a132d1f10d31eb94588b394bc08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/LLVMContext.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;

/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to share
/// the casts.
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
  assert((Op == Instruction::BitCast ||
          Op == Instruction::PtrToInt ||
          Op == Instruction::IntToPtr) &&
         "InsertNoopCastOfTo cannot perform non-noop casts!");
  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
         "InsertNoopCastOfTo cannot change sizes!");

  // Short-circuit unnecessary bitcasts.
  if (Op == Instruction::BitCast && V->getType() == Ty)
    return V;

  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    if (CastInst *CI = dyn_cast<CastInst>(V))
      if ((CI->getOpcode() == Instruction::PtrToInt ||
           CI->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CI->getType()) ==
          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
        return CI->getOperand(0);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
      if ((CE->getOpcode() == Instruction::PtrToInt ||
           CE->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CE->getType()) ==
          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
        return CE->getOperand(0);
  }

  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(Op, C, Ty);

  if (Argument *A = dyn_cast<Argument>(V)) {
    // Check to see if there is already a cast!
    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
         UI != E; ++UI)
      if ((*UI)->getType() == Ty)
        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
          if (CI->getOpcode() == Op) {
            // If the cast isn't the first instruction of the function, move it.
            if (BasicBlock::iterator(CI) !=
                A->getParent()->getEntryBlock().begin()) {
              // Recreate the cast at the beginning of the entry block.
              // The old cast is left in place in case it is being used
              // as an insert point.
              Instruction *NewCI =
                CastInst::Create(Op, V, Ty, "",
                                 A->getParent()->getEntryBlock().begin());
              NewCI->takeName(CI);
              CI->replaceAllUsesWith(NewCI);
              return NewCI;
            }
            return CI;
          }

    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
                                      A->getParent()->getEntryBlock().begin());
    InsertedValues.insert(I);
    return I;
  }

  Instruction *I = cast<Instruction>(V);

  // Check to see if there is already a cast.  If there is, use it.
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
       UI != E; ++UI) {
    if ((*UI)->getType() == Ty)
      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
        if (CI->getOpcode() == Op) {
          BasicBlock::iterator It = I; ++It;
          if (isa<InvokeInst>(I))
            It = cast<InvokeInst>(I)->getNormalDest()->begin();
          while (isa<PHINode>(It)) ++It;
          if (It != BasicBlock::iterator(CI)) {
            // Recreate the cast at the beginning of the entry block.
            // The old cast is left in place in case it is being used
            // as an insert point.
            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
            NewCI->takeName(CI);
            CI->replaceAllUsesWith(NewCI);
            return NewCI;
          }
          return CI;
        }
  }
  BasicBlock::iterator IP = I; ++IP;
  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    IP = II->getNormalDest()->begin();
  while (isa<PHINode>(IP)) ++IP;
  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
  InsertedValues.insert(CI);
  return CI;
}

/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
                                 Value *LHS, Value *RHS) {
  // Fold a binop with constant operands.
  if (Constant *CLHS = dyn_cast<Constant>(LHS))
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantExpr::get(Opcode, CLHS, CRHS);

  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
  unsigned ScanLimit = 6;
  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
  // Scanning starts from the last instruction before the insertion point.
  BasicBlock::iterator IP = Builder.GetInsertPoint();
  if (IP != BlockBegin) {
    --IP;
    for (; ScanLimit; --IP, --ScanLimit) {
      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
          IP->getOperand(1) == RHS)
        return IP;
      if (IP == BlockBegin) break;
    }
  }

  // If we haven't found this binop, insert it.
  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
  InsertedValues.insert(BO);
  return BO;
}

/// FactorOutConstant - Test if S is divisible by Factor, using signed
/// division. If so, update S with Factor divided out and return true.
/// S need not be evenly divisble if a reasonable remainder can be
/// computed.
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
/// check to see if the divide was folded.
static bool FactorOutConstant(const SCEV *&S,
                              const SCEV *&Remainder,
                              const SCEV *Factor,
                              ScalarEvolution &SE,
                              const TargetData *TD) {
  // Everything is divisible by one.
  if (Factor->isOne())
    return true;

  // x/x == 1.
  if (S == Factor) {
    S = SE.getIntegerSCEV(1, S->getType());
    return true;
  }

  // For a Constant, check for a multiple of the given factor.
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    // 0/x == 0.
    if (C->isZero())
      return true;
    // Check for divisibility.
    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
      ConstantInt *CI =
        ConstantInt::get(SE.getContext(),
                         C->getValue()->getValue().sdiv(
                                                   FC->getValue()->getValue()));
      // If the quotient is zero and the remainder is non-zero, reject
      // the value at this scale. It will be considered for subsequent
      // smaller scales.
      if (!CI->isZero()) {
        const SCEV *Div = SE.getConstant(CI);
        S = Div;
        Remainder =
          SE.getAddExpr(Remainder,
                        SE.getConstant(C->getValue()->getValue().srem(
                                                  FC->getValue()->getValue())));
        return true;
      }
    }
  }

  // In a Mul, check if there is a constant operand which is a multiple
  // of the given factor.
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    if (TD) {
      // With TargetData, the size is known. Check if there is a constant
      // operand which is a multiple of the given factor. If so, we can
      // factor it.
      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
                                                 MOperands.end());
          NewMulOps[0] =
            SE.getConstant(C->getValue()->getValue().sdiv(
                                                   FC->getValue()->getValue()));
          S = SE.getMulExpr(NewMulOps);
          return true;
        }
    } else {
      // Without TargetData, check if Factor can be factored out of any of the
      // Mul's operands. If so, we can just remove it.
      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
        const SCEV *SOp = M->getOperand(i);
        const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
            Remainder->isZero()) {
          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
                                                 MOperands.end());
          NewMulOps[i] = SOp;
          S = SE.getMulExpr(NewMulOps);
          return true;
        }
      }
    }
  }

  // In an AddRec, check if both start and step are divisible.
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    const SCEV *Step = A->getStepRecurrence(SE);
    const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
      return false;
    if (!StepRem->isZero())
      return false;
    const SCEV *Start = A->getStart();
    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
      return false;
    S = SE.getAddRecExpr(Start, Step, A->getLoop());
    return true;
  }

  return false;
}

/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
/// is the number of SCEVAddRecExprs present, which are kept at the end of
/// the list.
///
static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
                                const Type *Ty,
                                ScalarEvolution &SE) {
  unsigned NumAddRecs = 0;
  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    ++NumAddRecs;
  // Group Ops into non-addrecs and addrecs.
  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
  // Let ScalarEvolution sort and simplify the non-addrecs list.
  const SCEV *Sum = NoAddRecs.empty() ?
                    SE.getIntegerSCEV(0, Ty) :
                    SE.getAddExpr(NoAddRecs);
  // If it returned an add, use the operands. Otherwise it simplified
  // the sum into a single value, so just use that.
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    Ops = Add->getOperands();
  else {
    Ops.clear();
    if (!Sum->isZero())
      Ops.push_back(Sum);
  }
  // Then append the addrecs.
  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
}

/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
/// This helps expose more opportunities for folding parts of the expressions
/// into GEP indices.
///
static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
                         const Type *Ty,
                         ScalarEvolution &SE) {
  // Find the addrecs.
  SmallVector<const SCEV *, 8> AddRecs;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
      const SCEV *Start = A->getStart();
      if (Start->isZero()) break;
      const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
      AddRecs.push_back(SE.getAddRecExpr(Zero,
                                         A->getStepRecurrence(SE),
                                         A->getLoop()));
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
        Ops[i] = Zero;
        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
        e += Add->getNumOperands();
      } else {
        Ops[i] = Start;
      }
    }
  if (!AddRecs.empty()) {
    // Add the addrecs onto the end of the list.
    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
    // Resort the operand list, moving any constants to the front.
    SimplifyAddOperands(Ops, Ty, SE);
  }
}

/// expandAddToGEP - Expand an addition expression with a pointer type into
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
/// BasicAliasAnalysis and other passes analyze the result. See the rules
/// for getelementptr vs. inttoptr in
/// http://llvm.org/docs/LangRef.html#pointeraliasing
/// for details.
///
/// Design note: The correctness of using getelmeentptr here depends on
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
/// they may introduce pointer arithmetic which may not be safely converted
/// into getelementptr.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
/// loop-invariant portions of the overall computation outside the loop.
/// However, there are a few reasons this is not done here. Hoisting simple
/// arithmetic is a low-level optimization that often isn't very
/// important until late in the optimization process. In fact, passes
/// like InstructionCombining will combine GEPs, even if it means
/// pushing loop-invariant computation down into loops, so even if the
/// GEPs were split here, the work would quickly be undone. The
/// LoopStrengthReduction pass, which is usually run quite late (and
/// after the last InstructionCombining pass), takes care of hoisting
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
                                    const SCEV *const *op_end,
                                    const PointerType *PTy,
                                    const Type *Ty,
                                    Value *V) {
  const Type *ElTy = PTy->getElementType();
  SmallVector<Value *, 4> GepIndices;
  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
  bool AnyNonZeroIndices = false;

  // Split AddRecs up into parts as either of the parts may be usable
  // without the other.
  SplitAddRecs(Ops, Ty, SE);

  // Decend down the pointer's type and attempt to convert the other
  // operands into GEP indices, at each level. The first index in a GEP
  // indexes into the array implied by the pointer operand; the rest of
  // the indices index into the element or field type selected by the
  // preceding index.
  for (;;) {
    const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
    // If the scale size is not 0, attempt to factor out a scale for
    // array indexing.
    SmallVector<const SCEV *, 8> ScaledOps;
    if (ElTy->isSized() && !ElSize->isZero()) {
      SmallVector<const SCEV *, 8> NewOps;
      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
        const SCEV *Op = Ops[i];
        const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
        if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
          // Op now has ElSize factored out.
          ScaledOps.push_back(Op);
          if (!Remainder->isZero())
            NewOps.push_back(Remainder);
          AnyNonZeroIndices = true;
        } else {
          // The operand was not divisible, so add it to the list of operands
          // we'll scan next iteration.
          NewOps.push_back(Ops[i]);
        }
      }
      // If we made any changes, update Ops.
      if (!ScaledOps.empty()) {
        Ops = NewOps;
        SimplifyAddOperands(Ops, Ty, SE);
      }
    }

    // Record the scaled array index for this level of the type. If
    // we didn't find any operands that could be factored, tentatively
    // assume that element zero was selected (since the zero offset
    // would obviously be folded away).
    Value *Scaled = ScaledOps.empty() ?
                    Constant::getNullValue(Ty) :
                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    GepIndices.push_back(Scaled);

    // Collect struct field index operands.
    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
      bool FoundFieldNo = false;
      // An empty struct has no fields.
      if (STy->getNumElements() == 0) break;
      if (SE.TD) {
        // With TargetData, field offsets are known. See if a constant offset
        // falls within any of the struct fields.
        if (Ops.empty()) break;
        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
            const StructLayout &SL = *SE.TD->getStructLayout(STy);
            uint64_t FullOffset = C->getValue()->getZExtValue();
            if (FullOffset < SL.getSizeInBytes()) {
              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
              GepIndices.push_back(
                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
              ElTy = STy->getTypeAtIndex(ElIdx);
              Ops[0] =
                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
              AnyNonZeroIndices = true;
              FoundFieldNo = true;
            }
          }
      } else {
        // Without TargetData, just check for a SCEVFieldOffsetExpr of the
        // appropriate struct type.
        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
          if (const SCEVFieldOffsetExpr *FO =
                dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
            if (FO->getStructType() == STy) {
              unsigned FieldNo = FO->getFieldNo();
              GepIndices.push_back(
                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
                                   FieldNo));
              ElTy = STy->getTypeAtIndex(FieldNo);
              Ops[i] = SE.getConstant(Ty, 0);
              AnyNonZeroIndices = true;
              FoundFieldNo = true;
              break;
            }
      }
      // If no struct field offsets were found, tentatively assume that
      // field zero was selected (since the zero offset would obviously
      // be folded away).
      if (!FoundFieldNo) {
        ElTy = STy->getTypeAtIndex(0u);
        GepIndices.push_back(
          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
      }
    }

    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
      ElTy = ATy->getElementType();
    else
      break;
  }

  // If none of the operands were convertable to proper GEP indices, cast
  // the base to i8* and do an ugly getelementptr with that. It's still
  // better than ptrtoint+arithmetic+inttoptr at least.
  if (!AnyNonZeroIndices) {
    // Cast the base to i8*.
    V = InsertNoopCastOfTo(V,
       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));

    // Expand the operands for a plain byte offset.
    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);

    // Fold a GEP with constant operands.
    if (Constant *CLHS = dyn_cast<Constant>(V))
      if (Constant *CRHS = dyn_cast<Constant>(Idx))
        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);

    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    unsigned ScanLimit = 6;
    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    // Scanning starts from the last instruction before the insertion point.
    BasicBlock::iterator IP = Builder.GetInsertPoint();
    if (IP != BlockBegin) {
      --IP;
      for (; ScanLimit; --IP, --ScanLimit) {
        if (IP->getOpcode() == Instruction::GetElementPtr &&
            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
          return IP;
        if (IP == BlockBegin) break;
      }
    }

    // Emit a GEP.
    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
    InsertedValues.insert(GEP);
    return GEP;
  }

  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
  // because ScalarEvolution may have changed the address arithmetic to
  // compute a value which is beyond the end of the allocated object.
  Value *GEP = Builder.CreateGEP(V,
                                 GepIndices.begin(),
                                 GepIndices.end(),
                                 "scevgep");
  Ops.push_back(SE.getUnknown(GEP));
  InsertedValues.insert(GEP);
  return expand(SE.getAddExpr(Ops));
}

Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
  int NumOperands = S->getNumOperands();
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());

  // Find the index of an operand to start with. Choose the operand with
  // pointer type, if there is one, or the last operand otherwise.
  int PIdx = 0;
  for (; PIdx != NumOperands - 1; ++PIdx)
    if (isa<PointerType>(S->getOperand(PIdx)->getType())) break;

  // Expand code for the operand that we chose.
  Value *V = expand(S->getOperand(PIdx));

  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
  // comments on expandAddToGEP for details.
  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
    // Take the operand at PIdx out of the list.
    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
    SmallVector<const SCEV *, 8> NewOps;
    NewOps.insert(NewOps.end(), Ops.begin(), Ops.begin() + PIdx);
    NewOps.insert(NewOps.end(), Ops.begin() + PIdx + 1, Ops.end());
    // Make a GEP.
    return expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, V);
  }

  // Otherwise, we'll expand the rest of the SCEVAddExpr as plain integer
  // arithmetic.
  V = InsertNoopCastOfTo(V, Ty);

  // Emit a bunch of add instructions
  for (int i = NumOperands-1; i >= 0; --i) {
    if (i == PIdx) continue;
    Value *W = expandCodeFor(S->getOperand(i), Ty);
    V = InsertBinop(Instruction::Add, V, W);
  }
  return V;
}

Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
  int FirstOp = 0;  // Set if we should emit a subtract.
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
    if (SC->getValue()->isAllOnesValue())
      FirstOp = 1;

  int i = S->getNumOperands()-2;
  Value *V = expandCodeFor(S->getOperand(i+1), Ty);

  // Emit a bunch of multiply instructions
  for (; i >= FirstOp; --i) {
    Value *W = expandCodeFor(S->getOperand(i), Ty);
    V = InsertBinop(Instruction::Mul, V, W);
  }

  // -1 * ...  --->  0 - ...
  if (FirstOp == 1)
    V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
  return V;
}

Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());

  Value *LHS = expandCodeFor(S->getLHS(), Ty);
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    const APInt &RHS = SC->getValue()->getValue();
    if (RHS.isPowerOf2())
      return InsertBinop(Instruction::LShr, LHS,
                         ConstantInt::get(Ty, RHS.logBase2()));
  }

  Value *RHS = expandCodeFor(S->getRHS(), Ty);
  return InsertBinop(Instruction::UDiv, LHS, RHS);
}

/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
                              ScalarEvolution &SE) {
  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    Base = A->getStart();
    Rest = SE.getAddExpr(Rest,
                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
                                          A->getStepRecurrence(SE),
                                          A->getLoop()));
  }
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    Base = A->getOperand(A->getNumOperands()-1);
    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    NewAddOps.back() = Rest;
    Rest = SE.getAddExpr(NewAddOps);
    ExposePointerBase(Base, Rest, SE);
  }
}

Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
  const Loop *L = S->getLoop();

  // First check for an existing canonical IV in a suitable type.
  PHINode *CanonicalIV = 0;
  if (PHINode *PN = L->getCanonicalInductionVariable())
    if (SE.isSCEVable(PN->getType()) &&
        isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
      CanonicalIV = PN;

  // Rewrite an AddRec in terms of the canonical induction variable, if
  // its type is more narrow.
  if (CanonicalIV &&
      SE.getTypeSizeInBits(CanonicalIV->getType()) >
      SE.getTypeSizeInBits(Ty)) {
    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
    SmallVector<const SCEV *, 4> NewOps(Ops.size());
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
      NewOps[i] = SE.getAnyExtendExpr(Ops[i], CanonicalIV->getType());
    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop()));
    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    BasicBlock::iterator NewInsertPt =
      next(BasicBlock::iterator(cast<Instruction>(V)));
    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
                      NewInsertPt);
    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
    return V;
  }

  // {X,+,F} --> X + {0,+,F}
  if (!S->getStart()->isZero()) {
    const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
    SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
    NewOps[0] = SE.getIntegerSCEV(0, Ty);
    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);

    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
    // comments on expandAddToGEP for details.
    const SCEV *Base = S->getStart();
    const SCEV *RestArray[1] = { Rest };
    // Dig into the expression to find the pointer base for a GEP.
    ExposePointerBase(Base, RestArray[0], SE);
    // If we found a pointer, expand the AddRec with a GEP.
    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
      // Make sure the Base isn't something exotic, such as a multiplied
      // or divided pointer value. In those cases, the result type isn't
      // actually a pointer type.
      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
        Value *StartV = expand(Base);
        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
      }
    }

    // Just do a normal add. Pre-expand the operands to suppress folding.
    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
                                SE.getUnknown(expand(Rest))));
  }

  // {0,+,1} --> Insert a canonical induction variable into the loop!
  if (S->isAffine() &&
      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
    // If there's a canonical IV, just use it.
    if (CanonicalIV) {
      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
             "IVs with types different from the canonical IV should "
             "already have been handled!");
      return CanonicalIV;
    }

    // Create and insert the PHI node for the induction variable in the
    // specified loop.
    BasicBlock *Header = L->getHeader();
    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
    InsertedValues.insert(PN);

    Constant *One = ConstantInt::get(Ty, 1);
    for (pred_iterator HPI = pred_begin(Header), HPE = pred_end(Header);
         HPI != HPE; ++HPI)
      if (L->contains(*HPI)) {
        // Insert a unit add instruction right before the terminator corresponding
        // to the back-edge.
        Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
                                                     (*HPI)->getTerminator());
        InsertedValues.insert(Add);
        PN->addIncoming(Add, *HPI);
      } else {
        PN->addIncoming(Constant::getNullValue(Ty), *HPI);
      }
  }

  // {0,+,F} --> {0,+,1} * F
  // Get the canonical induction variable I for this loop.
  Value *I = CanonicalIV ?
             CanonicalIV :
             getOrInsertCanonicalInductionVariable(L, Ty);

  // If this is a simple linear addrec, emit it now as a special case.
  if (S->isAffine())    // {0,+,F} --> i*F
    return
      expand(SE.getTruncateOrNoop(
        SE.getMulExpr(SE.getUnknown(I),
                      SE.getNoopOrAnyExtend(S->getOperand(1),
                                            I->getType())),
        Ty));

  // If this is a chain of recurrences, turn it into a closed form, using the
  // folders, then expandCodeFor the closed form.  This allows the folders to
  // simplify the expression without having to build a bunch of special code
  // into this folder.
  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.

  // Promote S up to the canonical IV type, if the cast is foldable.
  const SCEV *NewS = S;
  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
  if (isa<SCEVAddRecExpr>(Ext))
    NewS = Ext;

  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";

  // Truncate the result down to the original type, if needed.
  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
  return expand(T);
}

Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
  InsertedValues.insert(I);
  return I;
}

Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateZExt(V, Ty, "tmp");
  InsertedValues.insert(I);
  return I;
}

Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateSExt(V, Ty, "tmp");
  InsertedValues.insert(I);
  return I;
}

Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  const Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    if (S->getOperand(i)->getType() != Ty) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
    InsertedValues.insert(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
    InsertedValues.insert(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  const Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    if (S->getOperand(i)->getType() != Ty) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
    InsertedValues.insert(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
    InsertedValues.insert(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
  return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
}

Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
  return ConstantExpr::getSizeOf(S->getAllocType());
}

Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
  // Expand the code for this SCEV.
  Value *V = expand(SH);
  if (Ty) {
    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
           "non-trivial casts should be done with the SCEVs directly!");
    V = InsertNoopCastOfTo(V, Ty);
  }
  return V;
}

Value *SCEVExpander::expand(const SCEV *S) {
  // Compute an insertion point for this SCEV object. Hoist the instructions
  // as far out in the loop nest as possible.
  Instruction *InsertPt = Builder.GetInsertPoint();
  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
       L = L->getParentLoop())
    if (S->isLoopInvariant(L)) {
      if (!L) break;
      if (BasicBlock *Preheader = L->getLoopPreheader())
        InsertPt = Preheader->getTerminator();
    } else {
      // If the SCEV is computable at this level, insert it into the header
      // after the PHIs (and after any other instructions that we've inserted
      // there) so that it is guaranteed to dominate any user inside the loop.
      if (L && S->hasComputableLoopEvolution(L))
        InsertPt = L->getHeader()->getFirstNonPHI();
      while (isInsertedInstruction(InsertPt))
        InsertPt = next(BasicBlock::iterator(InsertPt));
      break;
    }

  // Check to see if we already expanded this here.
  std::map<std::pair<const SCEV *, Instruction *>,
           AssertingVH<Value> >::iterator I =
    InsertedExpressions.find(std::make_pair(S, InsertPt));
  if (I != InsertedExpressions.end())
    return I->second;

  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);

  // Expand the expression into instructions.
  Value *V = visit(S);

  // Remember the expanded value for this SCEV at this location.
  InsertedExpressions[std::make_pair(S, InsertPt)] = V;

  Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
  return V;
}

/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none).  A canonical induction variable
/// starts at zero and steps by one on each iteration.
Value *
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
                                                    const Type *Ty) {
  assert(Ty->isInteger() && "Can only insert integer induction variables!");
  const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
                                   SE.getIntegerSCEV(1, Ty), L);
  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
  if (SaveInsertBB)
    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
  return V;
}
OpenPOWER on IntegriCloud