summaryrefslogtreecommitdiffstats
path: root/lib/AST/ASTContext.cpp
blob: 29bca29f230cfb3b48789f18adc56a3af923383f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace clang;

enum FloatingRank {
  FloatRank, DoubleRank, LongDoubleRank
};

ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
                       TargetInfo &t,
                       IdentifierTable &idents, SelectorTable &sels,
                       bool FreeMem, unsigned size_reserve,
                       bool InitializeBuiltins) : 
  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0), 
  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts), 
  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
  ExternalSource(0) {  
  if (size_reserve > 0) Types.reserve(size_reserve);    
  InitBuiltinTypes();
  TUDecl = TranslationUnitDecl::Create(*this);
  BuiltinInfo.InitializeTargetBuiltins(Target);
  if (InitializeBuiltins)
    this->InitializeBuiltins(idents);
  PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
}

ASTContext::~ASTContext() {
  // Deallocate all the types.
  while (!Types.empty()) {
    Types.back()->Destroy(*this);
    Types.pop_back();
  }

  {
    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
    while (I != E) {
      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
      delete R;
    }
  }

  {
    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
    while (I != E) {
      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
      delete R;
    }
  }

  // Destroy nested-name-specifiers.
  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
         NNS = NestedNameSpecifiers.begin(),
         NNSEnd = NestedNameSpecifiers.end(); 
       NNS != NNSEnd; 
       /* Increment in loop */)
    (*NNS++).Destroy(*this);

  if (GlobalNestedNameSpecifier)
    GlobalNestedNameSpecifier->Destroy(*this);

  TUDecl->Destroy(*this);
}

void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
  BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
}

void 
ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
  ExternalSource.reset(Source.take());
}

void ASTContext::PrintStats() const {
  fprintf(stderr, "*** AST Context Stats:\n");
  fprintf(stderr, "  %d types total.\n", (int)Types.size());

  unsigned counts[] = {
#define TYPE(Name, Parent) 0, 
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.def"
    0 // Extra
  };

  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    Type *T = Types[i];
    counts[(unsigned)T->getTypeClass()]++;
  }

  unsigned Idx = 0;
  unsigned TotalBytes = 0;
#define TYPE(Name, Parent)                                              \
  if (counts[Idx])                                                      \
    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
  ++Idx;
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.def"
  
  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));

  if (ExternalSource.get()) {
    fprintf(stderr, "\n");
    ExternalSource->PrintStats();
  }
}


void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
}

void ASTContext::InitBuiltinTypes() {
  assert(VoidTy.isNull() && "Context reinitialized?");
  
  // C99 6.2.5p19.
  InitBuiltinType(VoidTy,              BuiltinType::Void);
  
  // C99 6.2.5p2.
  InitBuiltinType(BoolTy,              BuiltinType::Bool);
  // C99 6.2.5p3.
  if (Target.isCharSigned())
    InitBuiltinType(CharTy,            BuiltinType::Char_S);
  else
    InitBuiltinType(CharTy,            BuiltinType::Char_U);
  // C99 6.2.5p4.
  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
  InitBuiltinType(ShortTy,             BuiltinType::Short);
  InitBuiltinType(IntTy,               BuiltinType::Int);
  InitBuiltinType(LongTy,              BuiltinType::Long);
  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
  
  // C99 6.2.5p6.
  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
  
  // C99 6.2.5p10.
  InitBuiltinType(FloatTy,             BuiltinType::Float);
  InitBuiltinType(DoubleTy,            BuiltinType::Double);
  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);

  // GNU extension, 128-bit integers.
  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);

  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
    InitBuiltinType(WCharTy,           BuiltinType::WChar);
  else // C99
    WCharTy = getFromTargetType(Target.getWCharType());

  // Placeholder type for functions.
  InitBuiltinType(OverloadTy,          BuiltinType::Overload);

  // Placeholder type for type-dependent expressions whose type is
  // completely unknown. No code should ever check a type against
  // DependentTy and users should never see it; however, it is here to
  // help diagnose failures to properly check for type-dependent
  // expressions.
  InitBuiltinType(DependentTy,         BuiltinType::Dependent);

  // C99 6.2.5p11.
  FloatComplexTy      = getComplexType(FloatTy);
  DoubleComplexTy     = getComplexType(DoubleTy);
  LongDoubleComplexTy = getComplexType(LongDoubleTy);

  BuiltinVaListType = QualType();
  ObjCIdType = QualType();
  IdStructType = 0;
  ObjCClassType = QualType();
  ClassStructType = 0;
  
  ObjCConstantStringType = QualType();
  
  // void * type
  VoidPtrTy = getPointerType(VoidTy);

  // nullptr type (C++0x 2.14.7)
  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
}

//===----------------------------------------------------------------------===//
//                         Type Sizing and Analysis
//===----------------------------------------------------------------------===//

/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
  const BuiltinType *BT = T->getAsBuiltinType();
  assert(BT && "Not a floating point type!");
  switch (BT->getKind()) {
  default: assert(0 && "Not a floating point type!");
  case BuiltinType::Float:      return Target.getFloatFormat();
  case BuiltinType::Double:     return Target.getDoubleFormat();
  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
  }
}

/// getDeclAlign - Return a conservative estimate of the alignment of the
/// specified decl.  Note that bitfields do not have a valid alignment, so
/// this method will assert on them.
unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
  unsigned Align = Target.getCharWidth();

  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
    Align = std::max(Align, AA->getAlignment());

  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
    QualType T = VD->getType();
    if (const ReferenceType* RT = T->getAsReferenceType()) {
      unsigned AS = RT->getPointeeType().getAddressSpace();
      Align = Target.getPointerAlign(AS);
    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
      // Incomplete or function types default to 1.
      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
        T = cast<ArrayType>(T)->getElementType();

      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
    }
  }

  return Align / Target.getCharWidth();
}

/// getTypeSize - Return the size of the specified type, in bits.  This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(const Type *T) {
  uint64_t Width=0;
  unsigned Align=8;
  switch (T->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
    assert(false && "Should not see dependent types");
    break;

  case Type::FunctionNoProto:
  case Type::FunctionProto:
    // GCC extension: alignof(function) = 32 bits
    Width = 0;
    Align = 32;
    break;

  case Type::IncompleteArray:
  case Type::VariableArray:
    Width = 0;
    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
    break;

  case Type::ConstantArray: {
    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
    
    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
    Width = EltInfo.first*CAT->getSize().getZExtValue();
    Align = EltInfo.second;
    break;
  }
  case Type::ExtVector:
  case Type::Vector: {
    std::pair<uint64_t, unsigned> EltInfo = 
      getTypeInfo(cast<VectorType>(T)->getElementType());
    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
    Align = Width;
    // If the alignment is not a power of 2, round up to the next power of 2.
    // This happens for non-power-of-2 length vectors.
    // FIXME: this should probably be a target property.
    Align = 1 << llvm::Log2_32_Ceil(Align);
    break;
  }

  case Type::Builtin:
    switch (cast<BuiltinType>(T)->getKind()) {
    default: assert(0 && "Unknown builtin type!");
    case BuiltinType::Void:
      // GCC extension: alignof(void) = 8 bits.
      Width = 0;
      Align = 8;
      break;

    case BuiltinType::Bool:
      Width = Target.getBoolWidth();
      Align = Target.getBoolAlign();
      break;
    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::UChar:
    case BuiltinType::SChar:
      Width = Target.getCharWidth();
      Align = Target.getCharAlign();
      break;
    case BuiltinType::WChar:
      Width = Target.getWCharWidth();
      Align = Target.getWCharAlign();
      break;
    case BuiltinType::UShort:
    case BuiltinType::Short:
      Width = Target.getShortWidth();
      Align = Target.getShortAlign();
      break;
    case BuiltinType::UInt:
    case BuiltinType::Int:
      Width = Target.getIntWidth();
      Align = Target.getIntAlign();
      break;
    case BuiltinType::ULong:
    case BuiltinType::Long:
      Width = Target.getLongWidth();
      Align = Target.getLongAlign();
      break;
    case BuiltinType::ULongLong:
    case BuiltinType::LongLong:
      Width = Target.getLongLongWidth();
      Align = Target.getLongLongAlign();
      break;
    case BuiltinType::Int128:
    case BuiltinType::UInt128:
      Width = 128;
      Align = 128; // int128_t is 128-bit aligned on all targets.
      break;
    case BuiltinType::Float:
      Width = Target.getFloatWidth();
      Align = Target.getFloatAlign();
      break;
    case BuiltinType::Double:
      Width = Target.getDoubleWidth();
      Align = Target.getDoubleAlign();
      break;
    case BuiltinType::LongDouble:
      Width = Target.getLongDoubleWidth();
      Align = Target.getLongDoubleAlign();
      break;
    case BuiltinType::NullPtr:
      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
      Align = Target.getPointerAlign(0); //   == sizeof(void*)
      break;
    }
    break;
  case Type::FixedWidthInt:
    // FIXME: This isn't precisely correct; the width/alignment should depend
    // on the available types for the target
    Width = cast<FixedWidthIntType>(T)->getWidth();
    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
    Align = Width;
    break;
  case Type::ExtQual:
    // FIXME: Pointers into different addr spaces could have different sizes and
    // alignment requirements: getPointerInfo should take an AddrSpace.
    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
  case Type::ObjCQualifiedId:
  case Type::ObjCQualifiedInterface:
    Width = Target.getPointerWidth(0);
    Align = Target.getPointerAlign(0);
    break;
  case Type::BlockPointer: {
    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
    Width = Target.getPointerWidth(AS);
    Align = Target.getPointerAlign(AS);
    break;
  }
  case Type::Pointer: {
    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
    Width = Target.getPointerWidth(AS);
    Align = Target.getPointerAlign(AS);
    break;
  }
  case Type::LValueReference:
  case Type::RValueReference:
    // "When applied to a reference or a reference type, the result is the size
    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
    // FIXME: This is wrong for struct layout: a reference in a struct has
    // pointer size.
    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
  case Type::MemberPointer: {
    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
    // If we ever want to support other ABIs this needs to be abstracted.

    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
    std::pair<uint64_t, unsigned> PtrDiffInfo = 
      getTypeInfo(getPointerDiffType());
    Width = PtrDiffInfo.first;
    if (Pointee->isFunctionType())
      Width *= 2;
    Align = PtrDiffInfo.second;
    break;
  }
  case Type::Complex: {
    // Complex types have the same alignment as their elements, but twice the
    // size.
    std::pair<uint64_t, unsigned> EltInfo = 
      getTypeInfo(cast<ComplexType>(T)->getElementType());
    Width = EltInfo.first*2;
    Align = EltInfo.second;
    break;
  }
  case Type::ObjCInterface: {
    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
    Width = Layout.getSize();
    Align = Layout.getAlignment();
    break;
  }
  case Type::Record:
  case Type::Enum: {
    const TagType *TT = cast<TagType>(T);

    if (TT->getDecl()->isInvalidDecl()) {
      Width = 1;
      Align = 1;
      break;
    }
    
    if (const EnumType *ET = dyn_cast<EnumType>(TT))
      return getTypeInfo(ET->getDecl()->getIntegerType());

    const RecordType *RT = cast<RecordType>(TT);
    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
    Width = Layout.getSize();
    Align = Layout.getAlignment();
    break;
  }

  case Type::Typedef: {
    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
      Align = Aligned->getAlignment();
      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
    } else
      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
    break;
  }

  case Type::TypeOfExpr:
    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
                         .getTypePtr());

  case Type::TypeOf:
    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());

  case Type::QualifiedName:
    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
    
  case Type::TemplateSpecialization:
    assert(getCanonicalType(T) != T && 
           "Cannot request the size of a dependent type");
    // FIXME: this is likely to be wrong once we support template
    // aliases, since a template alias could refer to a typedef that
    // has an __aligned__ attribute on it.
    return getTypeInfo(getCanonicalType(T));
  }
  
  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
  return std::make_pair(Width, Align);
}

/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits.  This can be different than the ABI
/// alignment in cases where it is beneficial for performance to overalign
/// a data type.
unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
  unsigned ABIAlign = getTypeAlign(T);

  // Double and long long should be naturally aligned if possible.
  if (const ComplexType* CT = T->getAsComplexType())
    T = CT->getElementType().getTypePtr();
  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
      T->isSpecificBuiltinType(BuiltinType::LongLong))
    return std::max(ABIAlign, (unsigned)getTypeSize(T));

  return ABIAlign;
}


/// LayoutField - Field layout.
void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
                                  bool IsUnion, unsigned StructPacking,
                                  ASTContext &Context) {
  unsigned FieldPacking = StructPacking;
  uint64_t FieldOffset = IsUnion ? 0 : Size;
  uint64_t FieldSize;
  unsigned FieldAlign;

  // FIXME: Should this override struct packing? Probably we want to
  // take the minimum?
  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
    FieldPacking = PA->getAlignment();
  
  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
    // TODO: Need to check this algorithm on other targets!
    //       (tested on Linux-X86)
    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
    
    std::pair<uint64_t, unsigned> FieldInfo = 
      Context.getTypeInfo(FD->getType());
    uint64_t TypeSize = FieldInfo.first;
    
    // Determine the alignment of this bitfield. The packing
    // attributes define a maximum and the alignment attribute defines
    // a minimum.
    // FIXME: What is the right behavior when the specified alignment
    // is smaller than the specified packing?
    FieldAlign = FieldInfo.second;
    if (FieldPacking)
      FieldAlign = std::min(FieldAlign, FieldPacking);
    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
      FieldAlign = std::max(FieldAlign, AA->getAlignment());
    
    // Check if we need to add padding to give the field the correct
    // alignment.
    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
    
    // Padding members don't affect overall alignment
    if (!FD->getIdentifier())
      FieldAlign = 1;
  } else {
    if (FD->getType()->isIncompleteArrayType()) {
      // This is a flexible array member; we can't directly
      // query getTypeInfo about these, so we figure it out here.
      // Flexible array members don't have any size, but they
      // have to be aligned appropriately for their element type.
      FieldSize = 0;
      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
      FieldAlign = Context.getTypeAlign(ATy->getElementType());
    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
      unsigned AS = RT->getPointeeType().getAddressSpace();
      FieldSize = Context.Target.getPointerWidth(AS);
      FieldAlign = Context.Target.getPointerAlign(AS);
    } else {
      std::pair<uint64_t, unsigned> FieldInfo = 
        Context.getTypeInfo(FD->getType());
      FieldSize = FieldInfo.first;
      FieldAlign = FieldInfo.second;
    }
    
    // Determine the alignment of this bitfield. The packing
    // attributes define a maximum and the alignment attribute defines
    // a minimum. Additionally, the packing alignment must be at least
    // a byte for non-bitfields.
    //
    // FIXME: What is the right behavior when the specified alignment
    // is smaller than the specified packing?
    if (FieldPacking)
      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
      FieldAlign = std::max(FieldAlign, AA->getAlignment());
    
    // Round up the current record size to the field's alignment boundary.
    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
  }
  
  // Place this field at the current location.
  FieldOffsets[FieldNo] = FieldOffset;
  
  // Reserve space for this field.
  if (IsUnion) {
    Size = std::max(Size, FieldSize);
  } else {
    Size = FieldOffset + FieldSize;
  }
  
  // Remember the next available offset.
  NextOffset = Size;

  // Remember max struct/class alignment.
  Alignment = std::max(Alignment, FieldAlign);
}

static void CollectLocalObjCIvars(ASTContext *Ctx,
                                  const ObjCInterfaceDecl *OI,
                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
       E = OI->ivar_end(); I != E; ++I) {
    ObjCIvarDecl *IVDecl = *I;
    if (!IVDecl->isInvalidDecl())
      Fields.push_back(cast<FieldDecl>(IVDecl));
  }
}

void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
    CollectObjCIvars(SuperClass, Fields);
  CollectLocalObjCIvars(this, OI, Fields);
}

void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
       E = PD->prop_end(*this); I != E; ++I)
    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
      Ivars.push_back(Ivar);
  
  // Also look into nested protocols.
  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
       E = PD->protocol_end(); P != E; ++P)
    CollectProtocolSynthesizedIvars(*P, Ivars);
}

/// CollectSynthesizedIvars -
/// This routine collect synthesized ivars for the designated class.
///
void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
       E = OI->prop_end(*this); I != E; ++I) {
    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
      Ivars.push_back(Ivar);
  }
  // Also look into interface's protocol list for properties declared
  // in the protocol and whose ivars are synthesized.
  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
       PE = OI->protocol_end(); P != PE; ++P) {
    ObjCProtocolDecl *PD = (*P);
    CollectProtocolSynthesizedIvars(PD, Ivars);
  }
}

/// getInterfaceLayoutImpl - Get or compute information about the
/// layout of the given interface.
///
/// \param Impl - If given, also include the layout of the interface's
/// implementation. This may differ by including synthesized ivars.
const ASTRecordLayout &
ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
                          const ObjCImplementationDecl *Impl) {
  assert(!D->isForwardDecl() && "Invalid interface decl!");

  // Look up this layout, if already laid out, return what we have.
  ObjCContainerDecl *Key = 
    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
    return *Entry;

  unsigned FieldCount = D->ivar_size();
  // Add in synthesized ivar count if laying out an implementation.
  if (Impl) {
    llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
    CollectSynthesizedIvars(D, Ivars);
    FieldCount += Ivars.size();
    // If there aren't any sythesized ivars then reuse the interface
    // entry. Note we can't cache this because we simply free all
    // entries later; however we shouldn't look up implementations
    // frequently.
    if (FieldCount == D->ivar_size())
      return getObjCLayout(D, 0);
  }

  ASTRecordLayout *NewEntry = NULL;
  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
    unsigned Alignment = SL.getAlignment();

    // We start laying out ivars not at the end of the superclass
    // structure, but at the next byte following the last field.
    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);

    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
    NewEntry->InitializeLayout(FieldCount);
  } else {
    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
    NewEntry->InitializeLayout(FieldCount);
  }

  unsigned StructPacking = 0;
  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
    StructPacking = PA->getAlignment();

  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), 
                                    AA->getAlignment()));

  // Layout each ivar sequentially.
  unsigned i = 0;
  for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(), 
       IVE = D->ivar_end(); IVI != IVE; ++IVI) {
    const ObjCIvarDecl* Ivar = (*IVI);
    NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
  }
  // And synthesized ivars, if this is an implementation.
  if (Impl) {
    // FIXME. Do we need to colltect twice?
    llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
    CollectSynthesizedIvars(D, Ivars);
    for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
      NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
  }
  
  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  NewEntry->FinalizeLayout();
  return *NewEntry;
}

const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
  return getObjCLayout(D, 0);
}

const ASTRecordLayout &
ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
  return getObjCLayout(D->getClassInterface(), D);
}

/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
  D = D->getDefinition(*this);
  assert(D && "Cannot get layout of forward declarations!");

  // Look up this layout, if already laid out, return what we have.
  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
  if (Entry) return *Entry;

  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
  ASTRecordLayout *NewEntry = new ASTRecordLayout();
  Entry = NewEntry;

  // FIXME: Avoid linear walk through the fields, if possible.
  NewEntry->InitializeLayout(std::distance(D->field_begin(*this), 
                                           D->field_end(*this)));
  bool IsUnion = D->isUnion();

  unsigned StructPacking = 0;
  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
    StructPacking = PA->getAlignment();

  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(), 
                                    AA->getAlignment()));

  // Layout each field, for now, just sequentially, respecting alignment.  In
  // the future, this will need to be tweakable by targets.
  unsigned FieldIdx = 0;
  for (RecordDecl::field_iterator Field = D->field_begin(*this),
                               FieldEnd = D->field_end(*this);
       Field != FieldEnd; (void)++Field, ++FieldIdx)
    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);

  // Finally, round the size of the total struct up to the alignment of the
  // struct itself.
  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
  return *NewEntry;
}

//===----------------------------------------------------------------------===//
//                   Type creation/memoization methods
//===----------------------------------------------------------------------===//

QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
  QualType CanT = getCanonicalType(T);
  if (CanT.getAddressSpace() == AddressSpace)
    return T;

  // If we are composing extended qualifiers together, merge together into one
  // ExtQualType node.
  unsigned CVRQuals = T.getCVRQualifiers();
  QualType::GCAttrTypes GCAttr = QualType::GCNone;
  Type *TypeNode = T.getTypePtr();
  
  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
    // If this type already has an address space specified, it cannot get
    // another one.
    assert(EQT->getAddressSpace() == 0 &&
           "Type cannot be in multiple addr spaces!");
    GCAttr = EQT->getObjCGCAttr();
    TypeNode = EQT->getBaseType();
  }
  
  // Check if we've already instantiated this type.
  llvm::FoldingSetNodeID ID;
  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);      
  void *InsertPos = 0;
  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(EXTQy, CVRQuals);

  // If the base type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!TypeNode->isCanonical()) {
    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
    
    // Update InsertPos, the previous call could have invalidated it.
    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  ExtQualType *New =
    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
  ExtQualTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, CVRQuals);
}

QualType ASTContext::getObjCGCQualType(QualType T,
                                       QualType::GCAttrTypes GCAttr) {
  QualType CanT = getCanonicalType(T);
  if (CanT.getObjCGCAttr() == GCAttr)
    return T;
  
  // If we are composing extended qualifiers together, merge together into one
  // ExtQualType node.
  unsigned CVRQuals = T.getCVRQualifiers();
  Type *TypeNode = T.getTypePtr();
  unsigned AddressSpace = 0;
  
  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
    // If this type already has an address space specified, it cannot get
    // another one.
    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
           "Type cannot be in multiple addr spaces!");
    AddressSpace = EQT->getAddressSpace();
    TypeNode = EQT->getBaseType();
  }
  
  // Check if we've already instantiated an gc qual'd type of this type.
  llvm::FoldingSetNodeID ID;
  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);      
  void *InsertPos = 0;
  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(EXTQy, CVRQuals);
  
  // If the base type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  // FIXME: Isn't this also not canonical if the base type is a array
  // or pointer type?  I can't find any documentation for objc_gc, though...
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getObjCGCQualType(CanT, GCAttr);
    
    // Update InsertPos, the previous call could have invalidated it.
    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  ExtQualType *New =
    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
  ExtQualTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, CVRQuals);
}

/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ComplexType::Profile(ID, T);
  
  void *InsertPos = 0;
  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(CT, 0);
  
  // If the pointee type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getComplexType(getCanonicalType(T));
    
    // Get the new insert position for the node we care about.
    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
  Types.push_back(New);
  ComplexTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
  FixedWidthIntType *&Entry = Map[Width];
  if (!Entry)
    Entry = new FixedWidthIntType(Width, Signed);
  return QualType(Entry, 0);
}

/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  PointerType::Profile(ID, T);
  
  void *InsertPos = 0;
  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);
  
  // If the pointee type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getPointerType(getCanonicalType(T));
   
    // Get the new insert position for the node we care about.
    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  PointerType *New = new (*this,8) PointerType(T, Canonical);
  Types.push_back(New);
  PointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getBlockPointerType - Return the uniqued reference to the type for 
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) {
  assert(T->isFunctionType() && "block of function types only");
  // Unique pointers, to guarantee there is only one block of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  BlockPointerType::Profile(ID, T);
  
  void *InsertPos = 0;
  if (BlockPointerType *PT =
        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);
  
  // If the block pointee type isn't canonical, this won't be a canonical 
  // type either so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getBlockPointerType(getCanonicalType(T));
    
    // Get the new insert position for the node we care about.
    BlockPointerType *NewIP =
      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
  Types.push_back(New);
  BlockPointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getLValueReferenceType - Return the uniqued reference to the type for an
/// lvalue reference to the specified type.
QualType ASTContext::getLValueReferenceType(QualType T) {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ReferenceType::Profile(ID, T);

  void *InsertPos = 0;
  if (LValueReferenceType *RT =
        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(RT, 0);

  // If the referencee type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getLValueReferenceType(getCanonicalType(T));

    // Get the new insert position for the node we care about.
    LValueReferenceType *NewIP =
      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }

  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
  Types.push_back(New);
  LValueReferenceTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getRValueReferenceType - Return the uniqued reference to the type for an
/// rvalue reference to the specified type.
QualType ASTContext::getRValueReferenceType(QualType T) {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ReferenceType::Profile(ID, T);

  void *InsertPos = 0;
  if (RValueReferenceType *RT =
        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(RT, 0);

  // If the referencee type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getRValueReferenceType(getCanonicalType(T));

    // Get the new insert position for the node we care about.
    RValueReferenceType *NewIP =
      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }

  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
  Types.push_back(New);
  RValueReferenceTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getMemberPointerType - Return the uniqued reference to the type for a
/// member pointer to the specified type, in the specified class.
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
{
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  MemberPointerType::Profile(ID, T, Cls);

  void *InsertPos = 0;
  if (MemberPointerType *PT =
      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);

  // If the pointee or class type isn't canonical, this won't be a canonical
  // type either, so fill in the canonical type field.
  QualType Canonical;
  if (!T->isCanonical()) {
    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));

    // Get the new insert position for the node we care about.
    MemberPointerType *NewIP =
      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
  Types.push_back(New);
  MemberPointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getConstantArrayType - Return the unique reference to the type for an 
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy, 
                                          const llvm::APInt &ArySizeIn,
                                          ArrayType::ArraySizeModifier ASM,
                                          unsigned EltTypeQuals) {
  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
         "Constant array of VLAs is illegal!");

  // Convert the array size into a canonical width matching the pointer size for
  // the target.
  llvm::APInt ArySize(ArySizeIn);
  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
  
  llvm::FoldingSetNodeID ID;
  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
      
  void *InsertPos = 0;
  if (ConstantArrayType *ATP = 
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(ATP, 0);
  
  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!EltTy->isCanonical()) {
    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize, 
                                     ASM, EltTypeQuals);
    // Get the new insert position for the node we care about.
    ConstantArrayType *NewIP = 
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  
  ConstantArrayType *New =
    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
  ConstantArrayTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
                                          ArrayType::ArraySizeModifier ASM,
                                          unsigned EltTypeQuals) {
  // Since we don't unique expressions, it isn't possible to unique VLA's
  // that have an expression provided for their size.

  VariableArrayType *New =
    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);

  VariableArrayTypes.push_back(New);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type. FIXME: We will need these to be uniqued, or at least
/// comparable, at some point.
QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
                                                ArrayType::ArraySizeModifier ASM,
                                                unsigned EltTypeQuals) {
  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) && 
         "Size must be type- or value-dependent!");

  // Since we don't unique expressions, it isn't possible to unique
  // dependently-sized array types.

  DependentSizedArrayType *New =
      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts, 
                                            ASM, EltTypeQuals);

  DependentSizedArrayTypes.push_back(New);
  Types.push_back(New);
  return QualType(New, 0);
}

QualType ASTContext::getIncompleteArrayType(QualType EltTy,
                                            ArrayType::ArraySizeModifier ASM,
                                            unsigned EltTypeQuals) {
  llvm::FoldingSetNodeID ID;
  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);

  void *InsertPos = 0;
  if (IncompleteArrayType *ATP = 
       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(ATP, 0);

  // If the element type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;

  if (!EltTy->isCanonical()) {
    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
                                       ASM, EltTypeQuals);

    // Get the new insert position for the node we care about.
    IncompleteArrayType *NewIP =
      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }

  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
                                                           ASM, EltTypeQuals);

  IncompleteArrayTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
  BuiltinType *baseType;
  
  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
         
  // Check if we've already instantiated a vector of this type.
  llvm::FoldingSetNodeID ID;
  VectorType::Profile(ID, vecType, NumElts, Type::Vector);      
  void *InsertPos = 0;
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(VTP, 0);

  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!vecType->isCanonical()) {
    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
    
    // Get the new insert position for the node we care about.
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
  VectorTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
  BuiltinType *baseType;
  
  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
         
  // Check if we've already instantiated a vector of this type.
  llvm::FoldingSetNodeID ID;
  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);      
  void *InsertPos = 0;
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(VTP, 0);

  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!vecType->isCanonical()) {
    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
    
    // Get the new insert position for the node we care about.
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
  VectorTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
///
QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
  // Unique functions, to guarantee there is only one function of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  FunctionNoProtoType::Profile(ID, ResultTy);
  
  void *InsertPos = 0;
  if (FunctionNoProtoType *FT = 
        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(FT, 0);
  
  QualType Canonical;
  if (!ResultTy->isCanonical()) {
    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
    
    // Get the new insert position for the node we care about.
    FunctionNoProtoType *NewIP =
      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }
  
  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
  Types.push_back(New);
  FunctionNoProtoTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getFunctionType - Return a normal function type with a typed argument
/// list.  isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
                                     unsigned NumArgs, bool isVariadic,
                                     unsigned TypeQuals, bool hasExceptionSpec,
                                     bool hasAnyExceptionSpec, unsigned NumExs,
                                     const QualType *ExArray) {
  // Unique functions, to guarantee there is only one function of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
                             NumExs, ExArray);

  void *InsertPos = 0;
  if (FunctionProtoType *FTP = 
        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(FTP, 0);

  // Determine whether the type being created is already canonical or not.
  bool isCanonical = ResultTy->isCanonical();
  if (hasExceptionSpec)
    isCanonical = false;
  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
    if (!ArgArray[i]->isCanonical())
      isCanonical = false;

  // If this type isn't canonical, get the canonical version of it.
  // The exception spec is not part of the canonical type.
  QualType Canonical;
  if (!isCanonical) {
    llvm::SmallVector<QualType, 16> CanonicalArgs;
    CanonicalArgs.reserve(NumArgs);
    for (unsigned i = 0; i != NumArgs; ++i)
      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));

    Canonical = getFunctionType(getCanonicalType(ResultTy),
                                CanonicalArgs.data(), NumArgs,
                                isVariadic, TypeQuals);

    // Get the new insert position for the node we care about.
    FunctionProtoType *NewIP =
      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
  }

  // FunctionProtoType objects are allocated with extra bytes after them
  // for two variable size arrays (for parameter and exception types) at the
  // end of them.
  FunctionProtoType *FTP = 
    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
                                 NumArgs*sizeof(QualType) +
                                 NumExs*sizeof(QualType), 8);
  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
                              ExArray, NumExs, Canonical);
  Types.push_back(FTP);
  FunctionProtoTypes.InsertNode(FTP, InsertPos);
  return QualType(FTP, 0);
}

/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
  assert(Decl && "Passed null for Decl param");
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
  
  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
    return getTypedefType(Typedef);
  else if (isa<TemplateTypeParmDecl>(Decl)) {
    assert(false && "Template type parameter types are always available.");
  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
    return getObjCInterfaceType(ObjCInterface);

  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
    if (PrevDecl)
      Decl->TypeForDecl = PrevDecl->TypeForDecl;
    else
      Decl->TypeForDecl = new (*this,8) RecordType(Record);
  }
  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
    if (PrevDecl)
      Decl->TypeForDecl = PrevDecl->TypeForDecl;
    else
      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
  }
  else
    assert(false && "TypeDecl without a type?");

  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
  return QualType(Decl->TypeForDecl, 0);
}

/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
  
  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
  Types.push_back(Decl->TypeForDecl);
  return QualType(Decl->TypeForDecl, 0);
}

/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl.
QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
  
  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
  Types.push_back(Decl->TypeForDecl);
  return QualType(Decl->TypeForDecl, 0);
}

/// \brief Retrieve the template type parameter type for a template
/// parameter with the given depth, index, and (optionally) name.
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 
                                             IdentifierInfo *Name) {
  llvm::FoldingSetNodeID ID;
  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
  void *InsertPos = 0;
  TemplateTypeParmType *TypeParm 
    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);

  if (TypeParm)
    return QualType(TypeParm, 0);
  
  if (Name)
    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
                                         getTemplateTypeParmType(Depth, Index));
  else
    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);

  Types.push_back(TypeParm);
  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);

  return QualType(TypeParm, 0);
}

QualType 
ASTContext::getTemplateSpecializationType(TemplateName Template,
                                          const TemplateArgument *Args,
                                          unsigned NumArgs,
                                          QualType Canon) {
  if (!Canon.isNull())
    Canon = getCanonicalType(Canon);

  llvm::FoldingSetNodeID ID;
  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);

  void *InsertPos = 0;
  TemplateSpecializationType *Spec
    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);

  if (Spec)
    return QualType(Spec, 0);
  
  void *Mem = Allocate((sizeof(TemplateSpecializationType) + 
                        sizeof(TemplateArgument) * NumArgs),
                       8);
  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
  Types.push_back(Spec);
  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);

  return QualType(Spec, 0);  
}

QualType 
ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
                                 QualType NamedType) {
  llvm::FoldingSetNodeID ID;
  QualifiedNameType::Profile(ID, NNS, NamedType);

  void *InsertPos = 0;
  QualifiedNameType *T 
    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  T = new (*this) QualifiedNameType(NNS, NamedType, 
                                    getCanonicalType(NamedType));
  Types.push_back(T);
  QualifiedNameTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);
}

QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS, 
                                     const IdentifierInfo *Name,
                                     QualType Canon) {
  assert(NNS->isDependent() && "nested-name-specifier must be dependent");

  if (Canon.isNull()) {
    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
    if (CanonNNS != NNS)
      Canon = getTypenameType(CanonNNS, Name);
  }

  llvm::FoldingSetNodeID ID;
  TypenameType::Profile(ID, NNS, Name);

  void *InsertPos = 0;
  TypenameType *T 
    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  T = new (*this) TypenameType(NNS, Name, Canon);
  Types.push_back(T);
  TypenameTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);  
}

QualType 
ASTContext::getTypenameType(NestedNameSpecifier *NNS, 
                            const TemplateSpecializationType *TemplateId,
                            QualType Canon) {
  assert(NNS->isDependent() && "nested-name-specifier must be dependent");

  if (Canon.isNull()) {
    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
      const TemplateSpecializationType *CanonTemplateId
        = CanonType->getAsTemplateSpecializationType();
      assert(CanonTemplateId &&
             "Canonical type must also be a template specialization type");
      Canon = getTypenameType(CanonNNS, CanonTemplateId);
    }
  }

  llvm::FoldingSetNodeID ID;
  TypenameType::Profile(ID, NNS, TemplateId);

  void *InsertPos = 0;
  TypenameType *T 
    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  T = new (*this) TypenameType(NNS, TemplateId, Canon);
  Types.push_back(T);
  TypenameTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);    
}

/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
                            const ObjCProtocolDecl *RHS) {
  return LHS->getDeclName() < RHS->getDeclName();
}

static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
                                   unsigned &NumProtocols) {
  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
  
  // Sort protocols, keyed by name.
  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);

  // Remove duplicates.
  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
  NumProtocols = ProtocolsEnd-Protocols;
}


/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
/// the given interface decl and the conforming protocol list.
QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
  // Sort the protocol list alphabetically to canonicalize it.
  SortAndUniqueProtocols(Protocols, NumProtocols);
  
  llvm::FoldingSetNodeID ID;
  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
  
  void *InsertPos = 0;
  if (ObjCQualifiedInterfaceType *QT =
      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(QT, 0);
  
  // No Match;
  ObjCQualifiedInterfaceType *QType =
    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);

  Types.push_back(QType);
  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
  return QualType(QType, 0);
}

/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
/// and the conforming protocol list.
QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols, 
                                            unsigned NumProtocols) {
  // Sort the protocol list alphabetically to canonicalize it.
  SortAndUniqueProtocols(Protocols, NumProtocols);

  llvm::FoldingSetNodeID ID;
  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
  
  void *InsertPos = 0;
  if (ObjCQualifiedIdType *QT =
        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(QT, 0);
  
  // No Match;
  ObjCQualifiedIdType *QType =
    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
  Types.push_back(QType);
  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
  return QualType(QType, 0);
}

/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExprType AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates 
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
  QualType Canonical = getCanonicalType(tofExpr->getType());
  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
  Types.push_back(toe);
  return QualType(toe, 0);
}

/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
/// TypeOfType AST's. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't effect the type checker, since it operates 
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) {
  QualType Canonical = getCanonicalType(tofType);
  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
  Types.push_back(tot);
  return QualType(tot, 0);
}

/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(TagDecl *Decl) {
  assert (Decl);
  return getTypeDeclType(Decl);
}

/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 
/// needs to agree with the definition in <stddef.h>. 
QualType ASTContext::getSizeType() const {
  return getFromTargetType(Target.getSizeType());
}

/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getSignedWCharType() const {
  // FIXME: derive from "Target" ?
  return WCharTy;
}

/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getUnsignedWCharType() const {
  // FIXME: derive from "Target" ?
  return UnsignedIntTy;
}

/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
  return getFromTargetType(Target.getPtrDiffType(0));
}

//===----------------------------------------------------------------------===//
//                              Type Operators
//===----------------------------------------------------------------------===//

/// getCanonicalType - Return the canonical (structural) type corresponding to
/// the specified potentially non-canonical type.  The non-canonical version
/// of a type may have many "decorated" versions of types.  Decorators can
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
/// to be free of any of these, allowing two canonical types to be compared
/// for exact equality with a simple pointer comparison.
QualType ASTContext::getCanonicalType(QualType T) {
  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
  
  // If the result has type qualifiers, make sure to canonicalize them as well.
  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
  if (TypeQuals == 0) return CanType;

  // If the type qualifiers are on an array type, get the canonical type of the
  // array with the qualifiers applied to the element type.
  ArrayType *AT = dyn_cast<ArrayType>(CanType);
  if (!AT)
    return CanType.getQualifiedType(TypeQuals);
  
  // Get the canonical version of the element with the extra qualifiers on it.
  // This can recursively sink qualifiers through multiple levels of arrays.
  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
  NewEltTy = getCanonicalType(NewEltTy);
  
  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
                                CAT->getIndexTypeQualifier());
  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
                                  IAT->getIndexTypeQualifier());
  
  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
                                      DSAT->getSizeModifier(),
                                      DSAT->getIndexTypeQualifier());    

  VariableArrayType *VAT = cast<VariableArrayType>(AT);
  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
                              VAT->getSizeModifier(),
                              VAT->getIndexTypeQualifier());
}

Decl *ASTContext::getCanonicalDecl(Decl *D) {
  if (!D)
    return 0;

  if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
    QualType T = getTagDeclType(Tag);
    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
                         ->getDecl());
  }

  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
    while (Template->getPreviousDeclaration())
      Template = Template->getPreviousDeclaration();
    return Template;
  }

  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    while (Function->getPreviousDeclaration())
      Function = Function->getPreviousDeclaration();
    return const_cast<FunctionDecl *>(Function);
  }

  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    while (Var->getPreviousDeclaration())
      Var = Var->getPreviousDeclaration();
    return const_cast<VarDecl *>(Var);
  }

  return D;
}

TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
  // If this template name refers to a template, the canonical
  // template name merely stores the template itself.
  if (TemplateDecl *Template = Name.getAsTemplateDecl())
    return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));

  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
  assert(DTN && "Non-dependent template names must refer to template decls.");
  return DTN->CanonicalTemplateName;
}

NestedNameSpecifier *
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
  if (!NNS) 
    return 0;

  switch (NNS->getKind()) {
  case NestedNameSpecifier::Identifier:
    // Canonicalize the prefix but keep the identifier the same.
    return NestedNameSpecifier::Create(*this, 
                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
                                       NNS->getAsIdentifier());

  case NestedNameSpecifier::Namespace:
    // A namespace is canonical; build a nested-name-specifier with
    // this namespace and no prefix.
    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());

  case NestedNameSpecifier::TypeSpec:
  case NestedNameSpecifier::TypeSpecWithTemplate: {
    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
    NestedNameSpecifier *Prefix = 0;

    // FIXME: This isn't the right check!
    if (T->isDependentType())
      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());

    return NestedNameSpecifier::Create(*this, Prefix, 
                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate, 
                                       T.getTypePtr());
  }

  case NestedNameSpecifier::Global:
    // The global specifier is canonical and unique.
    return NNS;
  }

  // Required to silence a GCC warning
  return 0;
}


const ArrayType *ASTContext::getAsArrayType(QualType T) {
  // Handle the non-qualified case efficiently.
  if (T.getCVRQualifiers() == 0) {
    // Handle the common positive case fast.
    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
      return AT;
  }
  
  // Handle the common negative case fast, ignoring CVR qualifiers.
  QualType CType = T->getCanonicalTypeInternal();
    
  // Make sure to look through type qualifiers (like ExtQuals) for the negative
  // test.
  if (!isa<ArrayType>(CType) &&
      !isa<ArrayType>(CType.getUnqualifiedType()))
    return 0;
  
  // Apply any CVR qualifiers from the array type to the element type.  This
  // implements C99 6.7.3p8: "If the specification of an array type includes
  // any type qualifiers, the element type is so qualified, not the array type."
  
  // If we get here, we either have type qualifiers on the type, or we have
  // sugar such as a typedef in the way.  If we have type qualifiers on the type
  // we must propagate them down into the elemeng type.
  unsigned CVRQuals = T.getCVRQualifiers();
  unsigned AddrSpace = 0;
  Type *Ty = T.getTypePtr();
  
  // Rip through ExtQualType's and typedefs to get to a concrete type.
  while (1) {
    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
      AddrSpace = EXTQT->getAddressSpace();
      Ty = EXTQT->getBaseType();
    } else {
      T = Ty->getDesugaredType();
      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
        break;
      CVRQuals |= T.getCVRQualifiers();
      Ty = T.getTypePtr();
    }
  }
  
  // If we have a simple case, just return now.
  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
    return ATy;
  
  // Otherwise, we have an array and we have qualifiers on it.  Push the
  // qualifiers into the array element type and return a new array type.
  // Get the canonical version of the element with the extra qualifiers on it.
  // This can recursively sink qualifiers through multiple levels of arrays.
  QualType NewEltTy = ATy->getElementType();
  if (AddrSpace)
    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
  
  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
                                                CAT->getSizeModifier(),
                                                CAT->getIndexTypeQualifier()));
  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
                                                  IAT->getSizeModifier(),
                                                 IAT->getIndexTypeQualifier()));

  if (const DependentSizedArrayType *DSAT 
        = dyn_cast<DependentSizedArrayType>(ATy))
    return cast<ArrayType>(
                     getDependentSizedArrayType(NewEltTy, 
                                                DSAT->getSizeExpr(),
                                                DSAT->getSizeModifier(),
                                                DSAT->getIndexTypeQualifier()));
  
  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
                                              VAT->getSizeModifier(),
                                              VAT->getIndexTypeQualifier()));
}


/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer.  This operation is non-trivial when
/// handling typedefs etc.  The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType ASTContext::getArrayDecayedType(QualType Ty) {
  // Get the element type with 'getAsArrayType' so that we don't lose any
  // typedefs in the element type of the array.  This also handles propagation
  // of type qualifiers from the array type into the element type if present
  // (C99 6.7.3p8).
  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
  assert(PrettyArrayType && "Not an array type!");
  
  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());

  // int x[restrict 4] ->  int *restrict
  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
}

QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
  QualType ElemTy = VAT->getElementType();
  
  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
    return getBaseElementType(VAT);
  
  return ElemTy;
}

/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
  if (const ComplexType *CT = T->getAsComplexType())
    return getFloatingRank(CT->getElementType());

  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
  switch (T->getAsBuiltinType()->getKind()) {
  default: assert(0 && "getFloatingRank(): not a floating type");
  case BuiltinType::Float:      return FloatRank;
  case BuiltinType::Double:     return DoubleRank;
  case BuiltinType::LongDouble: return LongDoubleRank;
  }
}

/// getFloatingTypeOfSizeWithinDomain - Returns a real floating 
/// point or a complex type (based on typeDomain/typeSize). 
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
                                                       QualType Domain) const {
  FloatingRank EltRank = getFloatingRank(Size);
  if (Domain->isComplexType()) {
    switch (EltRank) {
    default: assert(0 && "getFloatingRank(): illegal value for rank");
    case FloatRank:      return FloatComplexTy;
    case DoubleRank:     return DoubleComplexTy;
    case LongDoubleRank: return LongDoubleComplexTy;
    }
  }

  assert(Domain->isRealFloatingType() && "Unknown domain!");
  switch (EltRank) {
  default: assert(0 && "getFloatingRank(): illegal value for rank");
  case FloatRank:      return FloatTy;
  case DoubleRank:     return DoubleTy;
  case LongDoubleRank: return LongDoubleTy;
  }
}

/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
/// LHS < RHS, return -1. 
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
  FloatingRank LHSR = getFloatingRank(LHS);
  FloatingRank RHSR = getFloatingRank(RHS);
  
  if (LHSR == RHSR)
    return 0;
  if (LHSR > RHSR)
    return 1;
  return -1;
}

/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum,
/// or if it is not canonicalized.
unsigned ASTContext::getIntegerRank(Type *T) {
  assert(T->isCanonical() && "T should be canonicalized");
  if (EnumType* ET = dyn_cast<EnumType>(T))
    T = ET->getDecl()->getIntegerType().getTypePtr();

  // There are two things which impact the integer rank: the width, and
  // the ordering of builtins.  The builtin ordering is encoded in the
  // bottom three bits; the width is encoded in the bits above that.
  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
    return FWIT->getWidth() << 3;
  }

  switch (cast<BuiltinType>(T)->getKind()) {
  default: assert(0 && "getIntegerRank(): not a built-in integer");
  case BuiltinType::Bool:
    return 1 + (getIntWidth(BoolTy) << 3);
  case BuiltinType::Char_S:
  case BuiltinType::Char_U:
  case BuiltinType::SChar:
  case BuiltinType::UChar:
    return 2 + (getIntWidth(CharTy) << 3);
  case BuiltinType::Short:
  case BuiltinType::UShort:
    return 3 + (getIntWidth(ShortTy) << 3);
  case BuiltinType::Int:
  case BuiltinType::UInt:
    return 4 + (getIntWidth(IntTy) << 3);
  case BuiltinType::Long:
  case BuiltinType::ULong:
    return 5 + (getIntWidth(LongTy) << 3);
  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    return 6 + (getIntWidth(LongLongTy) << 3);
  case BuiltinType::Int128:
  case BuiltinType::UInt128:
    return 7 + (getIntWidth(Int128Ty) << 3);
  }
}

/// getIntegerTypeOrder - Returns the highest ranked integer type: 
/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
/// LHS < RHS, return -1. 
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
  Type *LHSC = getCanonicalType(LHS).getTypePtr();
  Type *RHSC = getCanonicalType(RHS).getTypePtr();
  if (LHSC == RHSC) return 0;
  
  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
  
  unsigned LHSRank = getIntegerRank(LHSC);
  unsigned RHSRank = getIntegerRank(RHSC);
  
  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
    if (LHSRank == RHSRank) return 0;
    return LHSRank > RHSRank ? 1 : -1;
  }
  
  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
  if (LHSUnsigned) {
    // If the unsigned [LHS] type is larger, return it.
    if (LHSRank >= RHSRank)
      return 1;
    
    // If the signed type can represent all values of the unsigned type, it
    // wins.  Because we are dealing with 2's complement and types that are
    // powers of two larger than each other, this is always safe. 
    return -1;
  }

  // If the unsigned [RHS] type is larger, return it.
  if (RHSRank >= LHSRank)
    return -1;
  
  // If the signed type can represent all values of the unsigned type, it
  // wins.  Because we are dealing with 2's complement and types that are
  // powers of two larger than each other, this is always safe. 
  return 1;
}

// getCFConstantStringType - Return the type used for constant CFStrings. 
QualType ASTContext::getCFConstantStringType() {
  if (!CFConstantStringTypeDecl) {
    CFConstantStringTypeDecl = 
      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(), 
                         &Idents.get("NSConstantString"));
    QualType FieldTypes[4];
  
    // const int *isa;
    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));  
    // int flags;
    FieldTypes[1] = IntTy;
    // const char *str;
    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));  
    // long length;
    FieldTypes[3] = LongTy;  
  
    // Create fields
    for (unsigned i = 0; i < 4; ++i) {
      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, 
                                           SourceLocation(), 0,
                                           FieldTypes[i], /*BitWidth=*/0, 
                                           /*Mutable=*/false);
      CFConstantStringTypeDecl->addDecl(*this, Field);
    }

    CFConstantStringTypeDecl->completeDefinition(*this);
  }
  
  return getTagDeclType(CFConstantStringTypeDecl);
}

void ASTContext::setCFConstantStringType(QualType T) {
  const RecordType *Rec = T->getAsRecordType();
  assert(Rec && "Invalid CFConstantStringType");
  CFConstantStringTypeDecl = Rec->getDecl();
}

QualType ASTContext::getObjCFastEnumerationStateType()
{
  if (!ObjCFastEnumerationStateTypeDecl) {
    ObjCFastEnumerationStateTypeDecl =
      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
                         &Idents.get("__objcFastEnumerationState"));
    
    QualType FieldTypes[] = {
      UnsignedLongTy,
      getPointerType(ObjCIdType),
      getPointerType(UnsignedLongTy),
      getConstantArrayType(UnsignedLongTy,
                           llvm::APInt(32, 5), ArrayType::Normal, 0)
    };
    
    for (size_t i = 0; i < 4; ++i) {
      FieldDecl *Field = FieldDecl::Create(*this, 
                                           ObjCFastEnumerationStateTypeDecl, 
                                           SourceLocation(), 0, 
                                           FieldTypes[i], /*BitWidth=*/0, 
                                           /*Mutable=*/false);
      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
    }
    
    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
  }
  
  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
}

void ASTContext::setObjCFastEnumerationStateType(QualType T) {
  const RecordType *Rec = T->getAsRecordType();
  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
}

// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
      return II->isStr("BOOL");
        
  return false;
}

/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
int ASTContext::getObjCEncodingTypeSize(QualType type) {
  uint64_t sz = getTypeSize(type);
  
  // Make all integer and enum types at least as large as an int
  if (sz > 0 && type->isIntegralType())
    sz = std::max(sz, getTypeSize(IntTy));
  // Treat arrays as pointers, since that's how they're passed in.
  else if (type->isArrayType())
    sz = getTypeSize(VoidPtrTy);
  return sz / getTypeSize(CharTy);
}

/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 
                                              std::string& S) {
  // FIXME: This is not very efficient.
  // Encode type qualifer, 'in', 'inout', etc. for the return type.
  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
  // Encode result type.
  getObjCEncodingForType(Decl->getResultType(), S);
  // Compute size of all parameters.
  // Start with computing size of a pointer in number of bytes.
  // FIXME: There might(should) be a better way of doing this computation!
  SourceLocation Loc;
  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
  // The first two arguments (self and _cmd) are pointers; account for
  // their size.
  int ParmOffset = 2 * PtrSize;
  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
       E = Decl->param_end(); PI != E; ++PI) {
    QualType PType = (*PI)->getType();
    int sz = getObjCEncodingTypeSize(PType);
    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
    ParmOffset += sz;
  }
  S += llvm::utostr(ParmOffset);
  S += "@0:";
  S += llvm::utostr(PtrSize);
  
  // Argument types.
  ParmOffset = 2 * PtrSize;
  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
       E = Decl->param_end(); PI != E; ++PI) {
    ParmVarDecl *PVDecl = *PI;
    QualType PType = PVDecl->getOriginalType(); 
    if (const ArrayType *AT =
          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
      // Use array's original type only if it has known number of
      // elements.
      if (!isa<ConstantArrayType>(AT))
        PType = PVDecl->getType();
    } else if (PType->isFunctionType())
      PType = PVDecl->getType();
    // Process argument qualifiers for user supplied arguments; such as,
    // 'in', 'inout', etc.
    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
    getObjCEncodingForType(PType, S);
    S += llvm::utostr(ParmOffset);
    ParmOffset += getObjCEncodingTypeSize(PType);
  }
}

/// getObjCEncodingForPropertyDecl - Return the encoded type for this
/// property declaration. If non-NULL, Container must be either an
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
/// NULL when getting encodings for protocol properties.
/// Property attributes are stored as a comma-delimited C string. The simple 
/// attributes readonly and bycopy are encoded as single characters. The 
/// parametrized attributes, getter=name, setter=name, and ivar=name, are 
/// encoded as single characters, followed by an identifier. Property types 
/// are also encoded as a parametrized attribute. The characters used to encode 
/// these attributes are defined by the following enumeration:
/// @code
/// enum PropertyAttributes {
/// kPropertyReadOnly = 'R',   // property is read-only.
/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
/// kPropertyByref = '&',  // property is a reference to the value last assigned
/// kPropertyDynamic = 'D',    // property is dynamic
/// kPropertyGetter = 'G',     // followed by getter selector name
/// kPropertySetter = 'S',     // followed by setter selector name
/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
/// kPropertyType = 't'              // followed by old-style type encoding.
/// kPropertyWeak = 'W'              // 'weak' property
/// kPropertyStrong = 'P'            // property GC'able
/// kPropertyNonAtomic = 'N'         // property non-atomic
/// };
/// @endcode
void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 
                                                const Decl *Container,
                                                std::string& S) {
  // Collect information from the property implementation decl(s).
  bool Dynamic = false;
  ObjCPropertyImplDecl *SynthesizePID = 0;

  // FIXME: Duplicated code due to poor abstraction.
  if (Container) {
    if (const ObjCCategoryImplDecl *CID = 
        dyn_cast<ObjCCategoryImplDecl>(Container)) {
      for (ObjCCategoryImplDecl::propimpl_iterator
             i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
           i != e; ++i) {
        ObjCPropertyImplDecl *PID = *i;
        if (PID->getPropertyDecl() == PD) {
          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
            Dynamic = true;
          } else {
            SynthesizePID = PID;
          }
        }
      }
    } else {
      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
      for (ObjCCategoryImplDecl::propimpl_iterator
             i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
           i != e; ++i) {
        ObjCPropertyImplDecl *PID = *i;
        if (PID->getPropertyDecl() == PD) {
          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
            Dynamic = true;
          } else {
            SynthesizePID = PID;
          }
        }
      }      
    }
  }

  // FIXME: This is not very efficient.
  S = "T";

  // Encode result type.
  // GCC has some special rules regarding encoding of properties which
  // closely resembles encoding of ivars.
  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0, 
                             true /* outermost type */,
                             true /* encoding for property */);

  if (PD->isReadOnly()) {
    S += ",R";
  } else {
    switch (PD->getSetterKind()) {
    case ObjCPropertyDecl::Assign: break;
    case ObjCPropertyDecl::Copy:   S += ",C"; break;
    case ObjCPropertyDecl::Retain: S += ",&"; break;      
    }
  }

  // It really isn't clear at all what this means, since properties
  // are "dynamic by default".
  if (Dynamic)
    S += ",D";

  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
    S += ",N";
  
  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
    S += ",G";
    S += PD->getGetterName().getAsString();
  }

  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
    S += ",S";
    S += PD->getSetterName().getAsString();
  }

  if (SynthesizePID) {
    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
    S += ",V";
    S += OID->getNameAsString();
  }

  // FIXME: OBJCGC: weak & strong
}

/// getLegacyIntegralTypeEncoding -
/// Another legacy compatibility encoding: 32-bit longs are encoded as 
/// 'l' or 'L' , but not always.  For typedefs, we need to use 
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
///
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
      if (BT->getKind() == BuiltinType::ULong &&
          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
        PointeeTy = UnsignedIntTy;
      else 
        if (BT->getKind() == BuiltinType::Long &&
            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
          PointeeTy = IntTy;
    }
  }
}

void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
                                        const FieldDecl *Field) {
  // We follow the behavior of gcc, expanding structures which are
  // directly pointed to, and expanding embedded structures. Note that
  // these rules are sufficient to prevent recursive encoding of the
  // same type.
  getObjCEncodingForTypeImpl(T, S, true, true, Field, 
                             true /* outermost type */);
}

static void EncodeBitField(const ASTContext *Context, std::string& S, 
                           const FieldDecl *FD) {
  const Expr *E = FD->getBitWidth();
  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
  ASTContext *Ctx = const_cast<ASTContext*>(Context);
  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
  S += 'b';
  S += llvm::utostr(N);
}

void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
                                            bool ExpandPointedToStructures,
                                            bool ExpandStructures,
                                            const FieldDecl *FD,
                                            bool OutermostType,
                                            bool EncodingProperty) {
  if (const BuiltinType *BT = T->getAsBuiltinType()) {
    if (FD && FD->isBitField()) {
      EncodeBitField(this, S, FD);
    }
    else {
      char encoding;
      switch (BT->getKind()) {
      default: assert(0 && "Unhandled builtin type kind");          
      case BuiltinType::Void:       encoding = 'v'; break;
      case BuiltinType::Bool:       encoding = 'B'; break;
      case BuiltinType::Char_U:
      case BuiltinType::UChar:      encoding = 'C'; break;
      case BuiltinType::UShort:     encoding = 'S'; break;
      case BuiltinType::UInt:       encoding = 'I'; break;
      case BuiltinType::ULong:      
          encoding = 
            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q'; 
          break;
      case BuiltinType::UInt128:    encoding = 'T'; break;
      case BuiltinType::ULongLong:  encoding = 'Q'; break;
      case BuiltinType::Char_S:
      case BuiltinType::SChar:      encoding = 'c'; break;
      case BuiltinType::Short:      encoding = 's'; break;
      case BuiltinType::Int:        encoding = 'i'; break;
      case BuiltinType::Long:       
        encoding = 
          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q'; 
        break;
      case BuiltinType::LongLong:   encoding = 'q'; break;
      case BuiltinType::Int128:     encoding = 't'; break;
      case BuiltinType::Float:      encoding = 'f'; break;
      case BuiltinType::Double:     encoding = 'd'; break;
      case BuiltinType::LongDouble: encoding = 'd'; break;
      }
    
      S += encoding;
    }
  } else if (const ComplexType *CT = T->getAsComplexType()) {
    S += 'j';
    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false, 
                               false);
  } else if (T->isObjCQualifiedIdType()) {
    getObjCEncodingForTypeImpl(getObjCIdType(), S, 
                               ExpandPointedToStructures,
                               ExpandStructures, FD);
    if (FD || EncodingProperty) {
      // Note that we do extended encoding of protocol qualifer list
      // Only when doing ivar or property encoding.
      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
      S += '"';
      for (ObjCQualifiedIdType::qual_iterator I = QIDT->qual_begin(),
           E = QIDT->qual_end(); I != E; ++I) {
        S += '<';
        S += (*I)->getNameAsString();
        S += '>';
      }
      S += '"';
    }
    return;
  }
  else if (const PointerType *PT = T->getAsPointerType()) {
    QualType PointeeTy = PT->getPointeeType();
    bool isReadOnly = false;
    // For historical/compatibility reasons, the read-only qualifier of the
    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
    // Also, do not emit the 'r' for anything but the outermost type! 
    if (dyn_cast<TypedefType>(T.getTypePtr())) {
      if (OutermostType && T.isConstQualified()) {
        isReadOnly = true;
        S += 'r';
      }
    }
    else if (OutermostType) {
      QualType P = PointeeTy;
      while (P->getAsPointerType())
        P = P->getAsPointerType()->getPointeeType();
      if (P.isConstQualified()) {
        isReadOnly = true;
        S += 'r';
      }
    }
    if (isReadOnly) {
      // Another legacy compatibility encoding. Some ObjC qualifier and type
      // combinations need to be rearranged.
      // Rewrite "in const" from "nr" to "rn"
      const char * s = S.c_str();
      int len = S.length();
      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
        std::string replace = "rn";
        S.replace(S.end()-2, S.end(), replace);
      }
    }
    if (isObjCIdStructType(PointeeTy)) {
      S += '@';
      return;
    }
    else if (PointeeTy->isObjCInterfaceType()) {
      if (!EncodingProperty &&
          isa<TypedefType>(PointeeTy.getTypePtr())) {
        // Another historical/compatibility reason.
        // We encode the underlying type which comes out as 
        // {...};
        S += '^';
        getObjCEncodingForTypeImpl(PointeeTy, S, 
                                   false, ExpandPointedToStructures, 
                                   NULL);
        return;
      }
      S += '@';
      if (FD || EncodingProperty) {
        const ObjCInterfaceType *OIT = 
                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
        ObjCInterfaceDecl *OI = OIT->getDecl();
        S += '"';
        S += OI->getNameAsCString();
        for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
             E = OIT->qual_end(); I != E; ++I) {
          S += '<';
          S += (*I)->getNameAsString();
          S += '>';
        } 
        S += '"';
      }
      return;
    } else if (isObjCClassStructType(PointeeTy)) {
      S += '#';
      return;
    } else if (isObjCSelType(PointeeTy)) {
      S += ':';
      return;
    }
    
    if (PointeeTy->isCharType()) {
      // char pointer types should be encoded as '*' unless it is a
      // type that has been typedef'd to 'BOOL'.
      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
        S += '*';
        return;
      }
    }
    
    S += '^';
    getLegacyIntegralTypeEncoding(PointeeTy);

    getObjCEncodingForTypeImpl(PointeeTy, S, 
                               false, ExpandPointedToStructures, 
                               NULL);
  } else if (const ArrayType *AT =
               // Ignore type qualifiers etc.
               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
    if (isa<IncompleteArrayType>(AT)) {
      // Incomplete arrays are encoded as a pointer to the array element.
      S += '^';

      getObjCEncodingForTypeImpl(AT->getElementType(), S, 
                                 false, ExpandStructures, FD);
    } else {
      S += '[';
    
      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
        S += llvm::utostr(CAT->getSize().getZExtValue());
      else {
        //Variable length arrays are encoded as a regular array with 0 elements.
        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
        S += '0';
      }
    
      getObjCEncodingForTypeImpl(AT->getElementType(), S, 
                                 false, ExpandStructures, FD);
      S += ']';
    }
  } else if (T->getAsFunctionType()) {
    S += '?';
  } else if (const RecordType *RTy = T->getAsRecordType()) {
    RecordDecl *RDecl = RTy->getDecl();
    S += RDecl->isUnion() ? '(' : '{';
    // Anonymous structures print as '?'
    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
      S += II->getName();
    } else {
      S += '?';
    }
    if (ExpandStructures) {
      S += '=';
      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
                                   FieldEnd = RDecl->field_end(*this);
           Field != FieldEnd; ++Field) {
        if (FD) {
          S += '"';
          S += Field->getNameAsString();
          S += '"';
        }
        
        // Special case bit-fields.
        if (Field->isBitField()) {
          getObjCEncodingForTypeImpl(Field->getType(), S, false, true, 
                                     (*Field));
        } else {
          QualType qt = Field->getType();
          getLegacyIntegralTypeEncoding(qt);
          getObjCEncodingForTypeImpl(qt, S, false, true, 
                                     FD);
        }
      }
    }
    S += RDecl->isUnion() ? ')' : '}';
  } else if (T->isEnumeralType()) {
    if (FD && FD->isBitField())
      EncodeBitField(this, S, FD);
    else
      S += 'i';
  } else if (T->isBlockPointerType()) {
    S += "@?"; // Unlike a pointer-to-function, which is "^?".
  } else if (T->isObjCInterfaceType()) {
    // @encode(class_name)
    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
    S += '{';
    const IdentifierInfo *II = OI->getIdentifier();
    S += II->getName();
    S += '=';
    llvm::SmallVector<FieldDecl*, 32> RecFields;
    CollectObjCIvars(OI, RecFields);
    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
      if (RecFields[i]->isBitField())
        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, 
                                   RecFields[i]);
      else
        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true, 
                                   FD);
    }
    S += '}';
  }
  else
    assert(0 && "@encode for type not implemented!");
}

void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 
                                                 std::string& S) const {
  if (QT & Decl::OBJC_TQ_In)
    S += 'n';
  if (QT & Decl::OBJC_TQ_Inout)
    S += 'N';
  if (QT & Decl::OBJC_TQ_Out)
    S += 'o';
  if (QT & Decl::OBJC_TQ_Bycopy)
    S += 'O';
  if (QT & Decl::OBJC_TQ_Byref)
    S += 'R';
  if (QT & Decl::OBJC_TQ_Oneway)
    S += 'V';
}

void ASTContext::setBuiltinVaListType(QualType T)
{
  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
    
  BuiltinVaListType = T;
}

void ASTContext::setObjCIdType(QualType T)
{
  ObjCIdType = T;

  const TypedefType *TT = T->getAsTypedefType();
  if (!TT)
    return;

  TypedefDecl *TD = TT->getDecl();

  // typedef struct objc_object *id;
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
  // User error - caller will issue diagnostics.
  if (!ptr)
    return;
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
  // User error - caller will issue diagnostics.
  if (!rec)
    return;
  IdStructType = rec;
}

void ASTContext::setObjCSelType(QualType T)
{
  ObjCSelType = T;

  const TypedefType *TT = T->getAsTypedefType();
  if (!TT)
    return;
  TypedefDecl *TD = TT->getDecl();

  // typedef struct objc_selector *SEL;
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
  if (!ptr)
    return;
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
  if (!rec)
    return;
  SelStructType = rec;
}

void ASTContext::setObjCProtoType(QualType QT)
{
  ObjCProtoType = QT;
}

void ASTContext::setObjCClassType(QualType T)
{
  ObjCClassType = T;

  const TypedefType *TT = T->getAsTypedefType();
  if (!TT)
    return;
  TypedefDecl *TD = TT->getDecl();

  // typedef struct objc_class *Class;
  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
  assert(ptr && "'Class' incorrectly typed");
  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
  assert(rec && "'Class' incorrectly typed");
  ClassStructType = rec;
}

void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
  assert(ObjCConstantStringType.isNull() && 
         "'NSConstantString' type already set!");
  
  ObjCConstantStringType = getObjCInterfaceType(Decl);
}

/// \brief Retrieve the template name that represents a qualified
/// template name such as \c std::vector.
TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 
                                                  bool TemplateKeyword,
                                                  TemplateDecl *Template) {
  llvm::FoldingSetNodeID ID;
  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);

  void *InsertPos = 0;
  QualifiedTemplateName *QTN =
    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
  if (!QTN) {
    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
  }

  return TemplateName(QTN);
}

/// \brief Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template apply.
TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 
                                                  const IdentifierInfo *Name) {
  assert(NNS->isDependent() && "Nested name specifier must be dependent");

  llvm::FoldingSetNodeID ID;
  DependentTemplateName::Profile(ID, NNS, Name);

  void *InsertPos = 0;
  DependentTemplateName *QTN =
    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);

  if (QTN)
    return TemplateName(QTN);

  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
  if (CanonNNS == NNS) {
    QTN = new (*this,4) DependentTemplateName(NNS, Name);
  } else {
    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
  }

  DependentTemplateNames.InsertNode(QTN, InsertPos);
  return TemplateName(QTN);
}

/// getFromTargetType - Given one of the integer types provided by
/// TargetInfo, produce the corresponding type. The unsigned @p Type
/// is actually a value of type @c TargetInfo::IntType.
QualType ASTContext::getFromTargetType(unsigned Type) const {
  switch (Type) {
  case TargetInfo::NoInt: return QualType(); 
  case TargetInfo::SignedShort: return ShortTy;
  case TargetInfo::UnsignedShort: return UnsignedShortTy;
  case TargetInfo::SignedInt: return IntTy;
  case TargetInfo::UnsignedInt: return UnsignedIntTy;
  case TargetInfo::SignedLong: return LongTy;
  case TargetInfo::UnsignedLong: return UnsignedLongTy;
  case TargetInfo::SignedLongLong: return LongLongTy;
  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
  }

  assert(false && "Unhandled TargetInfo::IntType value");
  return QualType();
}

//===----------------------------------------------------------------------===//
//                        Type Predicates.
//===----------------------------------------------------------------------===//

/// isObjCNSObjectType - Return true if this is an NSObject object using
/// NSObject attribute on a c-style pointer type.
/// FIXME - Make it work directly on types.
///
bool ASTContext::isObjCNSObjectType(QualType Ty) const {
  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
    if (TypedefDecl *TD = TDT->getDecl())
      if (TD->getAttr<ObjCNSObjectAttr>())
        return true;
  }
  return false;  
}

/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
/// to an object type.  This includes "id" and "Class" (two 'special' pointers
/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
/// ID type).
bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
  if (Ty->isObjCQualifiedIdType())
    return true;
  
  // Blocks are objects.
  if (Ty->isBlockPointerType())
    return true;
    
  // All other object types are pointers.
  const PointerType *PT = Ty->getAsPointerType();
  if (PT == 0)
    return false;
  
  // If this a pointer to an interface (e.g. NSString*), it is ok.
  if (PT->getPointeeType()->isObjCInterfaceType() ||
      // If is has NSObject attribute, OK as well.
      isObjCNSObjectType(Ty))
    return true;
  
  // Check to see if this is 'id' or 'Class', both of which are typedefs for
  // pointer types.  This looks for the typedef specifically, not for the
  // underlying type.  Iteratively strip off typedefs so that we can handle
  // typedefs of typedefs.
  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
    if (Ty.getUnqualifiedType() == getObjCIdType() ||
        Ty.getUnqualifiedType() == getObjCClassType())
      return true;
    
    Ty = TDT->getDecl()->getUnderlyingType();
  }
  
  return false;
}

/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
/// garbage collection attribute.
///
QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
  if (getLangOptions().ObjC1 &&
      getLangOptions().getGCMode() != LangOptions::NonGC) {
    GCAttrs = Ty.getObjCGCAttr();
    // Default behavious under objective-c's gc is for objective-c pointers
    // (or pointers to them) be treated as though they were declared 
    // as __strong.
    if (GCAttrs == QualType::GCNone) {
      if (isObjCObjectPointerType(Ty))
        GCAttrs = QualType::Strong;
      else if (Ty->isPointerType())
        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
    }
    // Non-pointers have none gc'able attribute regardless of the attribute
    // set on them.
    else if (!isObjCObjectPointerType(Ty) && !Ty->isPointerType())
      return QualType::GCNone;
  }
  return GCAttrs;
}

//===----------------------------------------------------------------------===//
//                        Type Compatibility Testing
//===----------------------------------------------------------------------===//

/// typesAreBlockCompatible - This routine is called when comparing two
/// block types. Types must be strictly compatible here. For example,
/// C unfortunately doesn't produce an error for the following:
/// 
///   int (*emptyArgFunc)();
///   int (*intArgList)(int) = emptyArgFunc;
/// 
/// For blocks, we will produce an error for the following (similar to C++):
///
///   int (^emptyArgBlock)();
///   int (^intArgBlock)(int) = emptyArgBlock;
///
/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
///
bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
  const FunctionType *lbase = lhs->getAsFunctionType();
  const FunctionType *rbase = rhs->getAsFunctionType();
  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
  if (lproto && rproto == 0)
    return false;
  return !mergeTypes(lhs, rhs).isNull();
}

/// areCompatVectorTypes - Return true if the two specified vector types are 
/// compatible.
static bool areCompatVectorTypes(const VectorType *LHS,
                                 const VectorType *RHS) {
  assert(LHS->isCanonical() && RHS->isCanonical());
  return LHS->getElementType() == RHS->getElementType() &&
         LHS->getNumElements() == RHS->getNumElements();
}

/// canAssignObjCInterfaces - Return true if the two interface types are
/// compatible for assignment from RHS to LHS.  This handles validation of any
/// protocol qualifiers on the LHS or RHS.
///
bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
                                         const ObjCInterfaceType *RHS) {
  // Verify that the base decls are compatible: the RHS must be a subclass of
  // the LHS.
  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
    return false;
  
  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
  // protocol qualified at all, then we are good.
  if (!isa<ObjCQualifiedInterfaceType>(LHS))
    return true;
  
  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
  // isn't a superset.
  if (!isa<ObjCQualifiedInterfaceType>(RHS))
    return true;  // FIXME: should return false!
  
  // Finally, we must have two protocol-qualified interfaces.
  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
  
  // All LHS protocols must have a presence on the RHS.  
  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
  
  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
                                                 LHSPE = LHSP->qual_end();
       LHSPI != LHSPE; LHSPI++) {
    bool RHSImplementsProtocol = false;

    // If the RHS doesn't implement the protocol on the left, the types
    // are incompatible.
    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
                                                   RHSPE = RHSP->qual_end();
         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
        RHSImplementsProtocol = true;
    }
    // FIXME: For better diagnostics, consider passing back the protocol name.
    if (!RHSImplementsProtocol)
      return false;
  }
  // The RHS implements all protocols listed on the LHS.
  return true;
}

bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
  // get the "pointed to" types
  const PointerType *LHSPT = LHS->getAsPointerType();
  const PointerType *RHSPT = RHS->getAsPointerType();
  
  if (!LHSPT || !RHSPT)
    return false;
    
  QualType lhptee = LHSPT->getPointeeType();
  QualType rhptee = RHSPT->getPointeeType();
  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
  // ID acts sort of like void* for ObjC interfaces
  if (LHSIface && isObjCIdStructType(rhptee))
    return true;
  if (RHSIface && isObjCIdStructType(lhptee))
    return true;
  if (!LHSIface || !RHSIface)
    return false;
  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
         canAssignObjCInterfaces(RHSIface, LHSIface);
}

/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the 
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
  return !mergeTypes(LHS, RHS).isNull();
}

QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
  const FunctionType *lbase = lhs->getAsFunctionType();
  const FunctionType *rbase = rhs->getAsFunctionType();
  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
  bool allLTypes = true;
  bool allRTypes = true;

  // Check return type
  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
  if (retType.isNull()) return QualType();
  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
    allLTypes = false;
  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
    allRTypes = false;

  if (lproto && rproto) { // two C99 style function prototypes
    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
           "C++ shouldn't be here");
    unsigned lproto_nargs = lproto->getNumArgs();
    unsigned rproto_nargs = rproto->getNumArgs();

    // Compatible functions must have the same number of arguments
    if (lproto_nargs != rproto_nargs)
      return QualType();

    // Variadic and non-variadic functions aren't compatible
    if (lproto->isVariadic() != rproto->isVariadic())
      return QualType();

    if (lproto->getTypeQuals() != rproto->getTypeQuals())
      return QualType();

    // Check argument compatibility
    llvm::SmallVector<QualType, 10> types;
    for (unsigned i = 0; i < lproto_nargs; i++) {
      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
      QualType argtype = mergeTypes(largtype, rargtype);
      if (argtype.isNull()) return QualType();
      types.push_back(argtype);
      if (getCanonicalType(argtype) != getCanonicalType(largtype))
        allLTypes = false;
      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
        allRTypes = false;
    }
    if (allLTypes) return lhs;
    if (allRTypes) return rhs;
    return getFunctionType(retType, types.begin(), types.size(),
                           lproto->isVariadic(), lproto->getTypeQuals());
  }

  if (lproto) allRTypes = false;
  if (rproto) allLTypes = false;

  const FunctionProtoType *proto = lproto ? lproto : rproto;
  if (proto) {
    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
    if (proto->isVariadic()) return QualType();
    // Check that the types are compatible with the types that
    // would result from default argument promotions (C99 6.7.5.3p15).
    // The only types actually affected are promotable integer
    // types and floats, which would be passed as a different
    // type depending on whether the prototype is visible.
    unsigned proto_nargs = proto->getNumArgs();
    for (unsigned i = 0; i < proto_nargs; ++i) {
      QualType argTy = proto->getArgType(i);
      if (argTy->isPromotableIntegerType() ||
          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
        return QualType();
    }

    if (allLTypes) return lhs;
    if (allRTypes) return rhs;
    return getFunctionType(retType, proto->arg_type_begin(),
                           proto->getNumArgs(), lproto->isVariadic(),
                           lproto->getTypeQuals());
  }

  if (allLTypes) return lhs;
  if (allRTypes) return rhs;
  return getFunctionNoProtoType(retType);
}

QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
  // C++ [expr]: If an expression initially has the type "reference to T", the
  // type is adjusted to "T" prior to any further analysis, the expression
  // designates the object or function denoted by the reference, and the
  // expression is an lvalue unless the reference is an rvalue reference and
  // the expression is a function call (possibly inside parentheses).
  // FIXME: C++ shouldn't be going through here!  The rules are different
  // enough that they should be handled separately.
  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
  // shouldn't be going through here!
  if (const ReferenceType *RT = LHS->getAsReferenceType())
    LHS = RT->getPointeeType();
  if (const ReferenceType *RT = RHS->getAsReferenceType())
    RHS = RT->getPointeeType();

  QualType LHSCan = getCanonicalType(LHS),
           RHSCan = getCanonicalType(RHS);

  // If two types are identical, they are compatible.
  if (LHSCan == RHSCan)
    return LHS;

  // If the qualifiers are different, the types aren't compatible
  // Note that we handle extended qualifiers later, in the
  // case for ExtQualType.
  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
    return QualType();

  Type::TypeClass LHSClass = LHSCan->getTypeClass();
  Type::TypeClass RHSClass = RHSCan->getTypeClass();

  // We want to consider the two function types to be the same for these
  // comparisons, just force one to the other.
  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;

  // Strip off objc_gc attributes off the top level so they can be merged.
  // This is a complete mess, but the attribute itself doesn't make much sense.
  if (RHSClass == Type::ExtQual) {
    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
    if (GCAttr != QualType::GCNone) {
      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
                     RHS.getCVRQualifiers());
      QualType Result = mergeTypes(LHS, RHS);
      if (Result.getObjCGCAttr() == QualType::GCNone)
        Result = getObjCGCQualType(Result, GCAttr);
      else if (Result.getObjCGCAttr() != GCAttr)
        Result = QualType();
      return Result;
    }
  }
  if (LHSClass == Type::ExtQual) {
    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
    if (GCAttr != QualType::GCNone) {
      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
                     LHS.getCVRQualifiers());
      QualType Result = mergeTypes(LHS, RHS);
      if (Result.getObjCGCAttr() == QualType::GCNone)
        Result = getObjCGCQualType(Result, GCAttr);
      else if (Result.getObjCGCAttr() != GCAttr)
        Result = QualType();
      return Result;
    }
  }

  // Same as above for arrays
  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
    LHSClass = Type::ConstantArray;
  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
    RHSClass = Type::ConstantArray;
  
  // Canonicalize ExtVector -> Vector.
  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
  
  // Consider qualified interfaces and interfaces the same.
  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;

  // If the canonical type classes don't match.
  if (LHSClass != RHSClass) {
    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
    
    // 'id' and 'Class' act sort of like void* for ObjC interfaces
    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
      return LHS;
    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
      return RHS;
    
    // ID is compatible with all qualified id types.
    if (LHS->isObjCQualifiedIdType()) {
      if (const PointerType *PT = RHS->getAsPointerType()) {
        QualType pType = PT->getPointeeType();
        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
          return LHS;
        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
        // Unfortunately, this API is part of Sema (which we don't have access
        // to. Need to refactor. The following check is insufficient, since we 
        // need to make sure the class implements the protocol.
        if (pType->isObjCInterfaceType())
          return LHS;
      }
    }
    if (RHS->isObjCQualifiedIdType()) {
      if (const PointerType *PT = LHS->getAsPointerType()) {
        QualType pType = PT->getPointeeType();
        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
          return RHS;
        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
        // Unfortunately, this API is part of Sema (which we don't have access
        // to. Need to refactor. The following check is insufficient, since we 
        // need to make sure the class implements the protocol.
        if (pType->isObjCInterfaceType())
          return RHS;
      }
    }
    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
    // a signed integer type, or an unsigned integer type. 
    if (const EnumType* ETy = LHS->getAsEnumType()) {
      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
        return RHS;
    }
    if (const EnumType* ETy = RHS->getAsEnumType()) {
      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
        return LHS;
    }

    return QualType();
  }

  // The canonical type classes match.
  switch (LHSClass) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
    assert(false && "Non-canonical and dependent types shouldn't get here");
    return QualType();

  case Type::LValueReference:
  case Type::RValueReference:
  case Type::MemberPointer:
    assert(false && "C++ should never be in mergeTypes");
    return QualType();

  case Type::IncompleteArray:
  case Type::VariableArray:
  case Type::FunctionProto:
  case Type::ExtVector:
  case Type::ObjCQualifiedInterface:
    assert(false && "Types are eliminated above");
    return QualType();

  case Type::Pointer:
  {
    // Merge two pointer types, while trying to preserve typedef info
    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
    if (ResultType.isNull()) return QualType();
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
      return LHS;
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
      return RHS;
    return getPointerType(ResultType);
  }
  case Type::BlockPointer:
  {
    // Merge two block pointer types, while trying to preserve typedef info
    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
    if (ResultType.isNull()) return QualType();
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
      return LHS;
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
      return RHS;
    return getBlockPointerType(ResultType);
  }
  case Type::ConstantArray:
  {
    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
      return QualType();

    QualType LHSElem = getAsArrayType(LHS)->getElementType();
    QualType RHSElem = getAsArrayType(RHS)->getElementType();
    QualType ResultType = mergeTypes(LHSElem, RHSElem);
    if (ResultType.isNull()) return QualType();
    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
      return LHS;
    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
      return RHS;
    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
                                          ArrayType::ArraySizeModifier(), 0);
    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
                                          ArrayType::ArraySizeModifier(), 0);
    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
      return LHS;
    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
      return RHS;
    if (LVAT) {
      // FIXME: This isn't correct! But tricky to implement because
      // the array's size has to be the size of LHS, but the type
      // has to be different.
      return LHS;
    }
    if (RVAT) {
      // FIXME: This isn't correct! But tricky to implement because
      // the array's size has to be the size of RHS, but the type
      // has to be different.
      return RHS;
    }
    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
  }
  case Type::FunctionNoProto:
    return mergeFunctionTypes(LHS, RHS);
  case Type::Record:
  case Type::Enum:
    // FIXME: Why are these compatible?
    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
    return QualType();
  case Type::Builtin:
    // Only exactly equal builtin types are compatible, which is tested above.
    return QualType();
  case Type::Complex:
    // Distinct complex types are incompatible.
    return QualType();
  case Type::Vector:
    // FIXME: The merged type should be an ExtVector!
    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
      return LHS;
    return QualType();
  case Type::ObjCInterface: {
    // Check if the interfaces are assignment compatible.
    // FIXME: This should be type compatibility, e.g. whether
    // "LHS x; RHS x;" at global scope is legal.
    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
    if (LHSIface && RHSIface &&
        canAssignObjCInterfaces(LHSIface, RHSIface))
      return LHS;

    return QualType();
  }
  case Type::ObjCQualifiedId:
    // Distinct qualified id's are not compatible.
    return QualType();
  case Type::FixedWidthInt:
    // Distinct fixed-width integers are not compatible.
    return QualType();
  case Type::ExtQual:
    // FIXME: ExtQual types can be compatible even if they're not
    // identical!
    return QualType();
    // First attempt at an implementation, but I'm not really sure it's
    // right...
#if 0
    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
      return QualType();
    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
    LHSBase = QualType(LQual->getBaseType(), 0);
    RHSBase = QualType(RQual->getBaseType(), 0);
    ResultType = mergeTypes(LHSBase, RHSBase);
    if (ResultType.isNull()) return QualType();
    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
      return LHS;
    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
      return RHS;
    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
    return ResultType;
#endif

  case Type::TemplateSpecialization:
    assert(false && "Dependent types have no size");
    break;
  }

  return QualType();
}

//===----------------------------------------------------------------------===//
//                         Integer Predicates
//===----------------------------------------------------------------------===//

unsigned ASTContext::getIntWidth(QualType T) {
  if (T == BoolTy)
    return 1;
  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
    return FWIT->getWidth();
  }
  // For builtin types, just use the standard type sizing method
  return (unsigned)getTypeSize(T);
}

QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
  assert(T->isSignedIntegerType() && "Unexpected type");
  if (const EnumType* ETy = T->getAsEnumType())
    T = ETy->getDecl()->getIntegerType();
  const BuiltinType* BTy = T->getAsBuiltinType();
  assert (BTy && "Unexpected signed integer type");
  switch (BTy->getKind()) {
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    return UnsignedCharTy;
  case BuiltinType::Short:
    return UnsignedShortTy;
  case BuiltinType::Int:
    return UnsignedIntTy;
  case BuiltinType::Long:
    return UnsignedLongTy;
  case BuiltinType::LongLong:
    return UnsignedLongLongTy;
  case BuiltinType::Int128:
    return UnsignedInt128Ty;
  default:
    assert(0 && "Unexpected signed integer type");
    return QualType();
  }
}

ExternalASTSource::~ExternalASTSource() { }

void ExternalASTSource::PrintStats() { }
OpenPOWER on IntegriCloud